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Abstract: Tea tree extract, containing antioxidant constituents α-terpineol, terpinen-4-ol, and α-
terpinene, has a wide range of applications in the cosmetic, food, and pharmaceutical industries.
In this study, tea tree extract showed an anticorrosive effect under 1 M HCl solution on mild
steel (MS) and 304 stainless steel (STS). Uniform corrosion for MS and pitting corrosion for STS at
298 K were retarded, with inhibition efficiencies of 77% and 86%, respectively. The inhibition of
uniform and pitting corrosion was confirmed by scanning electron microscopy and laser scanning
confocal microscopy in terms of surface roughness and pitting morphologies. The most effective
constituent contributing to the inhibitory performance of tea tree extract was revealed to be α-
terpineol, with an inhibition efficiency of 83%. The adsorption of tea tree extract was confirmed by
surface characterization analysis using Fourier transform infrared spectroscopy, Raman spectroscopy,
and Electrochemical impedance spectroscopy. Interestingly, G- and D-peaks of Raman spectra were
detected from the inhibited steels, and this finding is the first example in the corrosion inhibition
field. The anticorrosion mechanism can be explained by the formation of organic-Fe complexes on
the corroded steel surface via electron donor and acceptor interactions in the presence of an oxygen
atom of the hydroxyl group or ether of organic inhibitors.

Keywords: steel; corrosion inhibition; tea tree extract; raman spectroscopy

1. Introduction

Organic inhibitors containing heteroatoms, such as oxygen, nitrogen, sulfur, and
phosphorus atoms easily form a layer of organic-iron complexes by absorption on steel
surfaces [1–7]. The adsorption layer acts as a physical barrier between the steel surfaces
and the corrosive environment to provide effective protection against corrosion [1–5]. This
phenomenon has been applied to restrain the internal corrosion of steel pipelines and
the unexpected dissolution of steel structures during the acidizing process; therefore, the
corrosion life of steel can be extended by a corrosion inhibitor [6].

Organic materials extracted from natural plants have been of great interest as promis-
ing alternatives to chemically synthesized compounds because they are eco-friendly, harm-
less to humans, and cheaper than synthetic compounds [8,9]. A variety of plant extracts
have been reported as effective corrosion inhibitors in acid solutions (e.g., hydrochloric
acid and sulfuric acid), particularly for mild steel [8–16]. Revealing the phytochemical
constituents responsible for the corrosion inhibition is very important in order to clearly
explain the inhibitory performance and mechanism of plant extracts. A few studies have
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been reported on the effective constituents of plant extracts, including ascorbic acid in
orange peel extract [10], lawsone in henna extract [11], ellagic acid in punica granatum
peel [12], arbutin of asteraceae extract [13], N-methyllaurotetanine in cryptocarya nigra
extract [14], geissospermine of geissospermum leaf extract [15], and lutein in marigold
flower extract [16]. In general, the inhibition mechanism based on effective constituents has
been discussed through thermodynamical deduction and/or computational approaches,
and there is a lack of studies reporting analytical evidence about the layer of organic-
iron complexes.

In this study, the inhibitory action of tea tree extract on steel corrosion was investigated
in hydrochloric acid solution. Inhibitory performance was tested on non-passivated mild
steel (MS) exhibiting uniform corrosion and passivated 304 stainless steel (STS) exhibiting
pitting corrosion. Particularly, tea tree extract has a corrosion inhibitory effect that has never
been reported, and it was selected as a green organic inhibitor because of its availability,
economical price, and good antioxidant properties [17–19]. In this work, the effective
constituents contributing to the inhibition performance of tea tree extract were investigated,
and its corrosion inhibitory mechanism was discussed based on the results of surface
characterization using (Fourier transform infrared) FTIR and Raman spectroscopy (DXRTM
2 Raman Microscope, Thermo Fisher Scientific, Waltham, MA, USA).

