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Metformin is a widely prescribed medication for the treatment of type 2 diabetes mellitus
(T2DM). It possesses effective roles in various disorders, including cancer, dyslipidemia,
and obesity. However, the underlying mechanisms of metformin’s multiple benefits are not
fully understood. Herein, a mass spectrometry-based untargeted metabolomics approach
was used to investigate the metabolic changes associated with the administration of a
single dose of metformin in the plasma of 26 healthy subjects at five-time points; pre-dose,
before the maximum concentration of metformin (Cmax), Cmax, after Cmax, and 36 h post-
dose. A total of 111 metabolites involved in various biochemical processes were
perturbed, with branched-chain amino acid (BCAA) being the most significantly altered
pathway. Additionally, the Pearson similarity test revealed that 63 metabolites showed
a change in their levels dependent on metformin level. Out of these 63, the level
of 36 metabolites was significantly altered by metformin. Significantly altered
metformin-dependent metabolites, including hydroxymethyl uracil, propionic acid,
glycerophospholipids, and eicosanoids, pointed to fundamental biochemical processes
such as lipid network signaling, energy homeostasis, DNA lesion repair mechanisms, and
gut microbiota functions that could be linked to the multiple beneficial roles of metformin.
Thus, the distinctive metabolic pattern linked to metformin administration can be used as a
metabolic signature to predict the potential effect and mechanism of actions of new
chemical entities during drug development.
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INTRODUCTION

Diabetes is a severe chronic disease affecting hundreds of millions of people worldwide, leading to
high mortality and morbidity rates and increased health care costs (Guasch-Ferre et al., 2016).
Metformin, dimethyl biguanide, is one of the most prescribed drugs for treating type 2 diabetes
mellitus (T2DM) worldwide (Davies et al., 2018; Buse et al., 2020). It is an effective, safe, and
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relatively inexpensive anti-hyperglycemic agent associated with
improved glycemic control and insulin sensitivity (Song, 2016).
However, metformin does not alter glucose homeostasis in non-
diabetic subjects (Sanchez-Rangel and Inzucchi, 2017). In
addition, it has demonstrated cardioprotective effects that were
not associated with clinical hypoglycemia or/and body weight
gains (Sanchez-Rangel and Inzucchi, 2017; Foretz et al., 2019).

Metformin exerts its antidiabetic action mainly by acute
suppression of hepatic gluconeogenesis through a transient
inhibition of the mitochondrial respiratory chain complex I
with a consequence activation of adenosine monophosphate
(AMP)-activated protein kinase (AMPK) through liver kinase
B1 (Viollet et al., 2012; Rena et al., 2017). Besides, metformin acts
on multiple tissues and targets different pathways. It has been
reported to reduce oxidative stress mainly by inhibiting the
production (or neutralizing) of mitochondrial reactive oxygen
species (ROS) (Bonnefont-Rousselot et al., 2003; Kane et al.,
2010). Several disordered and complications are controlled and
improved by metformin, including; metabolic and reproductive
abnormalities of polycystic ovary syndrome (PCOS),
cardiovascular complications associated with diabetes, cancer
prognosis, and neurodegenerative diseases (Viollet et al., 2012;
Rotermund et al., 2018; Foretz et al., 2019). Additionally, clinical
studies have shown that metformin has beneficial effects on
systemic inflammatory markers (Cameron et al., 2016) and
weight loss in insulin-sensitive and insulin-resistant overweight
and obese patients (Seifarth et al., 2013).

The pleiotropic properties of metformin and its numerous
therapeutic areas suggest that various underlying mechanisms
and metabolic pathways could be involved. Despite being
introduced into the market for over 60 years, the mechanism
of action of metformin remains partially explored and
understood (Viollet et al., 2012; Foretz et al., 2014; Foretz
et al., 2019). This urges the need for new and considerable
efforts to understand better the cellular and molecular
mechanisms of action of metformin.

