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Detecting spiral wave tips using 
deep learning
Henning Lilienkamp1,2 & Thomas Lilienkamp3,4*

The chaotic spatio-temporal electrical activity during life-threatening cardiac arrhythmias like 
ventricular fibrillation is governed by the dynamics of vortex-like spiral or scroll waves. The 
organizing centers of these waves are called wave tips (2D) or filaments (3D) and they play a key role 
in understanding and controlling the complex and chaotic electrical dynamics. Therefore, in many 
experimental and numerical setups it is required to detect the tips of the observed spiral waves. Most 
of the currently used methods significantly suffer from the influence of noise and are often adjusted 
to a specific situation (e.g. a specific numerical cardiac cell model). In this study, we use a specific type 
of deep neural networks (UNet), for detecting spiral wave tips and show that this approach is robust 
against the influence of intermediate noise levels. Furthermore, we demonstrate that if the UNet 
is trained with a pool of numerical cell models, spiral wave tips in unknown cell models can also be 
detected reliably, suggesting that the UNet can in some sense learn the concept of spiral wave tips in a 
general way, and thus could also be used in experimental situations in the future (ex-vivo, cell-culture 
or optogenetic experiments).

Life-threatening cardiac arrhythmias like ventricular fibrillation are the major cause of morbidity and mortal-
ity with sudden cardiac death taking several hundreds of thousands of lives per year. Today, the complex and 
chaotic dynamics of the underlying electrical excitation patterns in the heart muscle is still not fully understood. 
However, it is known that spiral or scroll waves are the governing objects which drive the spatio-temporal dynam-
ics during arrhythmias1–3. For a deeper understanding of the governing mechanisms and processes which are 
responsible for the onset and perpetuation of arrhythmias, it is essential to characterize the electrical excitation 
patterns by tracking and analyzing the spatio-temporal dynamics of the spiral wave tips (or filaments in 3D), 
since they can be understood as the organizing centers of the waves.

Tracking spiral wave tips is relevant, for example, in the context of controlling4–6, and investigating the struc-
ture and governing processes during spiral wave chaos7,8, analyzing the complexity during cardiac arrhtyhmias9,10, 
or studying creation/termination mechanisms which may also lead to self-termination11–13. Spiral or scroll waves 
can also be found and studied in 3D chemical reactions (scroll waves), like the Belousov–Zhabotinsky reaction14, 
in arrays of non-linear Chua’s circuits15 or 2D lattices of van der Pol oscillators16.

For this purpose of tracking the positions of spiral wave tips over time, several different methods exist which 
are based on, for example, differentiating between different states of a grid cell17,18, finding intersections of 
contour lines19, finding points of zero normal velocity of isopotential lines20, investigating the curvature along 
isopotential lines21, or using the pivot method22. Another approach is based on a two-step protocol, where initially 
a phase is calculated for each point of the spatial domain. This can be done, for instance, by using a Hilbert trans-
formation, or calculating a phase via atan2 based on the membrane potential variable Vm and another secondary 
variable (or a time delay of Vm instead). Subsequently points with an undefined phase (phase singularities) are 
associated with the tips of spiral waves3,23. However, many of those methods work well in specific situations only. 
For example, some of them require information about secondary variables, which is mostly the case in numerical 
simulations, only. Also, most of the methods suffer from the influence of noise, which can not be neglected in 
experiments, such as optical mapping recordings in ex-vivo Langendorff perfusion experiments4.

Recently, R. R. Gurevich and R. O. Grigoriev developed an approach, which is also robust against noise24. In 
this study we follow a different approach using deep learning algorithms, which have been used successfully in 
the context of dynamical systems, e.g. for modeling25 or controlling26 dynamical systems. Here, we address the 
following questions: 

1.	 Can deep neural networks be used to detect positions of spiral waves in general?
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2.	 How robust is such an approach under the influence of noise?
3.	 How “general” can a deep neural network learn the task of identifying the positions of wave tips: can it iden-

tify spiral wave tips for data it has not seen (thus has not been trained on) before (e.g. an unknown numerical 
cell model, or experimental data)?