2. Materials and Methods
2.1. Weight Loss Measurement

Nominal compositions of MS and STS used in this study are presented in Table 1. The
specimens with 20 × 20 × 5 mm dimensions were mechanically ground using different
grades of SiC paper (from 220 to 2000), rinsed with distilled water in an ultrasonic cleaning
bath, and dried in the oven. These specimens were weighted prior to use, then immersed
in a solution of 1 M HCl at 298, 308, 323, and 333 K. MS specimens and STS specimens
were immersed for 24 and 168 h, respectively. The water-soluble tea tree extract was added
to a 500 mL electrolyte at concentrations ranging from 0.15 to 2.25 g/L. The specimens
retrieved from the test solution were washed with distilled water, dried in the oven, and
subsequently reweighted up to a 1 mg unit. The corrosion rate was calculated using
Equation (1):

Corrosion rate
(

mg/cm2·h
)
=

∆m
A × T

(1)

where ∆m is the weight loss of coupons (unit: mg), A is the exposure area (unit: cm2), and
T is the immersion time (unit: h).

Table 1. Chemical composition (wt%) of mild steel (MS) and 304 stainless steel (STS).

Type C Si Mn Cr Ni Cu Al Nb P S Fe

MS 0.07 0.02 0.7 0.005 0.005 0.02 0.03 0.01 0.009 0.003 Bal.

STS 0.04 0.42 1.15 18.19 8.08 - - - 0.031 0.001 Bal.

The inhibition efficiency (IE) was calculated from the weight loss results using Equation (2):

Inhibition efficiency (IEWL, %) =
CR0 − CRinh

CR0
× 100, (2)

where CRinh and CR0 are the corrosion rate in the presence and the absence of the cor-
rosion inhibitor, respectively. Surface morphology of the retrieved specimens was ob-
served by scanning electron microscope (SEM) (JSM-6700A, JEOL LTD., Tokyo, Japan)
and laser scanning confocal microscopy (LSCM), (LSM 800 MAT, Carl Zeiss Co. Ltd.,
Oberkochen, Germany).
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2.2. Gas Chromatography–Mass Spectrometry

Constituents of tea tree extract were analyzed by gas chromatography–mass spectrom-
etry (GC-MS) (Hewlett-Packard Co., Palo Alto, CA, USA) using HP 6890 (gas chromato-
graph) and HP 5973 (mass spectrometer) models. About 1 µL of tea tree extract sonicated
with hexane was used, and detailed information of GC–MS analysis is summarized in
Table 2. α-Terpineol (96% purity, Alfa Aesar, Ward Hill, MA, USA), 1,8-cineole (99% purity,
Alfa Aesar, Ward Hill, MA, USA), terpinen-4-ol (≥95% purity, Sigma Aldrich, Burling-
ton, MA, USA), α–terpinene (≥95% purity, Sigma Aldrich, Burlington, MA, USA), and
γ–terpinene (97% purity, Sigma Aldrich, Burlington, MA, USA) were analyzed as reference
materials to determine the constituents. These organic materials have been known for the
main phytochemical constituents of tea tree extract [20].

Table 2. Operation specifications for GC–MS.

Gas Chromatograph (HP 6890, Hewlett-Packard Co., USA)

Analytical column HP-5MS (30 m × 0.25 mm × 0.25 µm)

Inlet temperature 493 K

Injection type Split (5:1)

Injection volume 1 µL

Carrier gas He (1 mL/min)

Oven program Temperature Hold Time Rate

323 K 2 min 283 K/min

523 K 3 min

Mass Spectrometer (HP 5973, Hewlett-Packard Co., USA)

Ionization Electron ionization (EI), 70 eV

Ion source
temperature 203 K

Quadrupole
temperature 423 K

MS transfer line
temperature 553 K

Mass range SCAN mode (m/z 40–550)

Solvent delay 3 min

2.3. Electrochemical Measurements

The specimens used in the electrochemical experiments were embedded in epoxy
resin, except for 1 cm2 of the surface exposed to the electrolyte. The exposed surface was
mechanically ground in the same manner as described in Section 2.1. After 30 min of
immersion at open circuit potential (OCP) in 1 M HCl solution, polarization measurements
were taken, and electrochemical impedance spectroscopy (EIS) was performed using a
potentiostat (VersaSTAT 4, Princeton Applied Research Co. Ltd., Oak Ridge, TN, USA). The
three-electrode cell consisted of the saturated calomel reference electrode (SCE), Pt wire
counter electrode, and working electrode of the steel specimens. Polarization curves were
obtained at a scan rate of 1 mV/s from −0.65 to −0.10 V. The IE was calculated from the
polarization curves using Equation (3):

Inhibition efficiency (IEPD, %) =
I0 − Iinh

I0
× 100, (3)

where Iinh and I0 are the corrosion current densities of the specimen in the presence and
absence of the corrosion inhibitor, respectively. The Iinh and I0 were derived through the
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Tafel extrapolation method of the polarization curves using DC data analysis software
(IVMAN, WonATech Co., Ltd., Seoul, Korea).