Metabolomics is the comprehensive analysis of a set of small
molecules (i.e., amino acids, lipids, and carbohydrates), referred to
as metabolites within cells, biofluids, tissues, or organisms. It is a
powerful analytical tool that is widely used to provide rich
mechanistic information on drugs, and aid in identifying
potential biomarkers that can be used to monitor the efficacy of
drug therapies (Balashova et al., 2018; Jacob et al., 2019; Dahabiyeh
et al., 2021). Pharmacometabolomics is an effective approach to
capture the metabolic signatures linked to drug exposure and,
therefore, improves the understanding of their underlying
mechanisms of actions and allows individual differences
recognition and drug toxicity prediction (Adam et al., 2016;
Malkawi et al., 2018; Dahabiyeh et al., 2020). Several studies
have reported the use of metabolomics to investigate the effect
of metformin under pathological conditions, including T2DM
(Bao et al., 2009; Adam et al., 2016), obesity (Zhu et al., 2013),
cancer (Liu et al., 2016), metabolic syndrome (Ryan et al., 2020),
and PCOS (Vinaixa et al., 2011). In this study, a single dose of
metformin was given to healthy subjects. A label-free mass
spectrometry-based untargeted metabolomics approach was
used to identify metabolic dysregulation and pathways

associated with metformin excreated levels (metformin-
dependent metabolites). The dysregulated metformin-dependent
metabolites could provide novel insights into the underlying
biological pathways impacted by metformin administration.

MATERIALS AND METHODS

Subject Recruitment and Study Design
Subject recruitment and blood sample collection were conducted
at Jordan Center for Pharmaceutical Research in Amman, Jordan.
The Institutional Review Board reviewed and approved the study
at Jordan Center for Pharmaceutical Research at Amman, Jordan
(IRB-01-R02), and Institutional Review Board (IRB) at King Saud
University (approval number E-19-4234) and written informed
consent was obtained from all participants. Twenty-six healthy
male subjects, aged 18–50 years, were enrolled in the study,
whereas individuals with recorded health conditions were
excluded. Each subject received a single oral dose of 500 mg
metformin hydrochloride film-coated tablet under standard fed
conditions. A night before drug administration, all subjects were
served standard dinner at least 10 h before metformin intake.
Standard breakfast was served 30 min before drug administration,
while standard lunch and dinner were served 6 and 12 h post drug
administration. Individual serum concentrations of metformin
were assayed at different time points following drug
administration to determine Cmax (unpublished data). For
each participant, blood samples were collected in heparinized
tubes at multiple time points, and only five-time points were
selected for this metabolomics study; pre-drug administration,
1.5 h before the maximum concentration of metformin in the
serum (Cmax), Cmax, 2 h after Cmax, and 36 h post-drug
administration, culminating a total of 130 samples. In this
study, we selected the above five-time points to give a
comprehensive measure of the metabolic pattern of metformin.

Screening (up to 14 days pre-dose administration) and follow-
up (up to 7 days post-dose administration) examinations
including comprehensive medical history, electrocardiogram
(ECG), physical examination, vital signs (blood pressure and
heart rate) measurements, blood hematology, and blood
chemistry were performed for all participants. HbA1c,
urinalysis, and serology tests (HBs Ag, HCV Ab, HIV I andII)
were only performed during the screening examination. In
addition, blood glucose levels were monitored at different time
points. The demographic and clinical data of the participants are
presented in Table 1.

Sample Preparation and Metabolite
Extraction
A total of 130 serum samples were subjected to label-free
untargeted metabolomics analysis using high-resolution liquid
chromatography-mass spectrometry (LC-MS). Metabolites were
extracted as previously described (Aleidi et al., 2021). Briefly, to
100 μL serum sample, 300 μL of methanol and 10 μL of 2.8 mg/ml
DL-o-chlorophenylalanine internal standard were added. After
centrifugation for 15 min, the supernatant was mixed with cold
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acetonitrile (ACN) and centrifuged again for 5 min. Finally, the
supernatant was dried, and before LC-MS analysis, the dried
residue was reconstituted in 1:1 (v/v) methanol/water.

Label-free Liquid Chromatography-Mass
Spectrometry Untargeted Metabolomics
Analysis
Metabolomics profiling was performed by Ultimate 3000 LC
combined with Q Exactive MS (Thermo Fisher Scientific, CA,
United States) as reported in our recent publication (Aleidi et al.,
2021). Briefly, extracted metabolites were first separated using an
ACQUITY UPLC HSS T3 (100 × 2.1 mm 1.8 μm) and a mobile
phase composed of solvent A (0.05% formic acid-water) and
solvent B (ACN) with a gradient elution over 16 min applied at
300 μl/min flow rate. MS spectra were acquired in full MS scan in
the range m/z 50–1,500, with 25,000 enhanced mass resolution
and a frequency 15 spectra per second. The capillary voltage was

3000 and 3200 V for positive and negative ionization modes,
respectively. The fragmentation was achieved for MSMS
experiments at 175 V, with nebulizer gas at 35 bsi, and gas
temperature 450°C. Chromatographic and MS parameters
(under positive and negative ionization modes) were kept as
reported previously (Aleidi et al., 2021). Pooled samples prepared
the quality control (QC) sample. A QC injection was performed
every 10 LC-MS sample runs. In total, there were 18 QC samples
injected and analyzed.

