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A B S T R A C T   

Background and purpose: Devices that combine an MR-scanner with a Linac for radiotherapy, referred to as MR- 
Linac systems, introduce the possibility to acquire high resolution images prior and during treatment. Hence, 
there is a possibility to acquire individualised learning sets for motion models for each fraction and the con-
struction of intrafractional motion models. We investigated the feasibility for a principal component analysis 
(PCA) based, intrafractional motion model of the male pelvic region. 
Materials and methods: 4D-scans of nine healthy male volunteers were utilized, FOV covering the entire pelvic 
region including prostate, bladder and rectum with manual segmentation of each organ at each time frame. 
Deformable image registration with an optical flow algorithm was performed for each subject with the first time 
frame as reference. PCA was performed on a subset of the resulting displacement vector fields to construct 
individualised motion models evaluated on the remaining fields. 
Results: The registration algorithm produced accurate registration result, in general DICE overlap >0.95 across all 
time frames. Cumulative variance of the eigen values from the PCA showed that 50% or more of the motion is 
explained in the first component for all subjects. However, the size and direction for the components differed 
between subjects. Adding more than two components did not improve the accuracy significantly and the model 
was able to explain motion down to about 1 mm. 
Conclusions: An individualised intrafractional male pelvic motion model is feasible. Geometric accuracy was 
about 1 mm based on 1–2 principal components.   

1. Introduction 

For radiotherapy of prostate cancer the uncertainties in target posi-
tion is normally handled by assigning a margin around the clinical target 
volume (CTV) to form a planning target volume (PTV) to which the dose 
is prescribed. The van Herk [1] recipe is commonly applied in obtaining 
the margin with input based on population statistics of the target posi-
tion uncertainties. However, since the planned distribution rarely con-
forms exactly to the PTV it has been shown to overestimate the margin 
required [2]. It is also only strictly applicable if the treatment consist of 
sufficiently many fractions to support its inherent assumption of un-
certainty distribution convolutions which breaks down in the case of 
hypofractionation [3]. Here the dose blurring due to random deviations, 

i.e. intrafractional motion and uncertainties in setup, over the whole 
treatment period can no longer be assumed to populate the underlying 
probability distributions enough to motivate simple convolutions to 
derive the end result. In the light of the prolonged treatment time for 
hypofractionated treatments, as well as potential of a dose painting 
approach [4], the demand for accurate delivery of the radiation in-
creases and with that requirements for intrafractional surveillance. 

The introduction of MR-Linac systems combining an MR-scanner 
with a Linac for radiotherapy enables imaging both prior to treatment 
and during treatment with high contrast for soft tissue. Hence there is a 
possibility to acquire individualised learning sets for motion models 
prior to each fraction. Motion models through principal component 
analysis (PCA) have been suggested to account for periodic motion such 
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as respiration [5–7]. PCA has also been applied in interfractional 
modeling of organ deformations in the pelvic region and applications in 
treatment simulation [8–11]. The potential for dimensionality reduction 
to describe the motion pattern with only one or two components is 
appealing [12]. A lot of attention has been given to model respiratory 
intrafractional motion [13] and little or none for other types of motion. 
It is hence natural to investigate if there is a potential benefit in con-
structing intrafractional models of pelvic motion, with associated 
bladder and rectum motion and the resulting prostate move. Such a 
model could be utilized to drive e.g. a real-time adaptive approach, 
similar to [12], or potentially construct patient specific margins for both 
the target and organs at risk. 

Or aim with this work was to construct PCA-based intrafractional 
motion models from MR-data of the male pelvic region and evaluate the 
accuracy of such models. The outlined workflow was described and 
discussed in the context of MR-Linac, however could be modified to fit a 
more general context, e.g. cone beam CT-based workflows. 

2. Materials and methods 

For prostate radiotherapy (RT) the region of interest is the lower 
pelvic containing the organs prostate, bladder and rectum. We aimed for 
construction of a joint model for these organs to simultaneously describe 
motions of these organs. The model requires a dataset for extraction of 
motion patterns, hence multi-time frame (dynamic) datasets are 
required. The motion was deduced from deformable image registrations 
(DIR) of each of the time frame in dynamic datasets, and the displace-
ment vector fields (DVF) obtained from the registrations were broken 
down into their corresponding principal components. The registration 
accuracy is hence of great importance and requires attention prior going 
into construction of the model. The model itself was then validated. The 
data was hence divided into two cohorts, a training data set with the first 
k time frames and a validation set with the remaining time frames. 