EIS was performed at OCP in a frequency range from 0.1 to 10 MHz with a signal of
amplitude of 10 mV. Commercial software (ZSimpwin, AMETEK Scientific Instrument,
Berwyn, Pennsylvania, USA) was used for the fitting of Nyquist plots. The IE was calcu-
lated with RCT values of the EIS results using Equation (4):

Inhibition efficiency (IEEIS, %) =
Rinh

CT − R0
CT

Rinh
CT

× 100, (4)

where Rinh
CT and R0

CT are the charge transfer resistance values in the presence and absence of
the corrosion inhibitor, respectively.

2.4. FTIR and Raman Spectroscopy

The corroded surface of steel specimens was characterized using (FTIR) spectroscopy
(Nicolet iS50, Thermo Fisher Scientific, USA) and Raman spectroscopy. The surface of
the specimens was polished until a mirror-like surface was obtained using SiC paper and
1 µm of Al2O3 paste, rinsed with distilled water in an ultrasonic cleaning bath, and then
dried in the oven. The prepared specimens were immersed in 1 M HCl solution in the
presence or absence of the inhibitor at 298 K. The specimens retrieved from the test solution
were carefully washed with distilled water and dried in the oven at 40 °C for 1 h. Raman
spectra were obtained using a 10 mW power and 532 nm wavelength laser as an excitation
source. In order to prevent thermal degradations (e.g., phase transformation of Fe oxides
or burning of organic materials), the laser power used in this study was optimized, as
shown in the Supporting Information (Figure S1). The FTIR and Raman spectra of tea tree
extract and its constituents (i.e., α-terpineol (96% purity, Alfa Aesar, Ward Hill, MA, USA),
1,8-cineole (99% purity, Alfa Aesar, Ward Hill, MA, USA) and terpinen-4-ol (≥95% purity,
Sigma Aldrich, Burlington, MA, USA)) were obtained by analyzing their raw materials.

3. Results and Discussion
3.1. Weight Loss Measurements

The corrosion rate (Figure 1a) and IEWL (Figure 1b) of MS and STS were measured in
1 M HCl solution at various temperatures. The corrosion rate of MS and STS specimens at
room temperature decreases to 77% and 86%, respectively, with the addition of 0.75 g/L
of tea tree extract. As the temperature increases, the IEWL decreases from 77% at 298 K to
36% at 333 K. In the presence of tea tree extract, the corrosion of MS and STS is inhibited
by the adsorption phenomenon. The decrease in IEWL at the raised temperature may be
attributed to the desorption of tea tree extract from the steel surface and/or the increase in
the reaction activity of corrosive ions on the unprotected surface [21,22].

Figure 2 shows SEM micrographs of the surface of MS (Figure 2a–c) and STS (Figure 2d,e)
specimens after immersion in 1 M HCl solution at 298 K in the absence and presence of
0.75 g/L of tea tree extract. These SEM micrographs were observed in the morphological
analysis of the corroded surface. Figure 2a shows the surface morphology of the ground
MS specimen without any treatment. Both uninhibited (Figure 2b) and inhibited (Figure 2c)
MS specimens exhibit a uniform corrosion morphology. The surface of the uninhibited
specimen is rough due to severe corrosion damage in 1 M HCl solution, while the surface
of the inhibited specimen exhibits a relatively smoother morphology than that of the
uninhibited one. Interestingly, some parts of the inhibited specimen remain intact even
in acid solution due to the inhibitory role of tea tree extract; therefore, the morphology
was comparable to the initial state (Figure 2a,c). A typical pitting corrosion morphology
was observed in both uninhibited (Figure 2d) and inhibited (Figure 2e) STS specimens.
Particularly, the size and number of pits were reduced by the addition of the inhibitor, tea
tree extract.
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Figure 2. SEM micrographs for the corroded specimens immersed in 1 M HCl solution at 298 K
containing 0.75 g/L of tea tree extract; (a) ground MS specimen without any treatment; (b) uninhibited
MS; (c) inhibited MS; (d) uninhibited STS; (e) inhibited STS.

