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Some zoonotic pathogens cause sporadic infection in humans but rarely propagate further, while others

have succeeded in overcoming the species barrier and becoming established in the human population.

Adaptation, driven by selection pressure in human hosts, can play a significant role in allowing pathogens

to cross this species barrier. Here we use a simple mathematical model to study potential epidemiological

markers of adaptation. We ask: under what circumstances could ongoing adaptation be signalled by large

clusters of human infection? If a pathogen has caused hundreds of cases but with little transmission, does

this indicate that the species barrier cannot be crossed? Finally, how can case reports be monitored to

detect an imminent emergence event? We distinguish evolutionary scenarios under which adaptation is

likely to be signalled by large clusters of infection and under which emergence is likely to occur without

any prior warning. Moreover, we show that a lack of transmission never rules out adaptability, regardless

of how many zoonoses have occurred. Indeed, after the first 100 zoonotic cases, continuing sporadic zoo-

notic infections without onward, human-to-human transmission offer little extra information on pathogen

adaptability. Finally, we present a simple method for monitoring outbreaks for signs of emergence and

discuss public health implications.
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1. INTRODUCTION
Many novel human infections have zoonotic origins

(Morens et al. 2004; Wolfe et al. 2007; Jones et al.

2008). For example, HIV was acquired from African

primates (Rambaut et al. 2004; Keele et al. 2006);

SARS coronavirus has been linked to both bats (Li et al.

2005) and palm civets (Guan et al. 2003); and a recent

new arenavirus which killed four out of five cases in

Southern Africa is probably derived from rodents

(Briese et al. 2009). A novel H1N1 influenza A virus, in

the early months of a pandemic at the time of writing,

was introduced into the human population via swine

(Smith et al. 2009).

Here we study the epidemiology associated with the

establishment of a pathogen in a new host species. As dis-

cussed by Antia et al. (2003) even a pathogen poorly

transmitted among humans, and thus capable only of

causing sporadic cases, can acquire adaptations to

become capable of sustained human transmission. Such

adaptations could arise in response to the selective

pressure exerted by the new host environment. Addition-

ally, changing human contact patterns and environmental

factors can have the same effect, of enhancing pathogen

transmissibility (Woolhouse et al. 2005). For example,

the avian influenza subtype H5N1 has caused over 400

human cases (World Health Organization 2009), mostly

through close contact with infected poultry (Beigel et al.

2005). Although it has shown little or no transmission

between humans, the possibility of its future adaptation

to humans cannot be ruled out.
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Previous work on evolving pathogens has studied the

effect of host heterogeneity (Yates et al. 2006) and patho-

gen life history (André & Day 2005) on the probability

of emergence, per introduction into the human population.

Here we ask: what are the epidemiological signs that a

pathogen is evolving to adapt for human transmission?

For example, under what conditions would such a process

be signalled by large outbreaks of infection? Conversely,

some pathogens, while capable of infecting humans, may

face biological barriers to human adaptation that preclude

their ultimate establishment. Is it possible, from case

reports, to distinguish such pathogens from those inher-

ently capable of adaptation? Finally, how can case reports

be monitored to detect when an ongoing outbreak is about

to develop into a full-blown emergence? We approach these

questions using simple mathematical models of within-host

evolution and between-host transmission. This paper is

organized as follows: following a brief discussion of the

relationship between pathogen reproductive fitness and

outbreak sizes, we present a simple mathematical model

of evolution and transmission, and apply it to the questions

posed above. We use examples from H5N1 influenza case

report data to illustrate the results. Finally, we discuss

some public health implications of this work.
2. REPRODUCTIVE FITNESS AND
OUTBREAK SIZES
The basic reproductive number, R0, is the average

number of secondary cases arising from a single infected

case, in an otherwise susceptible population (Anderson &

May 1991). It is a measure of emergence potential, as

R0 . 1 is a necessary condition for emergence. It is, how-

ever, not a sufficient condition, as such pathogens are
This journal is q 2009 The Royal Society
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Figure 1. Outbreak size distributions for fixed R0. (a) R0 ¼ 0.1 and (b) R0 ¼ 0.9. These distributions have mean 1/(1 2 R0).
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subject to stochastic extinction with probability 1/R0
n,

where n is the number of index cases (May et al. 2001).

