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Background
Recently, the nonlinear phenomenon has been extensively appeared in the fields of 
mathematical physics and engineering technology. A multitude of research focuses have 
been changed from linear problems to nonlinear ones. These problems can be ascribed 
to the research of nonlinear partial differential equations (NLPDE), as the complex-
ity of equation, it becomes hard to get the exact solutions. Hence, the investigation 
of solving NLPDE has important theoretical and practical significance. In recent dec-
ades, a growing number of scholars established effective methods and these methods 
have obtained comprehensive applications. Such as the symmetry method (Lie 1881), 
the CK direct method (Clarkson and Kruskal 1989), the homogeneous balance method 
(Wang and Li 1996), the tanh-function method (Fan 2000; Akbar et al. 2013; Xie et al. 
2005), the F-expansion method (Wang and Li 2005), sub-ODE method (Zhang et  al. 
2006), the simplest equation method (Kudryashov 2005; Sudao and Temuer 2010), the 
(G′/G)-expansion method (Wang et al. 2008; Alam and Akbar 2013), the homotopy per-
turbation method (He 1999; Narayanamoorthy and Sathiyapriya 2016; Filobello-Nino 
et al. 2016) and so on. However, a unified and systemic method, which can be applied 
to solve all kinds of equations, is still inexistence, and the above-mentioned methods all 
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have individual range of applications. Therefore, summarizing and concluding, adopting 
the advantages and abandoning the disadvantages have been regarded as the effective 
approaches to investigate these existing methods. At the same time, it is worth obtaining 
more new solutions of NLPDE by using Lie symmetry and other methods.

As we all know, the symmetry method is the most universal method, and many tra-
ditional methods become its special cases. During the end of the nineteenth century, 
in order to unify and expand the methods used in solving the ordinary differential 
equations(ODE), Norwegian mathematician Sophus Lie (1842–1899) firstly proposed 
the symmetry theory of differential equations (Lie 1881). The investigations of the sym-
metry theory and approach have important theoretical and practical significance in 
modern mathematics, physics, mechanics and so on, at the same time, many successful 
applications have emerged in those fields (Bluman and Kumei 1989; Bluman et al. 2009; 
Noether 1918; Ma 1990; Clarkson and Kruskal 1989; Lou and Tang 2001; Ma and Chen 
2009; Ma 2013). At present, using the symmetry method and others, such as the analytic 
solutions method, the approximate analytic solutions method and the numerical method 
with the aid of thorough considering mutual complementarity and availability to solve 
NLPDE are the new research subjects.

The premise of applying the symmetry method is to determine the all kinds of symme-
tries of the partial differential equations (PDEs). The main approach of determining the 
symmetries is the infinitesimal transform method which is proposed and constructed 
by Lie, called Lie’s algorithm. Lie’s algorithm, which is the major method with respect to 
determining symmetries, transforms the problem of determining symmetries into that of 
determining corresponding infinitesimal vectors whose infinitesimal functions are found 
as solutions of some over-determined system of PDEs, called the determining equations 
(Lie 1881). In determining symmetries, tedious, mechanical computations are involved 
and the order relation of unknown quantities have not been considered in conventional 
Lie’s algorithm, which result many problems, such as infinite loops on computers, a mass 
of work and so on. According to the investigations, differential form Wu’s method is one 
of effective methods to get rid of the defects of Lie’s algorithm. Therefore, Wu-differen-
tial characteristic set algorithm extended and constructed by Temuer Chaolu can par-
tially solve the above-mentioned problems (Temuer 1999; Temuer and Bai 2010). This 
algorithm has been successfully applied to classical symmetries, nonclassical symme-
tries, high-order symmetries, approximate symmetries, potential symmetries, conserva-
tion laws and symmetry classification of PDEs, which has promoted the investigations of 
symmetry theory of PDEs (Bluman and Temuer 2006; Temuer et al. 2007; Temuer and 
Bai 2009; Temuer and Pang 2010; Sudao et al. 2014). Recently, we investigate the appli-
cations of the symmetry method in the boundary value problem of the nonlinear PDEs 
based on Wu-differential characteristic set algorithm and use the symmetry method 
and the homotopy analytic method to solve the boundary value problem (Sudao et al. 
2014; Sudao 2011). Some other investigators use the symmetry method, the variational 
iterative method and the homotopy perturbation method to solve the boundary value 
problem based on Wu-differential characteristic set algorithm (Lu and Temuer 2011a, b; 
EerDun and Temuer 2012).