The characteristics of pits for STS specimens were quantitatively analyzed using LSCM
(Figure 3). The STS speciemens were immersed in 1 M HCl solution at 298 K in the absence
(Figure 3a) and presence (Figure 3b) of the tea tree extract of 0.75 g/L. Color scales next to
LSCM images indicate the depth of the pit in micrometers. Analysis of mean depth and
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maximum depth from LSCM images was conducted using MountainLab® software. In
order to guarantee the reproducibility of characterization results, additional LSCM images
were obtained at different points for the uninhibited and inhibited specimens, as shown
in the Supporting Information (Figures S2 and S3). The pitting corrosion area (i.e., blue
color area), the mean depth of pits (from 12.7 to 5.8 µm), and the maximum pit depth (from
75.4 to 49.9 µm) for the inhibited STS specimen decreased compared to the uninhibited one.
These SEM and LSCM results indicate that the uniform corrosion for MS and the pitting
corrosion for STS were effectively protected in 1 M HCl solution with the addition of tea
tree extract.
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3.2. Polarization Measurements

The effect of tea tree extract on the anodic and cathodic polarization behavior of MS
was studied by electrochemical polarization measurements (Figure 4). The electrochemical
parameters derived by Tafel extrapolation are presented in Table 3. The corrosion potentials
(Ecorr) for the inhibited conditions slightly shifted to the anodic direction within about
30 mV compared with the uninhibited one. Organic corrosion inhibitors can be classified
according to the differences in Ecorr values, at least 85 mV positively or negatively, com-
pared to the value of the uninhibited condition. The difference in Ecorr values within 85 mV
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indicates a mixed-type inhibitor, which simultaneously delays hydrogen evolution in the
cathodic site and steel dissolution in the anodic site [23]. Therefore, tea tree extract might
be a mixed-type inhibitor. This explanation is confirmed from the displacements of both
anodic and cathodic branches towards lower current density with the addition of tea tree
extract. Corrosion current density (Icorr) for the inhibited MS specimen could be reduced to
about 80% compared with that of the uninhibited one due to the inhibition of anodic and
cathodic reactions.
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of tea tree extract.

Table 3. Corrosion data obtained from the electrochemical corrosion tests in Figure 4.

Extract (g/L) Ecorr (V vs. SCE) Icorr (A/cm2) IEPD (%)

Uninhibited −0.492 1.79 × 10−4

0.15 −0.484 0.78 × 10−4 56.5
0.30 −0.467 0.64 × 10−4 64.0
0.75 −0.461 0.44 × 10−4 75.6
2.25 −0.482 0.38 × 10−4 78.6

3.3. Corrosion Inhibition Effect of Constituents

The organic constituents of tea tree extract were analyzed by GC—MS, as shown in
Figure 5. The water-soluble tea tree extract mainly consisted of α-terpineol, 1,8-cineole,
and terpinen-4-ol.

In order to identify the active phytochemical constituents responsible for the inhibitive
performance of tea tree extract, a weight loss test was carried out in 1 M HCl solution at
298 K, in which α-terpineol, 1,8-cineole, and terpinen-4-ol were added. The corrosion rate
and IEWL for MS (Figure 6a) and STS (Figure 6b) specimens are presented in Figure 6. The
inhibitive performance of the constituents for both specimens increased in the following
order: α-terpineol ≈ tea tree extract > 1,8-cineole > terpinen-4-ol. This result indicates that
α-terpineol is the most effective constituent of tea tree extract on steel corrosion inhibition.
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3.4. Surface Characterization

Tea tree extract successfully inhibited the corrosion of MS and STS specimens in 1 M
HCl solution, as follows from the results of the weight loss test, electrochemical polarization
measurement, SEM, and LSCM (Sections 3.1 and 3.2). The corrosion inhibition behavior of
organic materials is attributed to the protective layer formed by its adsorption phenomenon
on the steel surface in corrosive solution [7,13,23,24]. This layer prevents the interaction
between the corrosive ions (i.e., chlorides ions) and the steel surface by acting as the
physical barrier. The surface characteristics of the inhibited specimens were analyzed by
FTIR, Raman spectroscopy, and EIS with the aim to reveal the adsorption of tea tree extract.