The study is structured in the following way: In the next section we briefly describe four different cell models 
which we investigate. Afterwards, we explain how spiral wave tips are detected using a “conventional” method, 
in order to generate training data. Then, the architecture and the training procedure of the deep neural network 
is shown. In the results section, we present the studies which we performed in order to address the three research 
questions posed before. Finally, we discuss these results in the last section.

Methodology
In this section, we describe the general approach, more technical details are given in the method section. We 
start by giving an overview over four different cardiac cell models which we investigate in this study. Afterwards, 
we describe how episodes of chaotic spiral wave chaos are produced (which is the input data for the UNet), 
and how phase singularities (tips of the spiral waves) are detected using a conventional method (serving as the 
ground truth data). We then explain how the UNet is trained and how we evaluate the prediction output of it.

Overview over the investigated cardiac cell models.  The spiral wave dynamics we investigate in this 
study is described by a system of reaction-diffusion equations Eqs. (1) and (2)

where D is the diffusion constant, and Cm the membrane capacitance. The exact form of the transmembrane 
currents Itot (second term in Eq. (1)) and of g(Vm, h) in Eq. (2) is determined by the respective cell model.

In order to cover a broad range of cardiac cell models, we investigate in this study four different models, 
ranging from simplified ones to more complex ionic cell models, which describe the electrical action potential 
dynamics of cardiomyocytes: a three-variable minimal model27 describing the porcine electrophysiology (from 
now on denoted as MMPorc ), the Bueno-Orovio–Cherry–Fenton model28 with two different sets of parameters 
( BOCFa and BOCFb , respectively), and the Luo-Rudy-I model29 (LR-I). Details about the cardiac models and 
parameters are given in the method section. In Fig. 1, exemplary snapshots of the membrane potential Vm are 
shown for each model, respectively.

Preparation of data.  For each cell model, we simulated five independent episodes of chaotic spiral wave 
dynamics with a temporal length of 1 s each, and a sampling rate of 1ms , respectively. A single spiral wave was 
initiated and a randomized perturbation of the first variable was added. Afterwards, the initial phase of at least 
2 s was discarded, in order to ensure that different episodes are independent from each other. This results in total 
in 5× 1000 = 5000 samples per cell model.

“Conventional” detection of phase singularities.  In order to train the UNet for the purpose of identi-
fying the spatial locations of spiral wave tips, one requires ground truth data such that the UNet can learn where 
the tips are located. For this task, we use a two step approach: In a first step, the phase at a specific position on 
the simulation grid and at a given point in time θ(t, x, y) is computed, based on the (normalized) membrane 
potential Vm and a second (normalized) dynamical variable X, which is chosen for each cell model individually:

(1)
∂Vm

∂t
=D�Vm −

Itot(Vm, h)

Cm

,

(2)
∂h

∂t
= g(Vm, h) ,

Figure 1.   Exemplary snapshots of the membrane potential Vm are shown for the three-variable minimal model 
MMPorc

27 (a), the Bueno-Orovio–Cherry–Fenton model BOCFa28 (b) and BOCFb (c), and the Luo–Rudy-I 
model LR-I29 (d), respectively. The organizing centers of spiral waves (phase singularities) are denoted as white 
dots.
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where V0
m and X0 are reference values whose explicit values are given in the method section. Exemplary snapshots 

of the membrane potential Vm and the corresponding phase θ are shown in Fig. 2a,b, respectively.
We associate in the following a spiral wave tip as a phase singularity (PS). Phase singularities are determined 

by performing path integrals along closed paths ∂D which enclose small domains of 2× 2 pixel of the simulation 
grid. If the result of such a path integral

is equal to one ( 2π without the normalization factor), a phase singularity and thus a spiral wave tip has been 
detected at the specific point in time and space (otherwise the integral is numerically zero). In Fig. 2c, such a 
phase singularity is shown as a red dot, which can be associated with the spiral wave tip in Fig. 2a (magnified 
in the black boxes, respectively). In such a way, phase singularities have been detected for each episode of spiral 
wave dynamics. For the subsequent training procedure of the UNet, the ground truth data consists therefore out 
of domains containing “zeros” and “ones”, where “ones” indicate the location of a phase singularity.