In this paper, we will construct the exact solutions and the approximate analytic solu-
tions of the (2 + 1)-dimensional KP equation by using the Lie symmetry, the extended 
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tanh method and the homotopy perturbation method. The Wu-differential charac-
teristic set algorithm plays an important role in calculating the symmetries of the 
(2 +  1)-dimensional KP equation. This investigation will explore a new approaches of 
Lie symmetry in application of NLPDE. In addition, it will also effectively popularize the 
range of application and advance the efficiency of using method.

The symmetries and symmetry reduction of the (2 + 1)‑dimensional KP 
equation
We consider the (2 + 1)-dimensional KP equation (Ding and Ji 2008) as follow:

it is applied to describe the law of motion of water waves in (2 + 1)-dimensional spaces 
as well as plasmas in magnetic fields. Next, we will give the process of calculating the 
symmetry and reduction of Eq. (1).

The symmetries of the (2 + 1)‑dimensional KP equation

The symmetry group of Eq. (1) will be generated by the vector field of the form

where ξ, µ, τ, η are the infinitesimal generated functions of the symmetry. According to 
the Lie algorithm, we obtain the determining equations of symmetry (2), but it is too dif-
ficult to get its solutions. However, we can obtain the followig system of equations cor-
responding to the characteristic set which is equivalent to the determining equations by 
using Wu-differential characteristic set algorithm (Temuer 1999).

By solving the above PDEs, we get the infinitesimal functions

where c1, c2, c3, c4, c5 are arbitrary constants, then the corresponding infinitesimal vector 
is the following form

Obviously, X has five one-parameter point symmetries, then the corresponding infini-
tesimal vectors are as follow:

(1)uxt − 6u2x − 6uuxx + uxxxx + 3uyy = 0

(2)X = ξ(x, t, y,u)
∂

∂x
+ µ(x, t, y,u)

∂

∂t
+ τ (x, t, y,u)

∂

∂y
+ η(x, t, y,u)

∂

∂u

ξxx = ξxy = ξu = 0, µx = µy = µu = 0, τx = τu = 0,

ηxx = ηxy = 0, 3ηyy + ηxt = 0, 2ηx − ξyy = 0, µt − 3ξx = 0,

ηu + 2ξx = 0, 6η + ξt + 12uξx = 0, 2ξx − τy = 0, 6ξy + τt = 0

(3)ξ = c1x − 3c4t
2 + c5, µ = 3c1t + c2, τ = 2c1y+ c3, η = c4t − 2c1u

(4)X = (c1x − 3c4t
2 + c5)

∂

∂x
+ (3c1t + c2)

∂

∂t
+ (2c1y+ c3)

∂

∂y
+ (c4t − 2c1u)

∂

∂u

(5)

X1 = x
∂

∂x
+ 3t

∂

∂t
+ 2y

∂

∂y
− 2u

∂

∂u
, X2 =

∂

∂t
, X3 =

∂

∂y
,

X4 = −3t2
∂

∂x
+ t

∂

∂u
, X5 =

∂

∂x
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The reduction of Eq. (1)

To facilitate solve the Eq. (1), we will reduce it by using the invariant form method. The 
resulting reduced PDE is fewer independent variable than Eq. (1).

Case 1  When χ1 = X1, we obtain u(x, t, y) = U [ξ1, ξ2]/x2 by solving the characteris-
tic equation dxx = dt

3t =
dy
2y = du

−2u, where ξ1 = x3/t, ξ2 = x2/y are the invariants, then the 
reduction of Eq. (1) is

By the same token, we will get the following reductions.

Case 2  When χ2 = X2 + X3, we reduce to Eq. (1) by using the invariant form method 
as follow:

where u(x, t, y) = U [ξ1, ξ2], and ξ1 = x, ξ2 = y− t are the invariants.