3.4.1. FTIR

The main constituents of tea tree extract, α-terpineol, 1,8-cineole and terpinen-4-ol,
were observed by FTIR (Figure 7a–d). A broad peak around 3300 cm−1 observed in
α-terpineol and terpinen-4-ol indicates the O–H bond stretching vibration [13,24,25]. The
C–H stretching of an alkyl or alkenyl group gives an absorption in the 2800–3000 cm−1

range [20,26]. The C–H bendings of an alkyl group and an alkenyl group occur in the
1300–1500 cm−1 [24–27] and 700–900 cm−1 ranges [7,26], respectively. Absorption peaks in
the 1000–1300 cm−1 range are associated with the C–O stretching vibrations [7,13,26,27].
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The FTIR spectrum was analyzed from the surface of the STS specimen after the
immersion test in 1 M HCl solution containing tea tree extract (Figure 7e). The relative
intensity and position of carbon peaks for the inhibited specimens were changed compared
to those for the original tea tree extract and constituents. A notable change in Figure 7e was
the weakening of relative intensity for the O–H vibration peak compared to the original tea
tree extract and other constituents (Figure 5a,b,d). The constituents of tea tree extract such
as α-terpineol and terpinen-4-ol are believed to be adsorbed through chemical interactions
between their hydroxyl (O–H) group and the steel surface [7,13,24].
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3.4.2. Raman Spectroscopy

Figure 8a–d shows the Raman spectra of tea tree extract and its main constituents. The
peaks between 2800 and 3000 cm−1 are ascribed to the C–H stretching vibrations. A peak at
around 1650 cm−1 is assigned to the C=C stretching vibrations. The peaks arising from the
vibrations of methylene (CH2) and/or alkyl (CH3) groups at around 1450 cm−1. The C–O
stretching vibrations in the range of 750–900 cm−1 and the vibrations of the C–H group in
the range of 600–1200 cm−1 can be identified [28–30].
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The Raman spectra and OM images were analyzed from the corroded surface of the
MS and STS specimens (Figures 9–11). The spots of Raman spectroscopic measurement
are marked by arrows in the corresponding OM images. Additional Raman spectra were
measured at different points, as shown in the Supporting Information (Figures S4–S6).
Figure 9a compares the Raman spectra of MS specimens immersed in 1 M HCl solution
at 298, 323, and 333 K for 24 h with or without 0.75 g/L of tea tree extracts. Two forms of
iron oxides, α-Fe2O3 and Fe3O4, were identified as the corrosion products for all corroded
MS specimens [31–33]. α-Fe2O3 and Fe3O4 exhibited the strongest signals at around
210 cm−1 and 692 cm−1, respectively [31,32]. Raman spectroscopic measurements of the
STS specimens were also carried after immersion for 168 h in 1 M HCl solution at 298 K
(Figure 10a). The results of the STS specimens on the iron oxide were similar to the results
of the MS specimens.

In general, a G-peak at 1560 cm−1 and a D-peak at 1360 cm−1 have been observed for
the various carbon materials such as metallocorroles [34–36], amorphous carbons [37,38],
and graphitic materials [39,40]. Interestingly, G- and D-peaks were detected from our
inhibition study. The corresponding G- and D-peaks were observed from the Raman
spectra of the inhibited MS specimens. However, any significant peaks were not seen
at 1560 or 1360 cm−1 in the case of the uninhibited specimen (Figure 9a). Similar to the
results of the MS specimen, two peaks, G- and D-peaks, with significant intensities were
obtained from the inhibited STS specimen (Figure 10a). Raman spectra of immersed STS
specimens with α-terpineol, 1,8-cineole, and terpinen-4-ol are combined into one figure
for easy comparison (Figure 11). G- and D-peaks were detected from all samples, and
the most significant peaks were observed from the STS specimen inhibited by α-terpineol,
83% IEWL.
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Figure 9. (a) Raman spectra analyzed from the surface of MS specimens after immersion for 24 h in
1 M HCl solution at 298, 323, and 333 K with 0.75 g/L of tea tree extract. (b–e) OM images showing
the surface morphology of corroded MS specimens. The spots of Raman spectroscopic measurement
are marked by arrows in OM images.
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Figure 10. (a) Raman spectra analyzed from the surface of STS specimens after immersion for 168 h
in 1 M HCl solution at 298 K with 0.75 g/L of tea tree extract. (b,c) OM images showing the surface
morphology of corroded STS specimens. Spots of Raman spectroscopic measurement are marked by
arrows in OM images.
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We assumed the presence of G- and D-peaks for the inhibited steel specimens indicates
the adsorption of tea tree extract on the steel surface. Shifted or newly formed peaks in
Raman spectra may be due to chemical interactions between the organic inhibitor and the
steel surface by the adsorption. In addition, G- and D-peaks were observed only on the
corroded area (Figure 10a,c). This result indicates that tea tree extract adsorbed only on
the non-passivated area (i.e., the corrosive area), which coincides with previous studies of
corrosion inhibition for stainless steel [41,42]. They explained that the adsorption of organic
inhibitors occurred on a bare stainless-steel surface originating from the local breakdown of
a passive layer. Therefore, we could conclude that tea tree extract was adsorbed through the
interaction with the bare steel surface before attacking the corrosive ions. The appearance
of G- and D-peaks is believed to be related to the adsorption of the organic inhibitor on
the bare steel surface. Although the oxidation of Fe on the unprotective steel surface
(i.e., dissolution of steel) occurred in 1 M HCl solution containing tea tree extract, further
oxidation processes could be effectively retarded by this adsorption phenomenon.