Metabolites Identification
The raw data were acquired and aligned using the compound
discoverer software (Thermo Fisher Scientific, United States)
based on the m/z value and the ion signals’ retention time.
Then, the chemical structures of metabolites were identified by
matching the data obtained from accurate mass analysis and MS/
MS fragmentation with data available in the online databases; the
Human Metabolome Database (www.hmdb.ca), METLIN (www.
metlin.scripps.edu), and the Mass Bank (www.massbank.jp).

Statistical Analysis
Multivariate statistical analysis was performed using SIMCAP+14
from Umetrics AB (Umeå, Sweden). For the identified
metabolites, peak intensities at each time point were
normalized, Parito-scaled, and log-transformed. The processed
peak intensities were used to generate principal component
analysis (PCA) and orthogonal partial least squares-
discriminant analysis (OPLS-DA) models to overviewing the
metabolic differences between the various time points. The
robustness of the created models was evaluated by the fitness
of model (R2Y) and predictive ability (Q2) values (Worley and
Powers, 2013). MetaboAnalyst version 4.0 (McGill University,
Montreal, Canada) (http://www.metaboanalyst.ca) was used to
visualize the affected metabolic pathways as of metformin intake
(Chong et al., 2018).

Univariate analysis using one-way analysis of variance
(ANOVA) and post-hoc Tukey’s analysis method was
performed for time points. Significantly differentially expressed
metabolites were determined based on false discovery rate (FDR)
adjusted p-value less than 0.05 and fold change (FC > 1.5, <0.67).
The total sample median was used to normalize the signal, ensure
normal distribution, and represent Z-score. The metabolic
patterns connected to metformin’s action were developed
using Venn diagrams and Pearson similarity test (MPP
Software, Agilent Inc., CA) as discussed before (Gu et al., 2020).

RESULTS

Clinical and Demographic Data of Study
Subjects
Table 1 summarizes the demographic and clinical data of the 26
male subjects included in this study. All participants were healthy
non-diabetic men. Screening and follow-up examinations
revealed that all subjects had normal heart rates, blood
pressure (≤120/80 mm Hg), blood glucose, and HbA1c levels.
Hematology and biochemistry tests were within the normal range

TABLE 1 | Clinical and demographic data of recruited subjects (n � 26 male)
during screening and follow-up periods.

Clinical
and demographic data

Mean ± SD

Screening Follow-up

Body mass index (BMI, kg/m2), (range) 25 ± 3.8, (19.2–29.3) —

Age (years) 31 ± 9.2 —

Blood pressure (mm Hg) ≤120/80 ≤120/80
Heart rate (beat/minute) 69.6 ± 4 71.9 ± 6.5
Biochemistry
Glucose (mg/dl) 98.2 ± 7.9 91.5 ± 9.7
Urea (mg/dl) 29.8 ± 5.9 31.3 ± 6.7
Creatinine (mg/dl) 1.04 ± 0.14 1.08 ± 0.11
Sodium (mmole/L) 143.2 ± 2.7 143 ± 1.9
Potassium (mmole/L) 4.3 ± 0.2 4.2 ± 0.17
GOT (u/L) 21.2 ± 6.9 26 ± 17.0
GPT (u/L) 26.2 ± 11.1 30 ± 34.0
ALKa (u/L) 105 ± 19.0 86 ± 16.0
Total protein (g/dl) 7.4 ± 0.5 7.7 ± 0.5
Total bilirubin (mg/dl) 0.47 ± 0.14 0.5 ± 0.5
HbA1c (%) 5.2 ± 0.23 —

Hematology
Hemoglobin (g/dl) 16.1 ± 1.0 15.8 ± 1.1
Hematocrit (%) 47.7 ± 2.9 45.6 ± 2.8
R.B.C (1012/L) 5.4 ± 0.4 5.3 ± 0.3
M.C.V (fL) 88.2 ± 4.3 86.6 ± 3.5
M.C.H (pg) 29.6 ± 1.8 30.0 ± 1.6
M.CH.C (g/dl) 33.6 ± 0.6 34.6 ± 0.7
Differential Leucocytes Count
Leucocytes (109/L) 7.8 ± 2.0
Neutrophils (%) 62.3 ± 3.7 64.2 ± 2.5
Lymphocytes (%) 33.5 ± 3.2 32.0 ± 2.5
Monocytes (%) 3.4 ± 1.1 3.0 ± 0.7
Eosinophils (%) 0.73 ± 0.7 0.77 ± 0.8
Basophils (%) 0.04 ± 0.2 0.12 ± 0.3
Platelets (109/L) 245.1 ± 40.5 272.1 ± 46.2