2.1. Image data 

Dynamic scans of nine healthy male volunteers were utilized for the 
study with age span of 25–63 years (with approval from the Swedish 
Ethical Review Authority). Each subject was scanned during a period of 
10–15 min with a dynamic 4D-sequence, and with the field of view 
covering the whole pelvis to avoid potential fold over artifacts, resulting 
in ten time frames for each subject. The scan parameters are given in 
Table 1 in supplementary material. A radial blade acquisition was uti-
lized, oversampling the center of the k-space region to reduce motion 
sensitivity, e.g. breathing, and to achieve good contrast with reasonable 
scan time. The sequence was T2-weighted to get an adequate soft tissue 
contrast. Prior to registration manual segmentation of the organs of 
interest, i.e. prostate (target) and bladder and rectum (organs at risk) 
was performed by a single observer. 

2.2. Image Registration 

Image registration within each dynamic series was performed to 
obtain the DVFs for the model. An optical flow algorithm, suitable for 
the relatively small motion, was utilized [14] with a multiscale approach 
(available in MICE toolkit, NONPI Medical AB) to get the DVFs for each 
time frame relative to the reference here taken as the first time frame. 
Three pyramid levels and downsampling factor of 2 was utilized. The 
registration was stopped at a downsampling of 2 from the original res-
olution for a smooth displacement vector field. The image registration 
was based on the image intensities only. 

The quality of the registration was evaluated using the DICE coeffi-
cient, measuring the overlap between binary images, here the reference 
(first time frame) image segmentation and the remaining time frames 
segmentations which were deformed using the DVFs obtained from 
image registration. The average hausdorff distance for the segmentation 

edges was also obtained with respect to the reference segmentation. 
Inverse consistency [15] as vector magnitude error (VME) was 

evaluated to verify that the algorithm produced reasonable de-
formations. The registration direction was inverted and the forward and 
inverse transform composed and summed voxelwise 

VME =
1
N

∑N

r=1
|TI1→I2 ∘TI2→I1 (r)| (1)  

where I1 and I2 are the images, N the number of voxels and TI1→I2 and 
TI2→I1 the transforms between the frames of reference. The evaluation 
was performed only in the voxels belonging to the segmented regions. 

2.3. Construction of the motion model 

The motion model was constructed through PCA of the DVFs ob-
tained from the deformable image registration. The PCA decomposes the 
DVFs into orthonormal components, resulting in a set of principal 
components, PCs, and their corresponding eigenvalues which describe 
the variance of each component, i.e. the amount of variability of the 
motion the components explain. If the components are ordered in 
descending eigenvalue order the first components accounts for the most 
of the variance in the modelled data. The PCs can be weighted and 
combined to describe the motion pattern. The procedure is straightfor-
ward and described elsewhere, e.g. [5,8]. 

New states were generated through a weighted sum of the compo-
nents to produce new fields, 

xmodel = x̃+
∑k

n=1
wnPCn ‖PCn‖ = 1 (2)  

where xmodel is the new DVF, x̃ is the centered displacement, wn the 
weight for the n:th principal component, PCn the n:th principal 
component and k the number of principal components utilized. The PCs 
were normalized with the total length of all constituent vectors in the 
component. For a given displacement field x the optimal weight for each 
component is the projection of the component onto the centered 
displacement field, i.e. 

wopt,n = (x − x̃)⋅PCn (3) 

We chose the first five DVFs for the training data and the remaining 
consecutive four DVFs for model validation data. From the training data 
different models were constructed utilizing part of the training data or 
all, in order to evaluate if results will change with the different amount 
of training data. The PCA was only performed on the boundary of the 
segmentations since the motion can be captured at these voxels, also 
reducing the influence of the potential chaotic behaviour of the motion 
captured by the image registration inside e.g. the bladder. 

2.4. Model Validation and Evaluation 

As a measure of the performance of the model the average geometric 
residual was utilized. This is the residual displacement not handled by 
the model and is simply calculated as 

∊i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

‖xmodel − xref‖
2
i

√

(4)  

where ∊i is the residual for the i:th voxel in the model belonging to the 
segmentation boundary, xmodel and xref are the model and the reference 
DVFs at that voxel, respectively. xmodel is taken from Eq. 2 with the 
optimal weight from Eq. 3. This residual was obtained for each voxel in 
the model and averaged to get the average residual. 

The resulting model obtained DVFs was also inverted and applied to 
the fixed image segmentation to generate a new volume. The method of 
Chen et al. [16] was chosen for the inversion step. The overlap between 
the fixed segmentation and the model generated was measured through 
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the DICE coefficient. 

3. Results 

3.1. Image Registration 

The results from the deformable image registration, Fig. 1, showed a 
general consistent registration accuracy for each time frame with a DICE 
coefficient over 0.95. One subject deviated slightly due to a larger mo-
tion pattern through a larger degree of bladder filling during the scan-
ning, which in turn affected the prostate motion. 