Conversely, infections with R0 , 1 stutter to extinction

with probability 1. Moreover, different regimes for R0 , 1

show differing epidemiological behaviour in terms of

the numbers of cases that outbreaks could involve.

Figure 1 shows the probability distributions for outbreak

sizes for R0 ¼ 0.1 (a poorly adapted pathogen) and

R0 ¼ 0.9 (an almost-adapted pathogen). Although neither

pathogen is capable of emergence, it is evident that a

pathogen with R0 ¼ 0.9 is capable of causing much

larger outbreaks than one with R0 ¼ 0.1. Indeed, the

mean outbreak size for R0 , 1 is given by 1/(1 2 R0)

(Becker 1974).
3. THE MATHEMATICAL MODEL
We now incorporate adaptation, using a modified version

of a model presented by Antia et al. (2003), based on

multi-type branching processes. The biological motiv-

ation for the model is as follows: an index individual

infected with a wild-type (poorly adapted) pathogen is

likely to die or recover without infecting anyone else.

However, owing to the possibility of the pathogen

mutating to acquire some transmission potential, this

index case has a non-zero probability of infecting another

person. Subsequent adaptations can serve to increase the

probability of transmission still further. The stochastic

process continues either until extinction of the pathogen,

after a certain number of cases, or until emergence of an

adapted pathogen. The latter may be subject to yet

further adaptations, but we do not consider these stages

here. In case of extinction, the process is repeated with

another new introduction of a wild-type pathogen from

the animal reservoir. In this way, we simulate a series of

introductions leading to emergence. Whereas Antia

et al. (2003) presented a discrete-time model, ours is a

continuous-time process as we are also interested in the

time course of an outbreak. Moreover, as discussed
Proc. R. Soc. B (2009)
below, in this model the role of R0 is to reflect relative

probabilities of transmission and recovery; in the context

of continuous time, this allows a more natural description

of the process of adaptation.

We assume that the host population is sufficiently large

to neglect depletion of susceptibles: this is feasible in the

early stages of emergence, where there are only compara-

tively few cases. For simplicity, we also assume that the

host population is homogeneous in susceptibility to

infection. Furthermore, we assume that the pathogen

has to undergo a series of discrete ‘steps’ in order to

adapt for human transmission, with each step acquiring

an increment in its reproductive number. Thus, we label

each adaptive stage with i, where i ¼ 0 is the wild-type

stage and i ¼ n is the adapted stage. We also have a

series of reproductive numbers R0
(0), R0

(1), . . . , R0
( n),

where the wild-type fitness R0
(0) is much less than 1 and

only the adapted fitness R0
( n) exceeds 1. Finally, with

each adaptive stage we associate a mutation rate, denoted

M(i ). We assume that if infection within a host develops

an adaptation, it goes to fixation in that host and is thus

the only ‘type’ that can be subsequently transmitted.

Together the parameters R0
( i ) and M(i ) define the

stochastic process of evolution and infection as follows.

For a given infected individual, there are three possible

events that could occur next: transmission, pathogen

adaptation, and host recovery/death. These have

probabilities pi, qi, ri, respectively, where

pi ¼
R
ðiÞ
0

1þ R
ðiÞ
0 þMðiÞ

; qi ¼
MðiÞ

1þ R
ðiÞ
0 þMðiÞ

and ri ¼
1

1þ R
ðiÞ
0 þMðiÞ

:

The terms in the denominator arise from rescaling time

by the mean infectious period: see appendix in the

electronic supplementary material for details of deri-

vations. Using the well-established Gillespie algorithm



Table 1. Parameters for punctuated and gradual scenarios,

assuming four adaptive stages. For instance, in the
punctuated scenario, the wild-type pathogen has R0 ¼ 0 in
humans. After acquiring an adaptation, it has R0 ¼ 0.1 and
so forth. Here, an adapted pathogen has R0 ¼ 2, and a
mutation rate M ¼ 0.1 is associated with all adaptive stages.