Our study regarding G- and D-peaks of Raman spectra is the first example in the field
of corrosion inhibition as far as we searched. For a better understanding, well-studied
organic corrosion inhibitors, benzimidazole [43,44] and benzotriazole [45,46], were also
tested. The IEWL of benzimidazole and benzotriazole on STS were 83% and 88%, which
were obtained in the same manner as the weight loss test in Section 2.1. The surfaces of the
inhibited STS specimens with benzimidazole and benzotriazole were analyzed by Raman
spectroscopy (Figures 12 and S7). Peaks related to α-Fe2O3 and Fe3O4 were detected
between 200 and 900 cm−1. Interestingly, strong G- and D-peaks were also observed from
the inhibition experiments with both organic inhibitors, and these results are similar to
those of the study on tea tree extract. Therefore, we could conclude that the observation
of G- and D-peaks is common in the corrosion inhibition test with organic inhibitors after
immersion in acidic media.
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Figure 12. Raman spectra analyzed from the surface of STS specimens after immersion for 168 h in
1 M HCl solution at 298 K with benzimidazole and benzotriazole.

The intensity ratio of G- and D-peaks, ID/IG, and the G-peak position were analyzed
based on the IEWL (Figure 13) and are presented in Table 4. The G-peak shifted to higher
frequencies in the case of a higher inhibition efficiency (Figure 13a). Even though the result
of the STS specimen with terpinene-4-ol was out of the range, the others had a positive
tendency of higher G- band frequencies with a higher IEWL. The ID/IG intensity ratio had
a positive correlation with the IEWL of inhibitors (Figure 13b), and the ID/IG intensity ratio
increased as the IEWL increased. Greater than 70% IEWL of MS or STS specimens with
organic inhibitors showed at least a 0.77 ID/IG intensity ratio.
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Table 4. The intensity ratio of the D-peak to G-peak (ID/IG) and the G-peak position (cm−1) evaluated in Figures 9–12.

Inhibitor Specimen Temperature (K) IEWL (%) ID/IG G-Peak Position (cm−1)

tea tree extract MS

298 77 0.92 1576

323 48 0.67 1560

333 36 0.66 1558

tea tree extract

STS 298

86 0.88 1568

α-terpineol 83 0.77 1579

1,8-cineole 65 0.71 1571

terpinen-4-ol 55 0.7 1520

benzimidazole 83 0.83 1588

benzotriazole 88 0.91 1583

3.4.3. Electrochemical Impedance Spectroscopy (EIS)

EIS provides useful information about the characteristics of the electric double layer.
This layer is formed between the steel surface and the electrolyte. Thus, the adsorption
of organic molecules on the steel surface can affect the impedance parameters of this
layer [47]. Figure 14a shows Nyquist plots measured during the corrosion of the MS
specimens in 1 M HCl solution at 298 K. The Nyquist plots in both the uninhibited and
inhibited MS specimens exhibited one depressed semi-circle. One depressed semi-circle
is a typical characteristic of steel electrodes with an inhomogeneous surface [48]. The
equivalent circuit used in this study is shown in Figure 14b. To analyze the Nyquist plot
of one semi-circle, Randle’s circuit consisting of solution resistance (RS), charge transfer
resistance (RCT), and double-layer capacitance (Cdl) is generally applied. However, for the
Nyquist plot of one depressed semi-circle, the double-layer capacitance (Cdl) is replaced
with a constant phase element (CPEdl), as shown in the equivalent circuit of Figure 14b.
As summarized in Table 5, electrochemical impedance parameters were analyzed by the
proposed equivalent circuit model (Figure 14b). The Cdl is estimated using the CPEdl
according to Equation (5):