Data are presented as mean ± standard deviation.
GOT: glutamic oxaloacetic transaminase, GPT: glutamic pyruvic transaminase, ALK:
Alkaline phosphatase, R.B.C: red blood cell, M.C.V mean corpuscular volume, M.C.H
mean corpuscular hemoglobin, M.CH.C: mean corpuscular hemoglobin concentration.
All lab tests werewithin the normal rangewith no significant difference between screening
and follow-up periods with the exception of ALK.
aLab test values were significantly different between screening and follow-up periods
(independent t-test, p value ≤ 0.05).
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for all participants during screening and follow-up examinations
with no significant difference between the two periods except for
the alkaline phosphatase test (ALK known as ALP), Table 1. The
level of the ALK enzyme was significantly lower in the follow-up
period (105 ± 19) compared to the screening period (86 ± 16),
which indicates that metformin can affect the circulating levels of
ALK. Of note, one subject showed a substantial increase in the
levels of the two liver enzymes, glutamic oxaloacetic transaminase
(GOT, known as AST) and glutamic pyruvic transaminase (GPT,
known as ALT), during the follow-up period compared to
screening tests (15, 19 in screening to 104, 187 in follow up,
respectively). Moreover, the same subject was the only one to
show an increase in ALK level compared to others who showed
decreased ALK levels during the follow-up period.

Metabolites Detection and Multivariate
Analysis
A total of 4,456 and 3,182 mass ion features were detected in
positive and negative ionization modes, respectively. Using the
data of accurate masses and MS/MS fragments, 444 and 400
metabolites were putatively identified, in positive and negative
ionization modes, respectively, with 110 metabolites commonly
identified in both ionization modes. Metabolites identified by the
two ionization modes were merged (734 metabolites) and
exported for multivariate analysis using PCA and OPLS-DA
(Figure 1). The data were deposited in MetaboLight (accession
Number MTBLS2949.

Individual serum concentrations of metformin were assayed at
different time points following drug administration to determine

FIGURE 1 | Scores plots of the metabolite profile of serum samples obtained from 26 healthy subjects after single dose of metformin at five time points; pre-dose
(baseline level, green), and 1.5 h before Cmax (yellow), Cmax (red), 2 h after Cmax (purple) and 36 h post-drug administration (blue). (A) PCA (R2X � 0.71, Q2 � 0.44), (B)
OPLS-DA (R2X � 0.28, R2Y � 0.40, Q2 � 0.27).
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Cmax (unpublished data). Five-time points reflecting different
metformin levels in the circulation were selected; pre-dose and
four post-drug administration time points (before Cmax, Cmax,
after Cmax, and 36 h) for endogenous metabolomics association.
Multivariate analysis (Figure 1) was performed to investigate
group clustering and separation and identify potential outliers
among the compared data time points. The PCA score plot
(Figure 1A) overlaps with no separation or clustering achieved
between the various time points. However, the PCAmodel clearly
identified outliers that belong to the metabolic data of one subject
at the five-time points (Figure 1A). The same subject had an
increased level of liver enzymes during the follow-up period. The
different metabolic patterns of this subject might be independent
of metformin administration as all time-points, including pre-

dose, are clustered outside the PCA model’s confidence interval.
Therefore, data for this participant were excluded from the
dataset before further analyses.

The OPLS-DA model could not entirely separate the dataset
obtained at different time points, and only partial separation could
be noticed mainly due to the complexity of the dataset (Figure 1B).
demonstrates that pre-dose and 36 h post-dose samples exhibited
evident separation from the other time points. In contrast, the
remaining three-time points (before Cmax, Cmax, and after Cmax)
were overlapped and did not show any separation or clustering. The
previous findings indicate that the metabolic profile after 36 h of
metformin administration did not retain a level close to the baseline.
However, the circulating level of metformin could not be detected at
36 h post-administration (data not shown). Therefore, it is plausible

FIGURE 2 |Differentially expressed metabolites as of metformin administration based on a binary comparison between baseline level (pre-dose) and Cmax level. (A)
OPLS-DA (R2X � 0.26, R2Y � 0.92, Q2 � 0.62) scores plot of the metabolic profile of serum samples obtained from 26 subjects pre-dose (green) and at Cmax (red). (B)
Out of the 734 identifiedmetabolites, 111were significantly dysregulated (presented as red and blue lines) while the remaining were unchanged (yellow lines). (C) Volcano
plot of up (red, n � 57) and down (blue, n � 54) regulated metabolites. (D) The differentially altered metabolites as of metformin administration. Blue and red refer to
up-and down-regulated metabolites, respectively.
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that a longer time is needed after the intake of metformin for the
metabolite level to return to a normal level even if the level of
metformin in the circulation is very low.