Detection of phase singularities via UNet.  During the whole study, an input sample consists of five 
consecutive snapshots ( 96× 96 pixel) of the membrane potential Vm , which are each separated by 5 ms in time 
and can thus be considered as a 5-channel image. It is noteworthy that using a temporal sequence of input snap-
shots here is comparable to the way how the conventional phase can be computed using time delay coordinates. 
That means, we do not use secondary variables as it was required for the conventional detection of spiral wave 
tips in the previous section, but we take the past 20 ms of the dynamics into account. The input samples were 
normalized to values between zero and one to provide optimal conditions for the UNet to learn from the data.

The task at hand is to predict the ground truth position of phase singularities, thus a mask of the spatial 
domain where a “one” marks the location of a spiral wave tip (as shown in Fig. 2c), from an input sample. The 
UNet neural network architecture introduced by Ronneberger et al.30 is designed to address such a task, i.e. to 
map multi-channel images of a fixed size to a single-channel image of the same size. The UNet neural network 
has been developed for the field of biomedical image segmentation where it has outperformed competing state-
of-the-art approaches. However, since its development it has also proven useful in various other disciplines 
such as the geosciences, where it was applied to the problem of pansharpening of satellite images31, or electrical 
engineering, where it was used as a surrogate model for complex physical ray-tracing simulations to model the 
signal intensity of mobile communication networks32. Further applications encompass the detection and removal 

(3)θ(t, x, y) = atan2(Vm(t, x, y)− V0
m, X(t, x, y)− X0) ,

(4)PS(t, x, y) =

∣
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Figure 2.   Detection of phase singularities and the architecture of the UNet. An exemplary snapshot ( MMPorc ) 
of the membrane potential Vm , and the corresponding phase θ (as in Eq. (3)) are shown in subplot (a), and (b), 
respectively. In subplot (c) it is shown how detected phase singularities (spiral wave tips) are marked as red 
dots of size 1× 1 pixel (only the magnified one is visible here). In subplot (d), the architecture of the UNet is 
sketched, where the structure of the denoted Conv blocks, and the Up-Conv blocks is explained in the method 
section. As an input of the UNet, we use five snapshots of the membrane potential, where the temporal distance 
between consecutive snapshots is 5ms . The output is trained to predict the position of phase singularities (as 
shown in subplot (c)). Note, that for the output, the illustration of the grey spiral waves are not part of the actual 
data, and are sketched here for the sake of clarity, only.
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of artifacts in 2D Sparse Photoacoustic Tomography images33, and the segmentation of brain tumor tissue in 
3D34. The latter study might be of special interest to our field, since it poses a possibility to extend our method 
from the detection of wave tips (2D) to filaments (3D).

The architecture of the UNet we used throughout this study is depicted in Fig. 2d. More details about the 
architecture are given in the method section.

For statistically robust statements about the performance of the UNet and to prevent overfitting, we performed 
a five-fold cross validation for each investigation throughout the whole study: From five episodes of each 1000 
samples we created for each cell model, we selected one episode for later validation and performed the training 
procedure with the remaining 4 episodes (4000 samples), only. This training/validation process was repeated 
five times, where in each iteration another single episode was left out of the training procedure. The overall 
performance of the UNet was then computed as a mean over the five obtained validation results.