scenario R0 M

punctuated adaptation [0, 0.1, 0.1, 2] [0.1, 0.1, 0.1, 0]
gradual adaptation [0, 0.1, 0.9, 2] [0.1, 0.1, 0.1, 0]
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Figure 2. Schematic of (a) punctuated and (b) gradual
scenarios. Parameter values are presented in table 1.
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(Gillespie 1977), this process can be straightforwardly

simulated in continuous time. In the case of an infection

eventually going extinct, any human cases arising from the

index case are collectively a ‘cluster’. We define ‘emergence’

as a situation in which the probability that the outbreak will

spontaneously sputter to extinction is less than 1026.

Formally, this occurs when there are m cases of the adapted

strain R0
( n) such that [R0

( n)]m . 106 (May et al. 2001).
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Figure 3. Illustrations of results of the model, punctuated

scenario. (a) Time series for a series of introductions
(black) leading to emergence (grey). All introductions are
initiated at time zero. (b) Distribution of cluster sizes arising
from this calculation.
4. WARNING SIGNS OF ADAPTATION
We consider how ongoing pathogen adaptation could

be signalled by outbreak sizes, seeking a distribution

analogous to figure 1 but with the inclusion of adaptation.

Table 1 presents parameters for two different evolutionary

scenarios: in the first, ‘punctuated’ scenario, all

adaptations are required together for any increase in

reproductive fitness. Thus, relative to the wild-type

stage, there is little fitness advantage in partial adaptation,

and only the adapted stage has a significantly increased

fitness. In the second, ‘gradual’ scenario, intermediate

adaptations confer incremental improvements in fitness.

Figure 2 schematically illustrates the progression in fitness

from wild-type to adapted stages for both of these

scenarios.

For illustration figure 3a shows sample time courses of

infection for a series of introductions leading to an

emergence in the punctuated scenario (movies of simu-

lations leading to these outcomes may be found in the

electronic supplementary material). Figure 3b shows the

distribution of cluster sizes arising from this series

of introductions. In this example, there were 6173 intro-

ductions before emergence. The vast majority of

introductions go extinct without transmission (i.e. cluster

size 1), but there are some instances where limited trans-

mission has occurred. Only 0.16 per cent of outbreaks

exceeded two cases.

Figure 4 extends these plots to show the general behav-

iour of cluster size distributions for both punctuated and

gradual scenarios. It displays distributions obtained from

25 independent realisations of the process of emergence,

with individual distributions distinguished by colour.

Insets show distributions for a 10-fold-reduced mutation

rate for the final adaptive step. There is a clear variation

between the scenarios in the range of cluster sizes accu-

mulated before emergence: the punctuated scenario

causes only small clusters, rarely more than four cases

large. The gradual scenario shows a broader range of

cluster sizes, and such behaviour is due to the state

marginally below pandemic capability (R0 ¼ 0.9). As

indicated by figure 1, such values of R0 are capable of

causing large outbreaks. Indeed, reducing the mutation
Proc. R. Soc. B (2009)
rate increases the ‘dwell time’ in this state, and thus the

greatest range of cluster sizes before emergence is found

in the inset of figure 4, gradual scenario. For comparison,

crosses in the plots show the distribution of cluster sizes

from case reports of H5N1 avian influenza in Indonesia

(World Health Organization). As an aside note that,

even after more than 400 cases, the pattern of H5N1

clusters appears compatible with both punctuated and

gradual scenarios.

For simplicity, we have neglected here the possibility of

multiple index cases arising from common exposure to a

zoonotic host. Nonetheless, this does not qualitatively alter

the results above. The same applies for assuming more

steps to emergence (see electronic supplementary material

for a discussion of both). Overall, a pathogen with gradually

increasing fitness and an adaptive stage marginally below

emergence capability is most likely to signal ongoing

adaptation by causing large but self-limiting outbreaks.

A pathogen undergoing a more punctuated route to

emergence is likely to afford less warning.
5. BIOLOGICAL BARRIERS TO ADAPTATION
If a pathogen causes many hundreds of cases yet fails to

show any sustained human transmission, does this mean

that it is incapable of adapting for human transmission?