The Effect of Metformin on Circulating
Metabolites in Healthy Subjects
The effect of metformin on biological metabolites was examined by
investigating its influence on the levels of the 734 putatively
identified metabolites using mainly two-time points; pre-dose
level (before treatment) and Cmax (post-drug administration
associated with the highest level of metformin), as presented in
Figure 2. OPLS-DA model showed evident separation between the
two groups (Figure 2A), indicating that metformin administration
has significantly altered the dynamic of different metabolic
processes. Binary comparison using volcano plot (cutoff 1.5)
revealed that out of 734 metabolites, 111 were dysregulated, of
which 57 and 54 metabolites were up-and down-regulated as of
metformin administration, respectively (Figures 2C,D). The identity
of these metabolites is presented in Supplemenatry Table S1 in the
supplementary material. The 111 altered metabolites are involved in
various biological processes, including valine, leucine, and isoleucine
biosynthesis, linoleic metabolism, arginine biosynthesis, and
aminolylacyl-tRNA biosynthesis, as shown in Figure 3.

Endogenous Metabolites Linked to
Metformin Level
Metabolites dysregulated endogenously, and their levels
associated with metformin’s level (Metformin-dependent

metabolites) were identified by comparing the levels of
differentially altered metabolites to metformin patterns at the
five-time points. The Pearson similarity test (R � 0.95–1) revealed
that 21 metabolites (excluding metformin) showed a similar
expression trend to metformin Figure 4A. Out of these 21
metabolites, 8 (excluding metformin) significantly increased
their levels based on the binary comparison between baseline
and Cmax levels (Figure 4B). These include 5-aminopentanoic
acid, propionic acid, hydroxymethyl uracil, and ethyl phenyl
sulphate (Figure 4C). On the other hand, 42 metabolites acted
in an opposed manner to metformin levels, with 28 metabolites
showing a significant decrease in Cmax level compared to baseline.
Metabolites that opposed levels to metformin patterns mainly
involved arachidonic and linoleic acid metabolisms and included
glycerophospholipids(such as lysophosphatidic acid and
lysophospholipid) and eicosanoids (prostaglandin H1, 11-
dehydrothromboxane B2), Figure 4C. Heatmap of the
36 metformin-dependent significantly perturbed metabolites
and their levels at the five-time points is shown in Figure 4C.

Noteworthy, specific metabolites showed an interesting
change in their levels compared to the metformin pattern
(Figure 5). After metformin administration, the level of 6 and
12 metabolites was initially increased and decreased, respectively,
followed by a subsequent linear decrease or increase, until
returning to levels similar to pre-dose at 36 h post drug
administration as shown in Figures 5A,B, respectively. Among
these metabolites are several acylcarnitines and coumaric acid.

DISCUSSION

Metformin is a widely used biguanide drug due to its outstanding
safety profile, low cost, and promising effects in T2DM, cancer,
PCOS, weight reduction, and many other medical conditions. It
exerts multiple effects through different signaling pathways.
Extensive literature has investigated the role of metformin in
various disorders. However, the underlying mechanisms of its
multiple benefits remain to be elucidated. Moreover, examining
the effect of metformin under pathological conditions makes
identifying metabolites specifically altered due to metformin
rather than the disease state difficult, particularly that many
patients will take metformin in combination with other
medications, which will definitely affect the metabolomics
data. To the best of our knowledge, this is the first study to
examine the effect of a single dose of metformin on the metabolic
pattern of healthy subjects at different time points.