Evaluation of the prediction.  After the training phase, we use the UNet for predictions of the spatial 
locations of spiral wave tips. Since the UNet predicts values between 0 and 1, we define a cutoff threshold of 
PScut = 0.1 (arbitrarily chosen), that means, if the UNet predicts at a certain location of the grid a value which 
is larger than PScut , we interpret this as a detected phase singularity. In a next step, we compare the predicted 
locations of spiral wave tips with the ground truth data by using the Fscore:

In Eq. (5), if the prediction of the UNet indicates a detected spiral wave tip (thus a value > PScut ), we count it 
as true positive if for the ground truth data we can find a corresponding spiral wave tip in a spatial range of ±2 
pixel, and a temporal range of ± 5ms . Likewise, we count a predicted spiral wave tip as false positive, if we can-
not find a corresponding one in the ground truth data within the declared temporal and spatial range. Also, if a 
ground truth spiral wave tip does not have a counterpart in the predicted data, this tip counts as false negative. 
Thus, if the prediction is accurate, the number of false positives and false negatives is close to zero and therefore 
the Fscore is close to one. With a decreasing prediction quality, the Fscore is decreasing from one. The reason we 
introduce a spatial and temporal uncertainty interval of ±2 pixel and ± 5ms is that the exact true position of the 
spiral wave tip cannot be defined uniquely and, for example, in the case of the conventional detection depends 
on the choice of reference parameters V0

m and X0 (in Eq. (3)). With this approach, we can distinguish between 
predicted spiral wave tips which are very close to the true position (which we count as a correct prediction) 
and predicted tips which are significantly far away from a true spiral wave tip, and are therefore clearly wrong 
predictions. Still, a spatial uncertainty of ±2 pixel corresponds in our simulations to approximately 1 mm to 
2 mm, which is significantly smaller than typical wave lengths ( ≈ 30 mm to 100 mm), which is the governing 
length scale of the system.

Results
After an exemplary demonstration of how the UNet predicts the location of spiral wave tips in the first subsec-
tion, we investigate in this study mainly two aspects: In the following subsection, we show what the influence of 
noise on the prediction accuracy is, which is measured in terms of the Fscore . In the subsequent subsection, we 
investigate whether cross predictions between different cell models can be performed successfully.

Proof of concept.  We trained the UNet for each of the four investigated cell models separately. The Fscore 
was computed for each of the five cases, and average mean values as well as the standard deviation are shown in 
Table 1.

Also, for exemplary snapshots of the dynamics, the ground truth position of PS and the predicted positions 
are shown in Fig. 3. In general, predicted positions of PS coincide well with the ground truth data.

We identified, however, two sources of errors: when PS are created/annihilated the prediction of the present 
PS can differ from the ground truth data for a short period of time. Also, in the case that a spiral wave front 
collides with a wave back of another wave, resulting in a sudden shift of the position of the spiral wave tip, can 
cause a disagreement between ground truth and predicted positions of PS in some cases. Both of these cases are 
discussed also in Fig. 3d. However, in both cases the deviation between ground truth data and prediction lasts 
for a short amount of time, only.

(5)Fscore =
true positive

true positive+ 1
2 (false positive+ false negative)

.

Table 1.   Prediction of spiral wave tips. The Fscore is shown for the case where the UNet was trained with a 
single cell model, and the prediction was performed on the same model.

Model Fscore

MMPorc 0.984± 0.003

BOCFa 0.995± 0.001

BOCFb 0.996± 0.001

LR-I 0.988 ± 0.007
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The influence of Gaussian white noise in the prediction.  In experimental measurements of spiral 
wave dynamics (e.g. in the context of ex-vivo Langendorff experiments with optical mapping recordings) the 
influence of noise is in many cases considerable. That is, why in this section we investigate how robust spiral wave 
tips can be detected with the UNet, if the input data is noisy.

For this purpose, after normalizing the input data we add white Gaussian noise with the standard deviation 
σ and train the UNet with the noisy data. In Fig. 4a–c exemplary snapshots of noisy input data (LR-I model) are 
shown for standard deviations of σ = 0.3 , σ = 0.5 , and σ = 1.0 , respectively.

