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Abstract

The current study sought to examine the interaction of sex and Apolipoprotein ε4 status on 

olfactory recognition memory within non-demented, older individuals. We separated 39 

participants into groups based on ε4 status and sex. Each participant completed an olfactory 

memory recognition task during 2 functional magnetic resonance imaging scans and 1 structural 

scan. The ε4 carriers had greater functional recruitment of memory regions during false positives 

relative to ε4 non-carriers. During hits, the male ε4 carriers showed greater functional recruitment 

compared to female ε4 carriers. The ε4 carriers had larger bilateral putamen volumes relative to ε4 

non-carriers. Neuroimaging data were significantly associated with Dementia Rating Scale scores 

solely in males. Results suggest differential olfactory memory processing in relation to sex and ε4 

status. Male ε4 carriers in particular, demonstrated hyperactivation during recognition memory, 

which we suspect reflects neuronal compensation to maintain functional performance. Future 

studies should consider examining underlying mechanisms that contribute to these sex differences 

within ε4 carriers.
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1. Introduction

The presence of the Apolipoprotein (ApoE) ε4 allele is the most well-established genetic 

risk factor for Alzheimer’s disease (AD), a devastating neurodegenerative disease with no 

cure (Alzheimer’s Association, 2018; Bu, 2009). In humans, the ApoE gene exists as 3 

different polymorphic alleles (ε2, ε3, ε4; Bu, 2009; Farrer et al., 1997; Lind et al., 2006; Yu 

et al., 2013). Under normal physiological conditions, ApoE supports cholesterol and lipid 

transport and performs membrane repair processes to protect neuronal integrity (Mahley and 

Huang, 2012). The ε4 variant generally exhibits poorer cholesterol transport and amyloid-β 
(Aβ) plaque clearance, as well as increased neurofibrillary tangle formation relative to the ε3 

allele (Mahley and Rall, 2000). The accumulation of neurofibrillary Aβ plaques and tau 

tangles is a pathological marker in AD and associated with cognitive decline (Blennow et al., 

2006; Braak and Braak, 1991, 1996; Hedden et al., 2013). These accumulations are often 

reported in medial temporal lobe (MTL) regions (e.g., entorhinal cortex [ERC], 

hippocampus), which are areas associated with odor recognition memory (Cerf-Ducastel and 

Murphy, 2009).

Sex differences in odor identification (odor ID) and AD development have been noted in 

previous literature. Older women tend to outperform older men in odor ID tasks (Murphy et 

al., 2002; Wehling et al., 2016). Males’ ability to identify odors may deteriorate earlier 

(approximately 20 years) in the lifespan relative to females (Ship et al., 1996). The ApoE ε4 

allele tends to have a more pronounced effect on late-onset AD development in women 

compared to men, although some attribute this to women’s longer lifespan (Altmann et al., 

2014; Bartrés-Faz et al., 2002; Holland et al., 2013; Hyman et al., 1996; Payami et al., 1996; 

Poirier et al., 1993; Ungar et al., 2014). Women homozygous for ε4 have a greater risk than 

heterozygous women, but male homozygous and heterozygous for the ε4 allele do not differ 

significantly (Payami et al., 1996). Despite the apparent sex differences in AD progression, 

it is relatively overlooked in the existing literature (Ungar et al., 2014).

Participants with and at-risk for AD have demonstrated poor recognition memory overall, 

with olfactory recognition memory being the most compromised (Moberg et al., 1987). 

Individuals at-risk for AD but who have not yet developed clinical dementia demonstrate 

deficits in olfactory functioning, particularly in olfactory memory, recall, and recognition 

(Albers et al., 2015; Murphy, 2019; Murphy et al., 1999; Nordin and Murphy, 1996, 2006; 

Olofsson et al., 2010). Participants with selective odor memory deficits are significantly 

more likely to possess the ε4 allele (Albers et al., 2016). Odor recognition memory and odor 

ID are most impaired in ε4 carriers relative to other memory tasks (e.g., picture ID, facial 

recognition memory; Calhoun-Haney and Murphy, 2005; Gilbert and Murphy, 2004).