Metformin induced significant changes in several biochemical
pathways, including amino acids and aminoacyl-tRNA
biosyntheses, and fatty acid metabolism. Amongst them,
alteration of branched-chain amino acids, BCAA (valine,
leucine, and isoleucine), was the most significant pathway
(Figure 3). BCAA are crucial regulators of energy homeostasis,
glucose and lipid metabolism, gut health, and immunity (Nie et al.,
2018). In addition, they serve as substrates to synthesize
nitrogenous compounds and play a critical role in protein and
fatty acids syntheses (Ma et al., 2017; Nie et al., 2018). Therefore,
metabolic imbalance in BCAA levels (increased catabolic flux or

FIGURE 3 | Summary of the most affected pathways. The node color
and size are based on the p-value and the pathway impact value, respectively.
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circulating levels) is associated with a range of conditions such as
T2DM, obesity, cancer, and cardiovascular diseases (Nie et al.,
2018; Siddik and Shin, 2019). The physiological roles of BCAA are
mainly mediated via phosphoinositide 3-kinase/protein kinase
B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal
pathway (Nie et al., 2018). Our findings indicate that one
reason behind the multiple beneficial effects of metformin
might be due to its significant impact on BCAA pathway. This
is a plausible explanation since metformin has previously been
reported to suppress BCAA catabolic enzyme expression or activity
(Rivera et al., 2020) and PI3K/AKT/mTOR signal pathway (Zhao
et al., 2018; Wang et al., 2019), which thereby will affect several
crucial biochemical pathways.

Out of the 111 metabolites significantly altered by metformin
administration, 36 metabolites displayed a change in their level
similar or opposed to the metformin level pattern at the five-time
points (Pearson similarity test (R � 0.95–1). Therefore, these
metabolites were considered as metformin-dependent
metabolites. Amongst the metabolites that had a similar
pattern to metformin is 5-hydroxymethyl uracil (5-hmU). 5-
hmU is one of the most enigmatic oxidative modifications of
DNA, mainly formed by the oxidation/hydroxylation of thymine
or ROS reaction with 5-methylcytosine (Olinski et al., 2016). It is
a common oxidative DNA lesion; however, specific repair
activities mainly through hmU-DNA glycosylase remove this
modified base from DNA to limit mutagenesis, cytostasis, and

FIGURE 4 |Metformin-dependent metabolites. (A) Venn diagram showing significantly altered metabolites and metabolites with similar or opposite change in their
metabolic levels compared to metformin levels at the five time points based on Pearson similarity test (R0.95–1). (B) The 28 (red line) and 8 (blue line) metformin-
dependent metabolites showing opposite and similar trend in their levels to metformin, respectively. (C) Hierarchal clustering (HAC) and heatmap analysis of significantly
altered metformin dependent metabolites. Time points 0, 1, 2, 3, and 4 refer to baseline, before Cmax, Cmax, after Cmax and 36 h post metformin administration.
Metformin is 1,1-Dimethylbiguanide.
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cytotoxicity (Cooke et al., 2003). Thus, oxidative DNA damage
has been implicated in cancer and aging. Our data suggest that
metformin can alter the DNA lesion repair mechanisms,
explaining its association with reduced cancers (Olinski et al.,
2016). Interestingly, we have previously reported a dysregulation
in the level of 5-hmU in metformin-treated diabetic patients,
highlighting the importance of this metabolite in the underlying
mechanisms of metformin (Aleidi et al., 2021).

There is growing evidence that abnormalities in the
microbiota composition may contribute to the development of
non-communicable diseases, including diabetes and obesity
(Lazar et al., 2019). The composition of the gut microbiota
(diversity or the abundance of particular species) is defined by
a combination of factors including gender, age, body mass index,
host genetics and immunity, and therapeutics drugs (Maurice
et al., 2013; Zhernakova et al., 2016). It has been reported that
some actions of metformin may be mediated by altering the gut
microbial diversity and enriching beneficial bacteria (Tong et al.,
2018; Arneth et al., 2019). In the current work, the levels of two
microbial metabolites, ethylphenyl sulfate, and propionic acid,
changed similarly to the metformin pattern. Propionic acid is a
short-chain fatty acid mainly produced by the fermentation of
undigested food by the colonic microbiota. Propionic acid
inhibits lipolysis and induces lipogenesis in adipose tissue,
suppresses fatty acid production in the liver, inhibits food
intake, increases the duration of satiety, and exerts
immunosuppressive actions (Al-Lahham et al., 2010; Lazar

et al., 2019). These beneficial effects are associated with
improved insulin sensitivity and reduced body weight (Al-
Lahham et al., 2010). Unlike propionic acid, the function of
ethylphenyl sulfate in the host physiology and pathophysiology is
not yet elucidated (Lazar et al., 2019). The association between
propionic acid and metformin levels detected in the current study
suggests that metformin might acutely boost the capability of the
gut bacteria to produce certain types of short-chain fatty acids
such as propionic acid, which intern can suppress the appetite
and alter blood glucose levels in different ways.