More specifically, how many ‘failed’ human cases

should occur for such a conclusion?
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Figure 5. Upper bound on the probability of emergence per introduction pe, given that n introductions have occurred
without emergence (U(N)). Calculated as the maximal value of pe giving at least a 50 per cent probability of observing N intro-
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Figure 4. Cluster size distributions for the (a) punctuated and (b) gradual scenarios. Shown are distributions for 25 independent
realizations of the process leading to emergence, with each distribution distinguished by a different colour. Insets show distributions

where the penultimate mutation rate has been reduced 10-fold to a value of 0.01. Crosses show H5N1 data from Indonesia.
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For a given series of reproductive numbers and

mutation rates, it is possible to calculate the probability

pe of emergence, per introduction, using the theory of

multi-type branching processes (Athreya & Ney 1972).

If there are insurmountable biological barriers to

adaptation, this is equivalent to pe ¼ 0. Thus, repeated

introductions into the human population are akin to a

series of coin tosses, where the probability of ‘heads’ (cor-

responding to emergence) per toss is pe. The number of

coin tosses before the first head follows a negative bino-

mial distribution. Assume an observation that N tosses
Proc. R. Soc. B (2009)
have yielded only tails, corresponding to a series of

failed introductions. The probability of such an outcome

is at least 50 per cent as long as

pe , 1� 2ð�1=NÞ;

yielding an estimated upper bound on pe. This upper

bound, denoted U(N), is plotted in figure 5. It shows

that, regardless of how many consecutive tails, or failed

cases, have occurred, it is never possible to conclude

that pe ¼ 0. Although mathematically straightforward, in
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Figure 6. Early warning systems for detecting pandemic emergence. The ‘single’ method monitors outbreak size, raising an alarm
if a threshold with respect to past outbreak sizes is exceeded. The ‘double’ method additionally monitors daily incidence (see text
for details). (a) Sample time courses of infection leading to emergence. Vertical, dashed line: time of notification with the single

approach. Vertical, solid line: time of notification with the double approach. (i) punctuated scenario (ii) gradual scenario.
(b) Graphs of algorithm performance, calculated over 250 simulated emergences, with the alarm silenced for the first 400 intro-
ductions. Black bars, single; grey bars, double. (i, ii) Specificity is measured by number of false alarms before an emergence,
(iii, iv) while sensitivity is measured by the number of cases before an alarm occurs, in the event of a genuine emergence.

Left- and right-hand panels refer to punctuated and gradual scenarios, respectively.
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public health terms, this is a simple argument for why a

lack of transmission alone gives little information about

the adaptability of a pathogen. Indeed, the point is under-

scored by the behaviour of the punctuated scenario

demonstrated above: it is possible for emergence to

occur without any prior signs of increasing fitness.

Another feature of figure 5 is that U(N) has diminished

by 98 per cent by the time the first 100 cases have

occurred. That is, the first 100 cases without emergence

indicate a very low probability of emergence per introduc-

tion. Beyond this point, continuing failed cases give little

more information about the adaptability of the pathogen.

The inset of figure 5 plots the percentage drop from U(N)

to U(Nþ1) as a function of the number of cases N, illus-

trating that even in relative terms, there is little extra

information to be derived from more than 100 cases. In

the example of H5N1 influenza, this tally was reached

by 8 June 2005 (World Health Organization 2009).

Quantitatively, according to this model, sporadic human

cases subsequent to that date teach us very little more

about whether the virus may ultimately adapt to humans.
6. EMERGENCE DETECTION
In practice, it is highly unlikely that the underlying repro-

ductive numbers for an evolving pathogen could be
Proc. R. Soc. B (2009)
known with any accuracy. Here we focus instead on

monitoring ongoing outbreaks for early signs of emer-

gence, the primary concern being rapid notification. We

suggest a simple non-parametric method for detection

of emergence that does not rely on knowledge of the

reproductive fitness parameters. An outbreak in progress

is given a ‘rarity score’, with respect to past outcomes,

defined as 2log10(proportion of past outcomes that

were more extreme).