The resulting Fscore for a given standard deviation σ is shown in Fig. 4d for the MMPorc model and the BOCFa 
model, and in (e) for the BOCFb model and the LR-I model, respectively. As expected, the prediction performance 
decreases for all models with increasing σ , although qualitative differences can be observed between models. 
For example, it seems that the prediction of spiral wave tips is more robust against the influence of noise in the 
case of the BOCFa and BOCFb model. However, for small and intermediate noise magnitudes the prediction of 

Figure 3.   Comparison of spiral wave tips detected by the conventional method (ground truth) and by the 
UNet. The same exemplary snapshots of the membrane potential Vm as in Fig. 1 are shown here for all four cell 
models ((a–d), respectively). The positions of spiral wave tips, which were detected by the conventional method 
are sketched as light gray dots, whereas the positions predicted by the UNet are shown as red crosses. Note, 
that the samples shown here did not belong to the training data, which was used during the training phase of 
the UNet. In general, the prediction of spiral wave tips coincides well with the ground truth data. However, in 
some cases deviations can be observed: In subplot (d), a predicted phase singularity (magnified part I) does 
not correspond to a ground truth PS. In this case, a phase singularity annihilated shortly ( < 10ms ) before the 
snapshot was taken. In the second case (magnified part II), a spiral wave front collides with a wave back of a 
preceding wave, resulting in an abrupt spatial shift of the ground truth phase singularity within a short period of 
time. In this case, the UNet predicts the position of the PS still at the “former” place. However, within 10ms after 
the shown snapshot, the ground truth position and the predicted position of the PS coincide again.

Figure 4.   The influence of additive Gaussian white noise on the prediction. In subplots(a–c), an exemplary 
snapshot of the membrane potential (LR-I model, same snapshot as in Fig. 1d) is shown for three different 
values of the standard deviation of the Gaussian distribution σ = 0.3, 0.5, 1.0, respectively. In subplots (d), and 
(e) the Fscore is depicted for all four investigated models, depending on σ.
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spiral wave tips still works in most cases (e.g. Fscore for σ = 0.3 : 0.87± 0.021 ( MMPorc ), 0.95± 0.034 ( BOCFa ), 
0.979± 0.007 ( BOCFb ), and 0.94± 0.040 (LR-I), respectively).

Predicting spiral wave tips of an unknown cell model.  How general is the knowledge of the UNet 
when it is trained with a specific cell model and can it be used to predict the locations of spiral wave tips also 
for another model? Here, we investigate the objective whether the UNet generalizes to “arbitrary” spiral wave 
dynamics. For this purpose, we used the UNets which were trained with data from a specific cell model, and 
predicted the spiral wave tips of another cell model, whose data the UNet has not seen beforehand during the 
training process. The resulting Fscore are shown in Fig. 5.

Although some combinations of training model and prediction model yield good performances (e.g. training 
with BOCFa and predicting LR-I: Fscore = 0.961± 0.004 ), in average the Fscore varies significantly and depends 
on the specific models (e.g. training with LR-I and predicting MMPorc : Fscore = 0.531± 0.258 ). The varying per-
formance of cross-prediction could have different reasons, e.g. different wave shapes (the upstroke of an action 
potential, for example), different meandering of spiral wave tips, and/or different creation/annihilation processes 
during the episodes. However, at first sight the MMPorc model is the “simplest” model (three dynamical vari-
ables) and the LR-I model the most complex one (eight dynamical variables) which we investigated. For future 
studies it could be interesting to study, whether these features play a major role in the case of cross-prediction.

In a second step, we used data from not only one cell model, but three models for training (still keeping the 
number of samples to 4000) and tried then to predict the fourth (unknown) model. In this way, we could achieve 
an Fscore > 0.9 for each of the four cell models (Table 2). That means, when using several cell models for training 
and predicting an unknown model, we can achieve a prediction quality that is comparable to the situation where 
we would have trained with the unknown model itself (comparing Table 2 with Fig. 5).