Case 3  When χ3 = X2 + X5, we reduce to Eq. (1) as follow:

where u(x, t, y) = U [ξ1, ξ2], and ξ1 = x − t, ξ2 = y are the invariants.

Case 4  When χ4 = X2 + X4, we reduce to Eq. (1) as follow:

where u(x, t, y) = U [ξ1, ξ2] + t2/2, and ξ1 = x + t3, ξ2 = y are the invariants.

Case 5  When χ5 = X3 + X5, we reduce to Eq. (1) as follow:

where u(x, t, y) = U [ξ1, ξ2], and ξ1 = t, ξ2 = x − y are the invariants.

Case 6  When χ6 = X3 + X4 + X5, we reduce to Eq. (1) as follow:

where u(x, t, y) = U [ξ1, ξ2], and ξ1 = x − t, ξ2 = y− t are the invariants.

In all above, Ui = ∂U
∂ξi

, Uij = ∂U2

∂ξi∂ξj
, (i, j = 1, 2), such as U11 = ∂U2

∂ξ1∂ξ1
, U12 = ∂U2

∂ξ1∂ξ2
, 

U112 = ∂U3

∂ξ1∂ξ1∂ξ2
 . . . and so on. From the above Eqs. (6) to (11), it is not difficult to find 

that Eq. (1) is reduced into the variable coefficient equations by using the symmetry χ1 
and the constant coefficient equations by using the symmetries χ2–χ6, respectively.

(6)

40U − 20U
2 − 40ξ2U2 + 2ξ3

2
U2 + 28ξ2UU2 − 8ξ22U

2

2 + 20ξ22U22 + ξ42U22 − 8ξ22UU22

−
16

3
ξ3
2
U222 +

16

3
ξ42U2222 − 40ξ1U1 −

1

3
ξ21U1 + 36ξ1UU1 − 24ξ1ξ2U1U2 − 18ξ21U

2

1

+ 40ξ1ξ2U12 − 24ξ1ξ2UU12 + 32ξ1ξ
3

2
U1222 + 24ξ21U11 − ξ3

1
U11 − 18ξ21UU11

−
2

3
ξ21 ξ2U12 + 36ξ21 ξ2U112 + 72ξ21 ξ

2

2U1122 + 36ξ3
1
U111 + 72ξ3

1
ξ2U1112 + 27ξ41U1111 = 0

(7)U12 − 3U22 + 6U2
1 + 6UU11 − U1111 = 0

(8)U11 − 3U22 + 6U2
1 + 6UU11 −U1111 = 0

(9)3U22 − 6U2
1 − 6UU11 +U1111 = 0

(10)U12 + 3U22 − 6U2
2 − 6UU22 + U2222 = 0

(11)U11 + U12 − 3U22 + 6U2
1 + 6UU11 − U1111 = 0
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The exact travelling wave solutions of (8) based on the extended tanh method
Recently, as an effective approach, the extended tanh method is introduced to seek the exact 
solutions of the nonlinear evolution equations by Xie et al. (2005). This method is further 
improved by the generalized Riccati equation and introducing its twenty seven new solu-
tions, these solutions are expressed by the hyperbolic functions, the trigonometric func-
tions and the rational functions, respectively. When the parameters are taken as special 
values, some solitary wave solutions are derived from the hyperbolic function solutions.

Taking Eq.  (8) for example from the symmetry reduction equations, we will get its 
exact travelling wave solutions by the extended tanh method and the process is com-
posed of the following four steps.

Step 1   Doing the travelling wave transformations. In order to look for the travelling 
wave solutions of Eq. (8), we introduce the travelling wave transformation as follows:

where k, c are constants and ξ1 = x − t, ξ2 = y. Then we reduce Eq.  (8) into ODE for 
U(ξ), namely

Step 2   Choosing the expression of solution. By considering the homogeneous bal-
ance between the highest order derivatives U (4) and nonlinear terms UU ′′ appearing in 
Eq. (13), we choose the following expression of solution:

where α0, α1, α2 are undetermined coefficients. The function φ = φ(ξ) satisfies the sec-
ond-order linear ODE

where λ, δ, ν are constants. The ODE (15) has four cases of solutions as follows.