3.2. Model Validation and Evaluation 

A varying size and direction of the motion between subjects resulted 
in different motion models for each subject, exemplified in Fig. 2. 

The cumulative variance, Fig. 3, shows that about 50% of the motion 
in the training data was explained in the first principal component, here 
with a model based on 5 DVFs. 

Models constructed with different amount of training data, ranging 
from two up to five DVFs and evaluated on the validation data, including 

Fig. 1. Results before and after deformable 
registration (DIR) for all subjects. Results are 
divided into time frames with one box for 
each time frame where the whiskers repre-
sent the maximum and minimum values. Red 
boxes are values before registration and 
black after for the left column. The registra-
tion was evaluated both on the joint seg-
mentation for all organs as well as for each of 
the included organs separately. To the left 
the registration evaluation measure was the 
DICE overlap (boxes slightly horizontally 
shifted for a clearer presentation), in the 
middle average hausdorff distance and to the 
right the inverse consistency expressed as 
Vector Magnitude Error.   

Fig. 2. Example of the first (top) and the second (bottom) principal component 
for two of the subjects. The direction of each component is represented with the 
arrows and the size with the coloring of the surface (darker means a larger 
motion), where the size is the motion of one standard deviation. 
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all model principal components, shows that the addition of more data 
improved the accuracy of the model in terms of both mean residual and 
DICE (Fig. 4). 

In Fig. 5 the results on the validation data for different number of 
utilized components, for a model based on all five DVFs of the training 
data, is shown. For the joint results, i.e. all segmentations together, 
21.4% of the voxels in the validation data has moved more than 1 mm 
which is reduced to 11.4%, 9.6%, 9.1% and 9.1% by utilizing the model 
with 1, 2, 3 and 4 principal components, respectively. 

Fig. 6 shows the motion in a sagittal slice centered around the 
prostate and the corresponding improvement of overlap by utilizing a 
model of two representative subjects. 

4. Discussion 

In this work we constructed individual PCA based intrafractional 
motion models of the male pelvis based on dynamic scans of healthy 
volunteers. Through deformable image registration and PCA motion 
models were obtained, which were validated against the last time frames 
of the scans. Results showed that model accuracy seems to converge 
with one or two PCs, explaining the motion down to 1 mm. 

The registration algorithm utilized in this work produced results with 
high accuracy and stability for all the time frames, crucial for obtaining 
an accurate motion model. The direction and size of the movement 
varied in between subjects due to different severity of bladder and 
rectum filling during the scan time as well as some muscle relaxation 
also taking place, consistent with e.g. [17]. The motion models of the 
different individuals could have possibly been more coherent with a 
consistent preparatory protocol, as indicated by e.g. [18] and [19] 
showing correlation between the rectal filling and prostate intrafraction 
motion. 

These different motion patterns inherently produced motion models 
which differed in size and direction of their components, as shown in 
Fig. 2. This is consistent with other results indicating that for the pros-
tate the intrafractional motion differs between patients (e.g. [20] and 
[21]) as well as for bladder ([22]) However, the cumulative variance as 
seen in Fig. 3 is very similar, concluding that a certain number of 
components explained roughly an equal amount of motion for every 
subject. The model was based on the joint segmentation to produce only 
one model for each subject. Hence, the weight was optimized for this 
joint segmentation, not for individual organs. Results for the model, 
applied on the validation data, seen in Fig. 4 showed that there is always 
an improvement of the results through a reduction in the residuals as 
well as increased DICE overlap for the joint segmentation, as expected. 

However as seen in some occasions, e.g. for the rectum, the results 
showed no improvement or even a slight worsening since the model was 
constructed like this which could indicate a weak correlation between 
the intrafractional motion of the modelled organs. [23] showed a 
stronger correlation between the rectal filling on prostate motion than 
bladder filling, indicating splitting of the models is advisable. 

In the splitting of the data between training and validation, the 
common approach of a leave-one-out test was not utilized. Although 
reasonable for periodic motion patterns such as for respiratory models, 
e.g. [24,7], it is less suitable in absence of such periodicity in motion as 
for bladder filling and rectum motion in the time frame of a treatment 
fraction. Instead, we took timing considerations into account and eval-
uated the model on times frames after the model training data. Utilizing 
a leave-one-out test or a K-fold cross validation for non-periodic 
continuous motion such as bladder and rectum filling over these time 

Fig. 3. The cumulative variance for all subjects represented as boxplots for 
each number of components where the whiskers represent maximum and 
minimum values. 