Discussion
To refer to the three research questions we posed at the beginning of this study, we demonstrate that in general 
the task of detecting spiral wave tips for different cardiac cell models can be conducted by using deep neural 
networks. Also, we showed that the algorithm is robust against intermediate noise levels (referring to the second 
research question). Our answer to the third question is a little more complex: we investigated whether the UNet 
which was trained e.g. only with model A generalized in such a way, that it can detect also spiral wave tips in 
model B. We found that the resulting prediction accuracy (measured in terms of the Fscore ) depends significantly 
on the respective combinations of model A and model B. However, we showed, that if several models are taken 
into account for training (e.g. model A, model B, and model C) spiral wave tips can reliably be detected for an 
unknown cell model (model D). This finding suggests, that if the UNet is trained with a pool of different cardiac 

Figure 5.   The Fscore is shown for all combinations of training models, and prediction models.

Table 2.   This table lists the Fscore values for the case, where the UNet was trained with three cell models, and 
the prediction was performed on the fourth remaining (unknown) cell model.

Training Models Predicted Model Fscore

BOCFa , BOCFb , LR-I MMPorc 0.915± 0.02

MMPorc , BOCFb , LR-I BOCFa 0.959± 0.054

MMPorc , BOCFa , LR-I BOCFb 0.989± 0.011

MMPorc , BOCFa , BOCFb, LR-I 0.988 ± 0.008
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cell models, it can indeed learn the general concept of what a spiral wave tip is, and can therefore be used in a 
broad field of applications. For example, a UNet could be trained with a pool of numerical cell models, before it 
is applied to experimental data (where the ground truth data of positions of spiral wave tips is difficult to access). 
Possible experimental scenarios for the application of the UNet are ex-vivo Langendorff perfusion experiments4 
or optogenetic experiments35,36.

When comparing conventional methods of detecting phase singularities (which may be computationally 
demanding) with the application of the UNet approach, a possible speed up in terms of computation time might 
be essential if the distribution of spiral wave tips must be computed in real-time in an experimental situation. 
Although, in the first case the actual computation time depends on the specific conventional method chosen, a 
significant advantage of the UNet approach is that the considerable training time which is necessary can be per-
formed prior to the particular application. However, since the conventional method is computed on CPU, but the 
UNet approach (implemented with Tensorflow37) runs on GPU, comparing computation speeds cannot be done 
in a rigorous way. Still, with our approach we measure similar speeds for 10000 samples: for the conventional 
method: 8.41± 0.005 s (Intel Xeon W-2104 @ 3.20GHz) and the UNet approach (only prediction): 9.11± 0.27 s 
(GeForce GTX 1080 Ti). It is noteworthy, that the amount of input data for both methods is different: For the 
conventional method, two fields (two dynamical variables) per sample are used, whereas in the case of the UNet 
five fields are required (five delays per sample). Thus, the amount of data per sample is 2.5 times bigger in the case 
of the UNet. In future studies, where the number of delay vectors or the number of layers, for instance, could be 
optimized, the UNet approach may be further improved in terms of computation time.

In principle, the approach can also be extended to the task of detecting scroll wave filaments in three-dimen-
sional domains: the detection of (2D) phase singularities in each spatial direction separately could be replaced 
also here by the UNet. Also, it may be of high interest, whether spiral wave tips can also be detected via a UNet 
in other systems (e.g. the Belousov–Zhabotinsky reaction).

In the experimental case another advantage of the UNet approach could play a role, if the electrophysiological 
properties of the system drift with time (non-stationary system)38. In this case, also the spatio-temporal dynam-
ics of spiral wave tips can alter significantly. Whereas the parameters of a conventional method might have to 
be adapted in this situation in order to maintain the functionality of the algorithm, results regarding the BOCFa 
and the BOCFb model indicate that the UNet would not need any further adjustments in order to work properly.

In general, this study indicates that the field of research related to the understanding and control of chaotic 
spiral wave dynamics underlying cardiac arrhythmias could significantly benefit from the application of deep 
neural networks in many different ways in the future.