The brain regions that are impacted by AD overlap with brain regions that are critical for 

olfaction. Early projections of the olfactory system involve MTL brain regions that are 

involved in the encoding and retrieval of episodic memories, such as the ERC and 

hippocampus (Cerf-Ducastel and Murphy, 2009; Haase et al., 2013). Those with odor 

memory deficits demonstrate significantly reduced ERC thickness relative to those without 

deficits (Albers et al., 2016). Atrophy and plaque and tangle accumulation in the MTL are 

early pathological changes in AD progression (Albers et al., 2015; Attems et al., 2005, 2014; 
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Braak and Braak, 1991, 1996, 1997; Esiri and Wilcock, 1984; Frisoni et al., 2010; Hyman, 

1997; Murphy et al., 2003; Price et al., 1991; Stoub et al., 2006; Visser et al., 2002).

Although there are studies exploring neuroimaging data within ε4 carriers and ε4 non-

carriers during episodic memory tasks and resting-state functional magnetic resonance 

imaging (fMRI) (Chen et al., 2015, 2016; Dowell et al., 2016; Filippini et al., 2009; 

Mondadori et al., 2007; Ungar et al., 2014), information is absent on the interaction of sex 

and ApoE ε4 status on functional and structural neuroimaging during olfactory recognition 

memory processing.

In order to fill this gap in the current literature, we examined differential olfactory 

recognition memory processing within a sample of non-demented, older ApoE ε4 carriers 

and ε4 non-carriers using structural neuroimaging and blood-oxygen-level-dependent fMRI. 

We further examined how sex modifies olfactory recognition memory processing within this 

population.

1.1. Hypotheses

Our first hypothesis is that ε4 carriers will demonstrate significantly less volume and 

thickness within brain regions associated with olfactory memory, such as the ERC and 

hippocampus, after adjusting for age and ICV. A second hypothesis is that while all ε4 

carriers will demonstrate significantly greater functional activation in brain regions 

associated with odor memory during FPs and significantly less activation during hits, this 

activation pattern will be most pronounced in male ε4 carriers. Our third hypothesis is that 

neuroimaging data will be associated with Dementia Rating Scale (DRS) scores within all 

groups.

2. Materials and methods

The current study sample was taken from an archival dataset. The Institutional Review 

Boards both at San Diego State University and the University of California, San Diego had 

approved the research. The only study published to date on this dataset was Haase et al. 

(2013) which reported behavioral and functional connectivity analyses.

2.1. Participants

Participants (N = 39) ranged in age from 64 to 88 and were divided into one of the 4 groups 

based on ε4 status and sex: male ε4 carriers (n = 9), female ε4 carriers (n = 9), male ε4 non-

carriers (n = 10), and female ε4 non-carriers (n = 11). ApoE ε4 status was determined 

through genomic testing. We performed a 2 (ε4 status: carrier, non-carrier) × 2 (sex: male, 

female) multivariate analysis of variance on demographic variables, which included age, 

education in years, odor threshold (Murphy et al., 1990), odor ID (San Diego Odor 

Identification Test; Murphy et al., 2002), or DRS scores, a global measure of cognitive 

function (Mattis, 1998). There were no significant differences between groups in 

demographics based on E4 status, sex, or the E4 × sex interaction (p > 0.05; Table 1).
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2.2. Neuroimaging procedure

Prior to scanning, participants were presented with 16 familiar odors, in random order, 

corresponding to the list A of the California Odor Learning Test (Murphy et al., 1997). 

During the scan, participants were presented with labels of odors and their task was to 

indicate if the label was an odor that was presented to them prior to the scan (target) or if it 

was not (foil) using a button box (Cerf-Ducastel and Murphy, 2009, 2006; Haase et al., 

2013). Each participant completed 2 functional runs (6 minutes each) and a structural run. 

Target periods consisted of 7 targets and 2 foils. Foil periods consisted of 7 foils and 2 

targets. This paradigm was adapted from Stark and Squire (2000a, 2000b). Participants 

discriminated between odors using a button box, pressing 1 if they recognized the odor as 

having been presented before the scan and 2 if not. For the purposes of our current study, we 

focused on hit (correctly identifying a target as a target) and false positive (FP; incorrectly 

identifying a foil as a target) responses.