Case 1  When δ2 − 4�ν > 0 and δν �= 0 (or ν� �= 0),

(12)U(ξ1, ξ2) = U(ξ), ξ = kξ1 − cξ2

(13)
(

3c2 − k2
)

U ′′ − 6k2
(

U ′)2 − 6k2UU ′′ + k4U (4) = 0

(14)U = α0 + α1φ + α2φ
2

(15)φ′ = �+ δφ + νφ2

φ1 = −
1

2ν

�

δ +
√
θ tanh

�√
θ

2
ξ

��

, φ2 = −
1

2ν

�

δ +
√
θ coth

�√
θ

2
ξ

��

φ3 = −
1

2ν

�

δ +
√
θ

�

tanh

�√
θξ

�

± isech
�√

θξ

���

,

φ4 = −
1

2ν

�

δ +
√
θ

�

coth

�√
θξ

�

± icsch
�√

θξ

���

φ5 = −
1

4ν

�

2δ +
√
θ

�

tanh

�√
θ

4
ξ

�

+ coth

�√
θ

4
ξ

���

φ6 =
1

2ν






−δ +

�

�

A2 + B2
�

θ − A
√
θ cosh

�√
θξ

�

A sinh

�√
θξ

�

+ B







φ7 =
1

2ν






−δ −

�

�

B2 − A2
�

θ + A
√
θ sinh

�√
θξ

�

A cosh

�√
θξ

�

+ B






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where A and B are two nonzero constants and satisfies B2 − A2 > 0,

Case 2  When δ2 − 4λν < 0 and δν �= 0 (or νλ �= 0),

where A and B are two nonzero constants and satisfies A2 − B2 > 0,

φ8 =
2λ cosh

[√
θξ/2

]

√
θ sinh

[√
θξ/2

]

− δ cosh

[√
θξ/2

]

φ9 =
−2λ sinh

[√
θξ/2

]

δ sinh

[√
θξ/2

]

−
√
θ cosh

[√
θξ/2

]

φ10 =
2λ cosh

[√
θξ

]

√
θ sinh

[√
θξ

]

− δ cosh

[√
θξ

]

± i
√
θ

φ11 =
2λ sinh

[√
θξ

]

−δ sinh

[√
θξ

]

+
√
θ cosh

[√
θξ

]

±
√
θ

φ12 =
4λ sinh

[√
θξ/4

]

cosh

[√
θξ/4

]

−2δ sinh

[√
θξ/4

]

cosh

[√
θξ/4

]

+ 2
√
θ cosh2

[√
θξ/4

]

−
√
θ

φ13 =
1

2ν

�

−δ +
√
−θ tan

�√
−θ

2
ξ

��

, φ14 = −
1

2ν

�

δ +
√
−θ cot

�√
−θ

2
ξ

��

φ15 =
1

2ν

�

−δ +
√
−θ

�

tan

�√
−θξ

�

± sec

�√
−θξ

���

φ16 = −
1

2ν

�

δ +
√
−θ

�

cot

�√
−θξ

�

± csc

�√
−θξ

���

φ17 =
1

4ν

�

−2δ +
√
−θ

�

tan

�√
−θ

4
ξ

�

− cot

�√
−θ

4
ξ

���

φ18 =
1

2ν



−δ +
±
�

�

A2 − B2
�

(−θ)− A
√
−θ cos

�√
−θξ

�

A sin
�√

−θξ
�

+ B





φ19 =
1

2ν






−δ +

±
�

�

A2 − B2
�

(−θ)+ A
√
θ sin

�√
θξ

�

A cos

�√
θξ

�

+ B







φ20 =
2λ cos

[√
−θξ/2

]

√
−θ sin

[√
−θξ/2

]

+ δ cos
[√

−θξ/2
]

φ21 =
−2λ sin

[√
−θξ/2

]

−δ sin
[√

−θξ/2
]

+
√
−θ cos

[√
−θξ/2

]

φ22 =
2λ cos

[√
−θξ

]

√
−θ sin

[√
−θξ

]

+ δ cos
[√

−θξ
]

±
√
−θ

φ23 =
2λ sin

[√
−θξ

]

−δ sin
[√

−θξ
]

+
√
−θ cos

[√
−θξ

]

±
√
−θ

φ24 =
4λ sin

[√
−θξ/4

]

cos
[√

−θξ/4
]

−2δ sin
[√

−θξ/4
]

cos
[√

−θξ/4
]

+ 2
√
−θ cos2

[√
−θξ/4

]

−
√
−θ
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for the above φ1–φ24, setting θ = δ2 − 4λν.