Methods
Cardiac cell models.  More details about the investigated cardiac cell models are given in this section.

Porcine model.  The MMPorc model27 comprises three variables (Vm, v,w) and the transmembrane currents 
are given by the sum of a fast inward current Ifi , a slow inward current Isi , and a slow outward current Iso : 
Itot = Ifi(Vm, v)+ Iso(Vm, v)+ Isi(Vm,w).

Bueno‑Orovio–Cherry–Fenton model.  The Bueno-Orovio–Cherry–Fenton model28 uses four variables ( Vm , v, 
w, s) and three transmembrane currents Itot = Ifi(Vm, v)+ Iso(Vm, v)+ Isi(Vm,w) . In this study, we use two 
different sets of parameters: the BOCFa model uses the epicardial parameter set, defined in Table 1 in the original 
paper28, whereas BOCFb uses the PB parameter set.

Luo‑Rudy‑I model.  The Luo-Rudy-I model29 comprises eight variables ( Vm,m, h, j, d, f ,X,Ca ) and the trans-
membrane currents are given by Itot = INa + Isi + IK + IK1 + IKp + Ib.

Numerical integration.  All simulations were performed on two-dimensional rectangular simulation 
domains ( Nx × Ny = 384× 384 for the MMPorc model and Nx × Ny = 576× 576 for the BOCFa model, 
BOCFb model, and LR-I model), using no-flux boundary conditions. In Table 3 the time step dt, the diffusion 
constant D and the grid constant dx are given for each cell model.

Different chaotic spiral wave episodes were created by initializing a spiral wave, and subsequently perturb the 
state on random positions. After the application of the perturbation, at least 4 s of the episode were discarded, 
in order to ensure that different chaotic episodes are independent from each other.

Table 3.   This table lists the time step dt, the spatial grid parameter dx and the diffusion constant D for all 
investigated cell models.

Model dt [ ms] D [ mm
2/ms] dx [mm]

MMPorc 0.1 0.1 0.5

BOCFa 0.1 0.2 0.8

BOCFb 0.1 0.2 0.8

LR-I 0.1 0.03 0.2
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“Conventional” detection of phase calculation.  The second dynamical variable (reference variable) 
and the corresponding reference values which were used to compute spiral wave tips with the conventional 
method (Eq. (3)) are shown in Table 4.

UNet architecture.  The detailed structure of the UNet (shown in Fig. 2d) is discussed here. The encoder 
branch of the UNet acts as a feature extractor, alternatingly applying Conv block and Pooling block operations 
to the input image. A Conv block consists of two 2D convolutional layers with filters of size 3× 3 , each followed 
by a batch normalization operation and a tanh activation function. In order to prevent that border pixel are lost, 
we apply zero-padding prior to the convolution operations. The number of channels (features) is doubled after 
each Conv block. Each Pooling block encompasses image size reduction by a factor of 2 via Max-pooling and a 
dropout layer. As a result, 256 features of size 6× 6 pixel are extracted in the deepest layer of the UNet.

Along the decoder branch, the extracted features are transformed back to the spatial dimensions of the input 
image via the alternating application of Up-Conv blocks, skip connections, and Conv blocks. An Up-Conv block 
contains an up-sampling layer that expands the size of the features by a factor of two and is followed by a 2D 
convolutional layer with filters of size 2× 2 . The number of channels (features) is reduced by a factor of 2 after 
each Up-Conv block, symmetrically with respect to the encoder branch. Skip connections concatenate the output 
of Up-Conv blocks with their pendants from the encoder branch to enrich the resolution of the up-sampled 
features and pass the result through a dropout layer. The final Conv-out block, includes a 2D convolutional layer 
with a single filter of size 1× 1 , followed by a sigmoid activation function that generates the output mask of the 
spatial domain. We used binary cross entropy as a loss function.

Data availability
The data and the programming code of the UNet that support the findings of this study are available from the 
corresponding author upon reasonable request.
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