2.3. Imaging acquisition

Functional images were collected first using a standard gradient echo EPI pulse sequence to 

acquire T2-weighted functional images (30 axial slices, field of view = 25 cm, resolution 4 × 

4 × 4 mm3, repetition time = 4 seconds, echo time = 30 ms, flip angle = 90°). Parameters 

used to acquire structural images were as follows: T1-weighted whole-brain fast spoiled 

gradient echo magnetic resonance imaging sequence, field of view = 25 cm, resolution = 1 × 

1 × 1 mm3, repetition time = 16 seconds, echo time = 4.4 m, flip angle = 18°.

2.3.1. Structural neuroimaging data—T1-weighted structural scans were processed 

using standard FreeSurfer automated processing procedures within the FreeSurfer image 

analysis suite, version 5.2.0 (http://surfer.nmr.mgh.harvard.edu; Dale and Sereno, 1993; 

Fischl and Dale, 2000; Fischl et al., 2001; Fischl et al., 2004a; Fischl et al., 1999a; Dale et 

al., 1999; Fischl et al., 1999, 2002, 2004; Han et al., 2006; Jovicich et al., 2006; Kuperberg 

et al., 2003; Reuter et al., 2010, 2012; Reuter and Fischl, 2011; Rosas et al., 2002; Salat et 

al., 2004; Ségonne et al., 2004, 2007; Sled et al., 1998). Cortical thickness and volumetric 

estimates of regions of interest were extracted from automatic surface parcellation labels 

using the Desikan/Killiany Atlas (Desikan et al., 2006).

2.3.2. Functional neuroimaging data—Imaging data were processed using FMRIB 

Software Library (Analysis Group, FMRIB, Oxford, UK) and Analysis of Functional 

NeuroImage (open source software), using 3dDeconvolve, on each participant’s 

concatenated runs based on the specified contrast (e.g., activation during hits and FPs; Cox, 

1996; Cox and Hyde, 1997; Gold et al., 1998; Smith et al., 2004; Zald and Pardo, 2000). The 

output from 3dDeconvolve contains fit coefficients (i.e., beta weights) for each voxel, 

indicating the amplitude of the signal model for each contrast, and corresponding t-statistics.

2.4. Statistical analyses

2.4.1. Task performance—We performed a 2 (sex: male, female) × 2 (ε4 status: ε4 

non-carrier, ε4 carrier) multivariate analysis of covariance (MANCOVA) on the hit rate sand 

FP rate for the 2 independent runs and their average performance (Table 2). The MANCOVA 

controlled for age.
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2.4.2. Structural neuroimaging data—We performed a 2 (sex: male, female) × 2 (ε4 

status: ε4 non-carrier, ε4 carrier) MANCOVA on left/right hippocampal volumetric and left/

right ERC thickness measurements (Table 3). The MANCOVA controlled for age and 

intracranial volume (ICV).

2.4.3. Functional neuroimaging data—We performed a set of independent voxel-

wise samples t-tests in whole-brain functional activations between groups during hits and 

FPs. Each analysis controlled for age and ICV. In an attempt to control for type I error in all 

group analyses, we thresholded the individual voxels at p ≤ 0.015 and group statistical maps 

were corrected for multiple comparisons at the cluster level using the Analysis of Functional 

NeuroImage program ClustSim to protect a whole-brain probability of FPs at an overall 

alpha of 0.05 (Zald and Pardo, 2000). For an overall alpha level of 0.05, a cluster threshold 

of 21 contiguous voxels was applied.

2.4.4. Partial correlations—We performed a series of partial correlational analyses to 

examine associations between DRS scores and neuroimaging data. For correlations 

examining the association between structural measurements and DRS scores, partial 

correlations controlled for age and ICV. These correlations used a corrected alpha level of 

0.004, which was calculated by dividing the original alpha level of 0.05 by the product of the 

number of groups (4) and the number of predictors (3).