Case 3   When λ = 0 and δν �= 0,

where, ω is an arbitrary constant.

Case 4   When ν �= 0 and λ = δ = 0,

where c is an arbitrary constant, and for the above φ1–φ27, setting ξ = kξ1 − cξ2.

Step 3  Determining the coefficients. By substituting (14) into Eq.  (13) and using 
ODE (15), collecting all terms with the same order of φi together, the left-hand side 
of Eq.  (13) is converted into another polynomial in φi. Equating each coefficient of 
this different power terms to zero yields a set of nonlinear algebraic equations for 
αi(i = 0, 1, 2), k , c, λ, δ and ν. With the aid of mathematica, we get the solutions as 
follows:

By analyzing (16), these solutions are suitable to all cases of the general solutions  
φ1–φ27 to ODE (15).

Step 4  Acquiring the exact travelling wave solutions. By substituting (16) and the gen-
eral solutions φ1–φ27 of ODE (15) into (14) respectively, we obtain the exact travelling 
wave solutions as follows:

the solutions (17) have 27 different cases, which are expressed by the hyperbolic func-
tions, the trigonometric functions and the rational functions, respectively. The solitary 
wave solutions can be obtained (see Fig.  1) when the parameters are taken as special 
values.

The approximate analytic solutions of Eq. (8) based on the homotopy 
perturbation method
The homotopy perturbation method is proposed by He (1999), and it has successfully 
been applied to solve many types of linear and nonlinear functional equations. This 
method, which is a combination of homotopy in topology and classic perturbation tech-
niques, provides us with a convenient way to obtain analytic or approximate solutions for 
a wide variety of problems arising indifferent fields. In recent years, the application of the 
homotopy perturbation method in nonlinear problems has been developed by scientists 
and engineers (He 2003, 2006; Olga 2011; Ebaid 2014; Najafi and Edalatpanah 2014).

φ25 =
−δω

ν(ω + cosh[δξ ] − sinh[δξ ])
, φ26 = −

δ(cosh[δξ ] + sinh[δξ ])
ν(ω + cosh[δξ ] + sinh[δξ ])

φ27 =
1

νξ + c

(16)α0 =
3c2 − k2 + k4δ2 + 8k4λν

6k2
, α1 = 2k2δν, α2 = 2k2ν2

(17)Uj(ξ) =
3c2 − k2 + k4δ2 + 8k4λν

6k2
+ 2k2δνφj + 2k2ν2φ2

j , j = 1, 2, . . . , 27
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Next, we construct the approximate analytic solutions of Eq. (8) by using the homot-
opy perturbation method. The Uj(ξ) is a function of ξ in (17), and ξ = kξ1 − cξ2. Based 
on the solutions (17), we substitute ξ = kξ1 − cξ2 into (17) and take ξ2 = 0, then the fol-
lowing initial conditions of the homotopy perturbation method can be obtained.

According to the homotopy perturbation method (He 1999), we construct the follow-
ing homotopy

Equation (19) has the following form of solutions

where p is an embedding parameter, and V1(ξ1, ξ2),V2(ξ1, ξ2), . . . are undeter-
mined. In order to be convenient for computing, we choose the following initial value 
approximation

By substituting (20) and (21) into Eq.  (19) and collecting parameters pi(i = 1, 2, . . .) 
with the aid of expansion as follows:

where Vm,n donates that Vm(m = 1, 2, . . .) takes derivative with respect to the n(n = 1, 2) 
variant. We choose the initial conditions as follows:

(18)