Dysregulation in lipid metabolism and increased lipogenesis
have been recognized as a hallmark of cancer and linked with
PCOS disorder (Menendez and Lupu, 2007). Metformin-
dependent metabolites acutely changed in an opposed manner
to metformin patterns were mainly lipids and lipid-like molecules,
including polyunsaturated fatty acids (PUFA), eicosanoids, and
glycerophospholipid (Figure 4). Several studies have shown that
enzymes involved in the glycerophospholipid pathway may be
used as potential targets for antitumor therapy (Dolce et al., 2011).
In highly proliferating cancer cells, de novo fatty acids synthesis
continually provides glycerophospholipids essential for membrane
production (Kuhajda et al., 1994). The fact that metformin
significantly decreased the level of several glycerophospholipids
herein suggests that one mechanism by which metformin inhibits
cancer cell growth could be by altering key enzymes involved in
glycerophospholipid synthesis. Moreover, in line with our data, the
downregulation effect of metformin on glycerophospholipids has

FIGURE 5 | The level of metformin-independent metabolites at the five-time points. (A, B) The 6 and 12 metformin-independent metabolites, respectively, initially
increased or decreased, followedby a subsequent linear decrease or increase in their metabolic levels. (C, D)Hierarchal clustering (HAC) and heatmap analysis of significantly
altered metformin independent metabolites. Time points 0, 1, 2, 3, and 4 refer to baseline, before Cmax, Cmax, after Cmax, and 36 h post metformin administration.
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been reported in womenwith PCOS. The lattermight contribute to
the reported favorable effect of metformin on dyslipidemia in
PCOS (Pradas et al., 2019).

Eicosanoids, including prostaglandins (PG), leukotrienes, and
hydroxyeicosatetraenoic acids (HETEs), are generated from the
metabolism of arachidonic acid by cyclooxygenase (COX),
lipoxygenase (LOX), and cytochrome 450 pathways (Wang and
Dubois, 2010). Eicosanoids and related bioactive lipid mediators
derived from PUFA are complex and challenging lipid network
signaling. Eicosanoids are much appreciated for their pleiotropic
effects and implication in various pathological conditions,
including inflammation and cancer (Wang and Dubois, 2010;
Dennis and Norris, 2015). Many HETE metabolites are well-
known pro-inflammatory eicosanoids that increase inflammatory
cytokine expression inducing chronic inflammation associated with
insulin resistance, metabolic syndrome, and T2DM (Chakrabarti
et al., 2009; Guadarrama-Lopez et al., 2014). Additionally, pro-
inflammatory eicosanoids, including PG and leukotrienes, can
modulate tumor proliferation, apoptosis, migration, and invasion
through multiple signaling pathways, and can remodel the tumor
microenvironment with enhanced tumour angiogenesis (Wang and
Dubois, 2010). In the current work, the levels of several metformin-
dependent metabolites involved in the eicosanoid synthesis
pathways, such as several HETEs and PGH involved in LOX
and COX pathways, respectively, were decreased upon
metformin administration and reserve to baseline level at 36-h
post-dose. The presented findings indicate that the promising roles
of metformin in improving insulin resistance, preventing cancer,
and suppressing tumor progression might involve key enzymes in
arachidonic acid metabolism particularly COX and LOX pathways.
Our results are in line with (Hyun et al., 2013), who reported that
metformin suppressed the protein level of COX-2 and may
attenuate inflammatory responses. Moreover, recent in vitro and
in vivo studies showed that a combination treatment of celecoxib
(selective COX-2 inhibitor) and metformin inhibited the
proliferation of Hepatocellular carcinoma to a greater extent
than either treatment alone (Hu et al., 2020). However, there is
little known aboutmetformin’s effects on lipid and arachidonic acid
metabolisms, andmore in-depth studies to investigate its impact on
these pathways remain urgent.

Several acylcarnitines showed an increase in their level that was
independent of metformin level, Figure 5C. The level of these
metabolites was initially decreased uponmetformin administration
and then linearly increased to return to normal level at 36 h post
metformin administration. This suggests that the change in
acylcarnitines level might be context-dependent and affected by
factors other than metformin level, such as the pathological state of
the subject.