Cdl =
(

QR1−n
CT

) 1
n , (5)

where Q is the CPEdl constant, and n is the CPEdl exponent (0 ≤ n ≤ 1) related to the
degree of surface inhomogeneity [49].
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Table 5. Electrochemical impedance parameters obtained from Figure 14a.

Extract
(g/L)

RS
(Ω·cm2)

RCT
(Ω·cm2)

CPEdl
(µs/Ω·cm2) n Cdl

(µF/cm2)
IEEIS
(%)

Uninhibited 4.9 91 128 0.8281 51.8
0.15 2.5 224 110 0.8315 52.0 59.3
0.30 4.2 280 106 0.8395 54.1 67.4
0.75 4.6 432 70 0.8447 36.8 78.9
2.25 4.2 515 65 0.8523 36.1 82.3

Cdl depends on a dielectric constant and thickness of electric double layer according
to Equation (6):

Cdl =
εiε0

d
, (6)

where ε0 and εi are the local dielectric constant values of the electric double layer formed
for the conditions in the absence and presence of the extract, respectively, and “d” means
the thickness of the electric double layer [50].

Cdl was decreased, and RCT was increased by the addition of tea tree extract in 1 M
HCl solution. According to Equation (6), the decrease in Cdl values is attributed to an
increase in d and/or a decrease in εi. The organic constituents of tea tree extract may
adsorb through displacement with the pre-adsorbed water molecules and corrosive ions on
the steel surface. The adsorption of organic molecules on the steel surfaces may increase d
and/or decrease εi [49]. The increase in RCT values is because the adsorption layer acts as a
protective physical barrier retarding the charge transfer on the steel surface. The IEEIS was
improved by up to about 80% with the higher concentration of extract, which is consistent
with the weight loss test in Figure 1 and polarization measurement in Figure 4. These
results of EIS confirm that tea tree extract is successfully adsorbed on the steel surface and
effectively retards the steel corrosion.

3.5. Corrosion Inhibition Mechanism

Organic compounds containing oxygen, nitrogen, sulfur, and phosphorus atoms were
found to be effective inhibitors for corrosion because of their ability of adsorption on steel
surfaces. In general, adsorption depends on the structures of organic compounds and
the nature of functional groups. The main components of tea tree extract, α-terpineol,
1,8-cineole, and terpinen-4-ol, are organic compounds containing oxygen atom (Figure 15).
Oxygen of a hydroxyl functional group in α-terpineol and terpinen-4-ol or the ether moiety
in 1,8-cineole may effectively adsorb at the iron surface to make Fe-organic complexes by
electron donor–acceptor interactions (Figure 16).
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Among three constituents, α-terpineol, 1,8-cineole, and terpinen-4-ol, α-terpineol act
as the most effective inhibitors with 83% IEWL (Figure 6). 1,8-Cineole shows 65% IEWL, and
terpinen-4-ol has the lowest IEWL of 55%. The hydroxyl group in α-terpineol adsorbs at the
iron surface effectively to form a Fe-organic complex to inhibit corrosion by blocking the
active site of the iron surface. The hydroxyl group could strongly adsorb to the steel surface
by electron donor and electron acceptor (iron surface, Fe2+) interactions. The oxygen atom
of ether in 1,8-cineole could also interact with Fe; however, this interaction is weaker than
that of the hydroxyl group. Moreover, the steric bulkiness around the oxygen atom could
avoid the efficient adsorption of 1,8-cineole to the steel surface. Even though 1,8-cineole
is not an effective organic inhibitor due to the issues described above, 1,8-cineole has
better corrosion efficiency than terpinen-4-ol. It might be explained by the isomerization of
1,8-cineole to α-terpineol in acidic media (Figure 17); therefore, some portion of 1,8-cineole
exists as α-terpineol, which has good corrosion efficiency. In the case of terpinen-4-ol, the
oxygen atom of the hydroxyl group is hard to interact with the surface of steel due to steric
hindrance around the hydroxyl group. Therefore, the IEWL is only 55% (Figure 6).
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Figure 17. Isomerization of α-terpineol and 1,8-cineole.