Fig. 4. Boxplots of the mean residual displacements and DICE coefficient for all 
of the subjects for the last four, validation, time frames. Purple represents the 
value with no model applied. The green, blue, orange and yellow lines repre-
sents results for the models constructed with 2, 3, 4, and 5 displacement vector 
fields (DVFs), respectively. Whiskers are the maximum and minimum values. 
For each model all components have been utilized. This has been evaluated on 
the joint segmentation as well as on each of the included organs separately. 
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ranges would potentially have resulted in models which too a higher 
degree could explain the validation data. This since it would result in a 
time-wise interpolation rather than an extrapolation where a validation 
frame closer in time to the model training data is potentially more likely 
to be accurately explained by the model. Our approach was also 
consistent with any application scenario where the model is constructed 
prior utilization. 

Considering the amount of training data results shown in Fig. 4 
indicate that the addition of more data improves the model, suggesting 
that not all motion is captured in the training data. 

For the validation data the results in terms of the residuals seemed to 
converge to approximately 1 mm, meaning that all motion found by the 
registration was not explained by the model. This is similar to result 
found in e.g. [25] and [11], who constructed similar models for inter-
fractional images. In [25] they also concluded that larger initial defor-
mation resulted in a larger reduction by the model which also is seen 
here. At the time frames in the validation data directly following the 
training data, the deformation was rather small and the reduction as 
well, while stepping forward in time the deformation increased as well 
as the reduction. However, due to the relatively short total acquisition 
time and the inherent small motions the size of the motion vectors was 
for many voxels of subvoxel size. The improvement was seen generally 
for the higher motion vectors. The increase of DICE overlap followed the 
same pattern as for the residual displacement, showing higher accuracy 
for the more rigidly moving prostate with a slight decrease in accuracy 
for the rectum. In general, the DICE overlap was already quite high, 
especially for the bladder which is a quite large homogeneous organ and 
the expected relative improvement with this measure is low. 

We here chose an upper limit of six time frames for the training data. 
Increasing this amount is likely to increase the accuracy of the model, 
however with an increasing scan time. Consideration should also be 
given to how the model is affected by different scanning patterns such as 
temporal resolution and anatomical coverage, i.e. field of view. The 
relatively slow drift, in comparison to e.g. respiratory motion, poten-
tially sets a lower requirement on the temporal resolution, although a 
very sparse update may not capture quicker motion patterns such as 
passing rectal gas bubbles. Here the relatively low temporal resolution of 
about 1 min stems from the fact that we covered not only the prostate 
but the whole pelvic region, however with a different MR sequence type, 
e.g. as in [20], temporal resolution could have been improved without 

Fig. 5. Normalized cumulative frequency distributions for the residuals. Sum-
mation from right to left, such that each point indicate the volume fraction 
moving at least the given distance. Purple line represent the results when there 
is no model applied and green, blue, orange and yellow the results when 1, 2, 3 
and 4 principal components (cmp) have been utilized. The model has here been 
constructed with the full training set. The zoomed in window is around the 
largest voxel dimension. 

Fig. 6. Example of anatomically located motion which is caught by the model, 
centered around the prostate and showing the intersection between the prostate 
(light grey), bladder(medium grey) and rectum(black), respectively, for two 
subjects. Red color indicates the state the anatomy has been moving to. The 
static, non-model, anatomy is shown in the top and the moved, model, anatomy 
in the bottom. The resolution is 2x1 mm in up–down and left–right direction 
respectively. 
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loosing anatomical coverage. The limited total scan duration of 10–15 
min sets an upper limit on the evaluation of the model accuracy over 
time. Considering a potential MR-Linac scenario with a quite long 
treatment time of >30 min may require a prolonged validation time 
span. However, the closer in time such a model is constructed with 
respect to the usage the more reliable it may be considered, hence im-
aging during MR idle time while planning and plan review is performed 
is a potential feasible scenario. 

Since the models were constructed only on the edge voxels they were 
limited to only apply to homogeneous dose coverage of target. Dose 
painting approaches as in [4] would require the tracking of all target 
voxels and hence a corresponding model. As for the data comprising of 
scans of healthy volunteers and not real patients [26] indicated that at 
least for the prostate there is no significant difference in motion between 
patients and healthy volunteers, making these results valid in a patient 
setting as well. 

In earlier works, considerable effort has been put in evaluating either 
interpatient, population-based models (e.g [25,11]) or intrapatient (e.g. 
[8]) motion patterns as well as periodic intrafractional motion (e.g. 
[12]). However, little effort has been put in evaluating accuracy and 
potential benefits of intrafractional motion modelling in anatomical 
areas where the motion is in lack of periodicity. Inevitably, such models 
are likely to require more data and a more in depth evaluation of their 
temporal degradation since the motion states are not reoccurring. Here 
we created patient-specific intrafractional motion models to simulta-
neously cover the organs of interest in the male pelvic region. We have 
shown that it may be feasible to explain the motion with a few, 1–2, 
principal components, for potential application in creating individu-
alised margin recipes or motion tracking. 
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