Acylcarnitines are derived from L-carnitine esterification by
carnitine acyltransferases during the β-oxidation of fatty acids in
the mitochondria (Houten and Wanders, 2010). Several studies
have demonstrated the importance of L-carnitine and
acylcarnitines in fatty acid oxidation and the modulation of
intracellular coenzyme A (CoA) homeostasis, maintaining
normal mitochondrial functions (Reuter and Evans, 2012).
These functions crucially influence physiological processes,
including energy homeostasis, regulation of insulin secretion,

and insulin sensitivity (Mai et al., 2013). Disturbances in the
endogenous carnitine pool (L-carnitine and short, medium, and
long-chain acylcarnitines) serve as a diagnostic marker for the
equilibrium between acyl-CoA and acylcarnitine species. They can
reflect mitochondrial and metabolic dysfunction (Reuter and
Evans, 2012). Increased acylcarnitine levels have been proposed
asmarkers of insulin resistance, T2DMand cardiovascular diseases
(Koves et al., 2008). Our findings indicate that metformin might
initially affect fatty acid β-oxidation by altering carnitine
palmitoyltransferase activity and decreasing acylcarnitines’ levels.

Coumarinic acid is another metformin-independent
metabolite that increased upon metformin administration and
then decreased to a normal level at 36 h post-dose. Coumarinic
acid is a hydroxycinnamic acid derivative and one of the three
isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and
p-coumaric acid. This class of phenolic compounds has been
reported to possess potent antioxidant and anti-inflammatory
properties both in vitro and in vivo by decreasing the expression
of inflammatory mediator TNF-α and circulating immune
complexes (Pragasam et al., 2013; Alam et al., 2016).
Additionally, coumaric acids have been reported to exhibit
marked antidiabetic action (Omar et al., 2016; Abdel-Moneim
et al., 2018). o-coumaric acid or coumarinic acid was found to
restore glycemic control and insulin sensitivity in rats fed high
fats/high sucrose diet and suffered from hyperglycemia and
insulin resistance (Omar et al., 2016).

Numerous favorable effects have been reported for metformin.
Several lines of evidence implicate that metformin possesses
hepatoprotective effect from injuries induced by hepatotoxic
substances or liver conditions (Iranshahy et al., 2019). Alkaline
phosphatase (ALP) is a well-known biomarker for liver disease,
and its elevated blood level has been linked with liver injury
(Saravi et al., 2016). In our work, metformin was associated with a
significant decrease in the level of ALP, while no significant effect
was detected on aminotransferase levels GOT and GPT (Table 1).
This finding can be linked with the previously reported
hepatoprotective effect of metformin, where metformin was
found to normalize or decrease the levels of ALP enzyme
(Saravi et al., 2016). Noteworthy, metabolomics data identified
one subject with different metabolic profiles, even before
metformin administration, that had a significant increase in
the liver enzymes after metformin intake. This finding points
to the fact that individuals may vary in response to this therapy
according to their metabolic pattern and highlights the important
role of metabolomics in personalized medicine.

Of note, the identified metabolites linked to metformin intake
herein were dysregulated after a single dose of metformin.
Therefore, a follow-up study in the future under chronic
conditions remains essential to evaluate and validate their link
to metformin pharmacodynamics, and their role as potential
biomarkers to monitor the pharmacological effect of metformin.

CONCLUSION

In the present study, MS-based untargeted metabolic profiling
was applied for the first time to uncover the biochemical
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changes induced by metformin at different time points in
healthy subjects.

Our findings revealed that BCAA pathway was the most
significantly altered pathway by metformin. Additionally,
specific metabolites that showed metformin-dependent
changes in their levels were identified, including 5-hmU,
propionic acid, and several eicosanoids. The altered
metformin-dependent metabolites pointed to fundamental
biochemical processes by which metformin can exert its
multiple beneficial effects, including lipid network signaling,
inflammation, energy homeostasis, DNA lesion repair
mechanisms, and gut microbiota functions. Thus, the
distinctive metabolic pattern linked to metformin intake,
particularly metformin-dependent metabolites, can be used
as potential biomarkers or metabolic signature to predict the
potential effect and mechanism of actions of new chemical
entities during drug development.

Further studies with larger sample sizes and under chronic
conditions are necessary to evaluate the link between the
dysregulated metabolites and metformin pharmacodynamics
and investigate their role as potential biomarkers to monitor
the pharmacological effect of metformin. Once validated,
metformin-dependent endogenous metabolites might be
utilized in conjunction with other existing biomarkers to
monitor metformin’s efficacy for personalized medicine,
especially since metformin is not metabolized inside the body
and is excreted unchanged urine.

Future research is warranted to investigate the effect of
metformin on BCAA pathway and, most importantly, to
identify the endogenous lipid pattern induced by metformin.
Refined lipidomics methodologies can be applied to provide a
deeper understanding of the role of metformin in arachidonic
acids metabolism and eicosanoids signaling and identify new
potential targets for inflammatory and metabolic conditions.
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