Uj(ξ1, 0) =
3c2 − k2 + k4δ2 + 8k4λν

6k2
+ 2k2δνφj(ξ1, 0)+2k2ν2φ2

j (ξ1, 0), j = 1, 2, . . . , 27

(19)(1− p)(Vξ2 −U0,ξ2)+ p(V11 − 3V22 + 6(V1)
2 + 6VV11 − V1111) = 0

(20)V (ξ1, ξ2) = V0(ξ1, ξ2)+ pV1(ξ1, ξ2)+ p2V2(ξ1, ξ2)+ · · · ,

(21)U0(ξ1, ξ2) = V0(ξ1, ξ2) = 0

(22)

pi =



















V1,2 = 0 i = 1

−V1,2 + V2,2 + 3V1,22 − V1,11 + V1,1111 = 0 i = 2

−V2,2 + V3,2 + 3V2,22 − 6(V1,1)
2 − 6V1V1,11 − V2,11 + V2,1111 = 0 i = 3

...
...

(23)Vj(ξ1, 0) = Uj(ξ1, 0) j = 1, 2, . . . , 27

10

5

0

5

10

x

10

5

0

5
10

t

0
20000
40000
60000
80000

Fig. 1  The solitary wave solutions of the exact solutions U1
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and construct the approximate analytic solutions of Eq. (8) based on the following four 
cases.

Case 1  When j = 1, satisfying the initial conditions as follows:

the solutions can be obtained by (22) and (24) as follows:

Remark  Two variables ξ1 = x − t, ξ2 = y have are substituted in (25) and (26).

Then the second-order approximate solutions of Eq. (8) can be achieved by (25) and 
(26)

Case 2  When j = 13, satisfying the initial conditions as follows:

the solutions can be obtained by (22) and (28) as follows:

(24)Vi1(ξ1, 0) =







3c2−k2−2k4δ2+8k4λν+3k4
�

δ2−4λν
�

tanh

�√
δ2−4λν
2

kξ1

�2

6k2
i = 1

0 i = 2, 3, . . .

(25)

V1(x, t, y) =
3c2 − k2 − 2k4δ2 + 8k4λν + 3k4

(

δ2 − 4λν
)

tanh

[√
δ2−4λν
2

k(x − t)
]2

6k2

(26)

V2(x, t, y) =
1

16
k4y

(

δ2 − 4λν

)2(

3+ 33k2δ2 − 132k2λν +
(

2− 26k2
(

δ2 − 4λν

))

× cosh

[

k(x − t)
√

δ2 − 4λν

]

+
(

−1+ k2
(

δ2 − 4λν

))

× cosh

[

2k(x − t)
√

δ2 − 4λν

])

sech

[

1

2
k(x − t)

√

δ2 − 4λν

]6

(27)

U1(x, t, y) =
3c2 − k2 − 2k4δ2 + 8k4λν + 3k4

(

δ2 − 4λν
)

tanh

[√
δ2−4λν
2

k(x − t)
]2

6k2

+
1

16
k4y

(

δ2 − 4λν

)2(

3+ 33k2δ2 − 132k2λν +
(

2− 26k2
(

δ2 − 4λν

))

× cosh

[

k(x − t)
√

δ2 − 4λν

]

+
(

−1+ k2
(

δ2 − 4λν

))

cosh [2k(x − t)

√

δ2 − 4λν

])

sech

[

1

2
k(x − t)

√

δ2 − 4λν

]6

(28)Vi13(ξ1, 0) =







k2−3c2+2k4δ2−8k4λν+3k4
�

δ2−4λν
�

tan

�√
4λν−δ2

2
kξ1

�2

6k2
i = 1

0 i = 2, 3, . . .