The corrosion inhibition mechanism of tea tree extract on MS and STS corrosion is
proposed as follows:

• Chloride anions adsorb onto the positively charged steel surface in 1 M HCl solution
by coloumbic attraction and cause steel dissolution [50,51].

• In the case of passivated STS, the adsorbed chloride anions cause local breakdown of the
protective passive layers on the steel–solution interface, resulting in pitting corrosion.
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• In the presence of tea tree extract, organic inhibitors containing oxygen adsorb to
the corrosive areas, i.e., all surface areas for MS of uniform corrosion morphology
(Figure 9a) and the local pits for STS of pitting corrosion morphology (Figure 10a).
The pre-adsorbed chloride anions are replaced by organic inhibitors on the surface of
the steel [50,51], and the organic-Fe complex layer is formed through electron donor–
acceptor interactions with Fe. This layer effectively blocks the interaction between
the steel and acid media and reduces the chance of the further oxidation of iron. The
uniform corrosion of MS and pitting corrosion of STS in the 1 M HCl solution can
effectively be inhibited by the protective organic-Fe complex layer.

4. Conclusions

Tea tree extract has been applied only in the cosmetic, food, and pharmaceutical
industries. This study showed tea tree extract as a green promising corrosion inhibitor
to substitute chemically synthesized compounds. Tea tree extract and its constituents
α-terpineol, 1,8-cineole, and terpinen-4-ol exhibited an anticorrosive effect under 1 M HCl
solution on uniform corrosion for MS and pitting corrosion for STS. The corrosion of MS
and STS at 298 K was inhibited by up to 77% and 86%, respectively. LSCM observations
showed that the addition of tea tree extract in 1 M HCl solution reduced the pitting area and
depth for STS. The most effective constituent contributing to the inhibitory performance
was found to be α-terpineol with an inhibition efficiency of 83%.

The anticorrosion mechanism of tea tree extract was revealed through surface charac-
terization analysis using FTIR, Raman spectroscopy, and EIS. Organic-Fe complex layers
were formed on the steel surface via electron donor and acceptor interactions in the presence
of an oxygen atom of the hydroxyl group or ether of organic inhibitors. This layer retarded
the corrosion reaction by blocking the interaction between the steel and acid media.

For Raman spectral analysis, the study regarding G- and D-peaks was firstly reported
in the field of corrosion inhibition. The G- and D-peaks were detected from the Raman
spectra of the inhibited specimens. The ID/IG ratio and G- band frequencies had a positive
relationship with the corrosion inhibition efficiency. Based on these empirical findings
from the Raman spectroscopic results, a clearer adsorption and inhibition mechanism of
organic materials on the steel will need to be studied further.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14175016/s1, Figure S1: Raman spectra analyzed with 1, 4, 7, and 10 mW laser power
from (a,b) the extract itself and (c,d) the corroded surface of MS specimen without the extract.
Thermal degradation with 10 mW laser power was checked via the repetitive analysis at one spot, as
shown in (b,d), Figure S2a–g: LSCM images showing the surface morphology of corroded 304 STS
specimens after immersion in 1 M HCl solution at 298 K without tea tree extract, Figure S3a–g: LSCM
images showing the surface morphology of corroded 304 STS specimens after immersion in 1 M
HCl solution at 298 K with 0.75 g/L of tea tree extract, Figure S4: Raman spectra analyzed from
the surface of MS specimens after immersion for 24 h in 1 M HCl solution at (a,b) 298, (c) 323, and
(d) 333 K with 0.75 g/L of tea tree extract, Figure S5: Raman spectra analyzed from the surface of
STS specimens after immersion for 168 hours in 1 M HCl solution at 298 K (a) without and (b) with
tea tree extract of 0.75 g/L of tea tree extract, Figure S6: Raman spectra analyzed from the surface
of STS specimens after immersion for 168 hours in 1 M HCl solution at 298 K with 0.75 g/L of (a)
α-terpineol, (b) 1,8-cineole, and (c) terpinen-4-ol, Figure S7: Raman spectra analyzed from the surface
of STS specimens after immersion for 168 h in 1 M HCl solution at 298 K with (a) benzimidazole and
(b) benzotriazole.
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