We compare two approaches: for the ‘single rarity’

approach, a record is kept of the total outbreak size

from every introduction. For an outbreak in progress, a

rarity score can then be calculated for the cumulative

number of cases. When this exceeds a given threshold,

the alarm is triggered. The ‘double rarity’ approach like-

wise monitors outbreak sizes, and additionally monitors

the daily incidence. A record is kept of the greatest

incidence reached following every introduction, and

thus a rarity score is calculated, in real time, for an out-

break in progress. An alert is then triggered where at

least one rarity score exceeds a given threshold. Specificity

is measured by the number of introductions causing a

false alarm (introductions causing an alarm and

subsequently going extinct). Sensitivity is measured, in

the event of a true emergence, by the number of cases

before the first alarm. Figure 6 shows measures of
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algorithm performance, calculated over 250 emergences

simulated as described above, under both the gradual

and punctuated scenarios. Both single and double

approaches show a similar performance under the punc-

tuated scenario. However, under the gradual scenario,

the double approach shows an appreciably better

performance in sensitivity, also doing so more consist-

ently. It raises the alarm after a mean (standard deviation)

of 4.2 (1.3) cases, compared with 5.8 (2.4) for the single

approach. As might be expected, this comes at the

expense of some specificity: the single approach causes

a mean (standard deviation) of 0.68 (0.97) false alarms

before emergence, compared with 1.0 (1.3) for the

double method. In practice, epidemiological investigation

and contact tracing will be essential for identifying which

cases are epidemiologically linked. Furthermore, we do

not address here the timing or distribution of index

cases. Nonetheless, while more sophisticated schemes

are undoubtedly possible, these results illustrate how

additional outbreak characteristics, such as incidence,

could contribute to emergence detection.
7. DISCUSSION AND CONCLUSION
The work presented here underlines the unpredictability

of infectious diseases undergoing adaptations for human

transmission. Nonetheless, it also illustrates that general

patterns of epidemiological behaviour can be associated

with different evolutionary pathways. The scenarios

presented here have widely different implications for

public health, and each presents its unique problem in

terms of containment. A pathogen following a punctuated

route to adaptation is liable to emergence without any

warning. Moreover, under this scenario, large outbreaks

tend to be caused only by adapted pathogens, and so

such outbreaks will be comparatively difficult to contain.

By contrast, the gradual route offers some warning of

adaptation in the form of large but self-limiting outbreaks.

Both these clusters and the early stages of emergence are

composed mainly of cases of a partially adapted

pathogen, rendering containment comparatively easier.

However, a danger is that repeated false alarms would

elicit repeated containment efforts, potentially draining

valuable resources.

There are many possible refinements to the simple

model of transmission presented here. One shortfall in

the model is where large numbers of infection are pre-

dicted: in reality, large outbreaks will tend to be limited

by local depletion of susceptibles, as well as being likely

to trigger spontaneous social distancing and public health

interventions. Host heterogeneity may also play a role.

For example, Lloyd-Smith et al. (2005) point out in the

context of a non-adapting pathogen that individual vari-

ation in transmissibility, hidden by a population-level

value for R0, can have a strong effect on the outcomes of

introductions, making extinction more likely than in a

homogeneous population. Yates et al. (2006) explore

different types of heterogeneity, including susceptibility to

infection, and make the elegant distinction that, for non-

adapted stages, the rate of adaptation has a stronger

effect on probability of extinction than heterogeneity, and

conversely for adapted stages. Extending this discussion

to cluster sizes before emergence, these and other aspects

of host population structure would be areas for
Proc. R. Soc. B (2009)
refinement in models more detailed than those we have

presented here. Nonetheless, the general insights offered

by our approach are likely to remain valid. While

mathematical models can be no replacement for detailed

epidemiological investigations in the field, such as contact

tracing and laboratory analysis, we hope we have

shown here that they can offer valuable, objective insights

into potential pre-emergence scenarios. Together with

established frameworks for rapid case identification

and management, mathematical models can play an

important role in our toolkit for preparedness in public

health.
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