(29)

V1(x, t, y) =
k2 − 3c2 + 2k4δ2 − 8k4λν + 3k4

(

δ2 − 4λν
)

tan

[√
4λν−δ2

2
k(x − t)

]2

6k2
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Then the second-order approximate solutions of Eq. (8) can also be achieved by (29) 
and (30)

Case 3  When j = 25, satisfying the initial conditions as follows:

the solutions can be obtained by (22) and (32) as follows:

Then the second-order approximate solutions of Eq. (8) can also be achieved by (33) 
and (34)

(30)

V2(x, t, y) =
1

16
k4y

(

δ2 − 4λν

)2(

3+ 33k2δ2 − 132k2λν +
(

2− 26k2
(

δ2 − 4λν

))

× cos

[

k(x − t)
√

4λν − δ2
]

+
(

−1+ k2
(

δ2 − 4λν

))

× cos

[

2k(x − t)
√

4λν − δ2
])

sec

[

1

2
k(x − t)

√

4λν − δ2

]6

(31)

U2(x, t, y) =
k2 − 3c2 + 2k4δ2 − 8k4λν + 3k4

(

δ2 − 4λν
)

tan

[√
4λν−δ2

2
k(x − t)

]2

6k2

+
1

16
k4y

(

δ2 − 4λν

)2(

3+ 33k2δ2 − 132k2λν +
(

2− 26k2
(

δ2 − 4λν

))

× cos

[

k(x − t)
√

4λν − δ2
]

+
(

−1+ k2
(

δ2 − 4λν

))

cos [2k(x − t)

×
√

4λν − δ2
])

sec

[

1

2
k(x − t)

√

4λν − δ2

]6

(32)Vi25(ξ1, 0) =

{

8k4λν−k2+3c2+k4δ2

6k2
+ 2k2δ2ω(− cosh[δkξ1]+sinh[δkξ1])

(ω+cosh[δkξ1]−sinh[δkξ1])2
i = 1

0 i = 2, 3, . . .

(33)

V1(x, t, y) =
8k4λν − k2 + 3c2 + k4δ2

6k2
+
2k2δ2ω(sinh[δk(x − t)] − cosh[δk(x − t)])
1(ω + cosh[δk(x − t)] − sinh[δk(x − t)])2

(34)

V2(x, t, y) =
2k4δ4ωy

(ω + cosh[k(x − t)δ] − sinh[k(x − t)δ])6
(

6ω2 + 66k2δ2ω2

− 2

(

−1+ 13k2δ2
)

ω

(

1+ ω2
)

cosh[k(x − t)δ] +
(

−1+ k2δ2
)(

1+ ω4
)

× cosh[2k(x − t)δ] − 2ω sinh[k(x − t)δ] + 26k2δ2ω sinh[k(x − t)δ]
+ 2ω3 sinh[k(x − t)δ] − 26k2δ2ω3 sinh[k(x − t)δ] + sinh[2k(x − t)δ]
− k2δ2 sinh[2k(x − t)δ] − ω4 sinh[2k(x − t)δ]

+k2δ2ω4 sinh[2k(x − t)δ]
)

(cosh[3k(x − t)δ] − sinh[3k(x − t)δ])
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Case 4  When j = 27, satisfying the initial conditions as follows:

the solutions can be obtained by (22) and (36) as follows:

Then the second-order approximate solutions of Eq. (8) can also be achieved by (37) 
and (38)

(35)

U3(x, t, y) =
8k4λν − k2 + 3c2 + k4δ2

6k2
+

2k2δ2ω(sinh[δk(x − t)] − cosh[δk(x − t)])
(ω + cosh[δk(x − t)] − sinh[δk(x − t)])2

+
2k4δ4ωy

(ω + cosh[k(x − t)δ] − sinh[k(x − t)δ])6
(

6ω2 + 66k2δ2ω2

− 2

(

−1+ 13k2δ2
)

ω

(

1+ ω2
)

cosh[k(x − t)δ] +
(

−1+ k2δ2
)(

1+ ω4
)

× cosh[2k(x − t)δ] − 2ω sinh[k(x − t)δ] + 26k2δ2ω sinh[k(x − t)δ]
+ 2ω3 sinh[k(x − t)δ] − 26k2δ2ω3 sinh[k(x − t)δ] + sinh[2k(x − t)δ]
− k2δ2 sinh[2k(x − t)δ] − ω4 sinh[2k(x − t)δ]

+k2δ2ω4 sinh[2k(x − t)δ]
)

(cosh[3k(x − t)δ] − sinh[3k(x − t)δ])

(36)Vi27(ξ1, 0) =

{

−1
6

+ c2

2k2
+ k2δ2

6
+ 4

3
k2λν + 2k2ν2

(c+νkξ1)2
− 2k2δν

c+νkξ1
i = 1

0 i = 2, 3, . . .

(37)V1(x, t, y) =
−1

6
+

c2

2k2
+

k2δ2

6
+

4

3
k2λν +

2k2ν2

[c + νk(x − t)]2
−

2k2δν

c + νk(x − t)

(38)

V2(x, t, y) = −
4k4yν3

[

c3δ + 3c2(δk(x − t)− 1)ν
]

[c + νk(x − t)]6
−

3ck
[

−2(x − t)− 4kδ + kδ(x − t)2
]

ν2

[c + νk(x − t)]6

−
k2y

[

kδ(x − t)3 − 12kδ(x − t)− 3(x − t)2 + 60
]

ν3

[c + νk(x − t)]6

(39)

U4(x, t, y) = −
1

6
+

c2

2k2
+

k2δ2

6
+

4

3
k2λν +

2k2ν2

[c + νk(x − t)]2
−

2k2δν

c + νk(x − t)

−
4k4yν3

[

c3δ + 3c2(δk(x − t)− 1)ν
]

[c + νk(x − t)]6
−

3ck
[

−2(x − t)− 4kδ + kδ(x − t)2
]

ν2

[c + νk(x − t)]6

−
k2y

[

kδ(x − t)3 − 12kδ(x − t)− 3(x − t)2 + 60
]

ν3

[c + νk(x − t)]6

10
0

10

x

10

0

10
t

0

20 000

40 000

60 000

Fig. 2  The exact solutions U13 for k = 9, c = 25, α = 4.25, δ = 3, λ = 1, ν = 2
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Figures 2 and 3 show the exact solutions (17) ( j = 13) and the second-order approxi-
mate solutions (31) based on the homotopy perturbation method of Eq. (8) respectively 
when the parameters are regarded as proper values. Table 1 shows the error comparison 
between the solutions (17) ( j = 1) and (27) when k = 0.1, c = 0.2, δ = 3, λ = 1, ν = 2 . 
According to the figure and table, the exact property of the homotopy perturbation 
method has been showed successfully.

Conclusion
In this paper, we studied that construct the exact solutions and the approximate ana-
lytic solutions of NLPDE by using the Lie symmetry, the extended tanh method and the 
homotopy perturbation method. Specifically, we have constructed the abundant exact 
travelling wave solutions and approximate analytic solutions of the (2 + 1)-dimensional 
KP equation by using the above-mentioned three methods and obtained the high-preci-
sion approximate solutions by error analysis.

Lie symmetry, the extended tanh method and the homotopy perturbation method 
are effective methods which applied to solve PDEs. Hence, comprehensive use of them 
will advance their availability. The Wu-differential characteristic set algorithm is a key 
factor which influence the calculating the symmetry of PDEs. At present, combining 
the Wu-differential characteristic set algorithm, symmetry method and others to solve 
NLPDE has been regarded as a hot research topic and widened the application of sym-
metry and the Wu-differential characteristic set algorithm. This investigation is valuable 
in advanced research and development.

10
0

10

x

10
0

10
t

0

20000

40000

60000

Fig. 3  The approximate analytic solutions U2 for k = 9, c = 25, α = 4.25, δ = 3, λ = 1, ν = 2

Table 1  The error comparison between U1 and U1 at y=0.2

t Error

x

0.01         0.02                 0.03                 0.04                 0.05        

0.05 2.70070 × 10−6 2.80067 × 10−6 2.90063 × 10−6 3.00058 × 10−6 3.10053 × 10−6

0.10 2.20078 × 10−6 2.30077 × 10−6 2.40076 × 10−6 2.50074 × 10−6 2.60072 × 10−6

0.15 1.70074 × 10−6 1.80076 × 10−6 1.90077 × 10−6 2.00078 × 10−6 2.10078 × 10−6

0.25 2.00189 × 10−7 3.00238 × 10−7 4.00286 × 10−7 5.00333 × 10−7 6.00378 × 10−7

0.30 1.60072 × 10−6 8.00465 × 10−7 9.00506 × 10−7 1.00054 × 10−6 1.10058 × 10−6
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