If we examined the relationship between beta coefficients and DRS scores, each partial 

correlation controlled for age, ICV, and volume of the structure we were evaluating. These 

partial correlations used a corrected alpha level of 0.003, which was calculated by dividing 

the original alpha level of 0.05 by 16, the product of the number of groups (4) and the 

number of predictors (4).

3. Results

3.1. Task performance

Females demonstrated a significantly higher hit rate in run 1 when compared to males (MF = 

0.605 vs. MM = 0.500, p = 0.04). The ε4 carrier group also demonstrated significantly higher 

hit rates in run 1 when compared to ε4 non-carriers (M+ = 0.616 vs. M− = 0.501; p = 0.01).

We found no significant main effects of sex or ε4 status on run 2 hit rates or FP rates. There 

were also no significant interaction effects of the ε4 × sex interaction on hit or FP rates (p > 

0.05). The results of this multivariate analysis of variance are summarized in Table 2.

3.2. Structural neuroimaging data

Table 3 summarizes group differences in hippocampal volume and ERC thickness. Females 

demonstrated significantly larger left hippocampal volumes (MF = 3156.80 vs. MM = 

2823.79; p = 0.022) and right hippocampal volumes relative to males (MF = 3360.65 vs. MM 

= 2957.21; p = 0.006). For the right ERC thickness dependent variable, the ε4 status × sex 

interaction effect was statistically significant (p = 0.020). However, when simple effects tests 

were conducted to probe the interaction, we found no statistically significant (p > 0.0125) 

simple effects of ε4 status at any level of sex or of sex at any level of ε4 status.
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3.3. Functional neuroimaging data

3.3.1. Hits—When functional activations of ApoE ε4 carriers were subtracted from 

functional activations of ApoE ε4 non-carriers during hits, no significant differences were 

found between groups.

When functional activations during hits of ε4 carrier females were subtracted from 

functional activations of ε4 carrier males, males demonstrated significantly greater activation 

than females in the ApoE ε4 carrier group in the anterior cingulate cortex (ACC), 

Brodmann’s area (BA) 10, cuneus, precuneus, middle temporal gyrus, caudate, and putamen 

(Fig. 1A; Supplementary Materials A).

When functional activation of ApoE ε4 non-carrier males was subtracted from ApoE ε4 non-

carrier females, there were no statistically significant differences between groups.

3.3.2. False positives—When functional activations of ApoE ε4 non-carriers were 

subtracted from functional activations of ApoE ε4 carriers during FPs, ε4 carriers 

demonstrated significantly greater activation than ε4 carriers in the middle temporal gyrus, 

cuneus, precuneus, and right posterior cingulate cortex (PCC; Fig. 1B; Supplementary 

Materials B).

When functional activations of ApoE ε4 carrier females were subtracted from ApoE ε4 

carrier males, females demonstrated significantly greater functional activation in areas 

associated with visual processing, such as the inferior and middle occipital gyrus (Fig. 1C; 

Supplementary Materials C).

We found no significant differences between males and females in the ε4 non-carrier group 

during FPs.

3.4. Partial correlational analyses: neuroimaging data

We found no significant (p > 0.004) associations between beta coefficients and DRS scores 

in any of the 4 groups. Male ε4 non-carriers demonstrated a significant, negative association 

between right hippocampal volume and DRS scores (r = −0.888, p = 0.003; Fig. 2B).

3.5. Post hoc analyses

3.5.1. Structural neuroimaging data—We performed exploratory analyses in order to 

further observe differences between groups. A 2 (sex: male, female) × 2 (ε4 status: non-

carrier, carrier) between-subjects MANCOVA was performed on 8 dependent variables: left/

right caudate volume, left/right putamen volume, left/right isthmus cingulate thickness, and 

left/right parahippocampal thickness (Table 4). The MANCOVA controlled for age and ICV.

The caudate and putamen make up the dorsal striatum, which is affected by amyloid and tau 

pathology (Alexander et al., 1986; Beach et al., 2012; Braak and Braak, 1990; Rudelli et al., 

1984). Higher plaque accumulation in the striatum was highly sensitive (95.8%) and 

moderately (75.7%) specific to Braak neurofibrillary tangle stage V or VI. Furthermore, a 

higher striatal plaque density score had 85.6% sensitivity and 86.2% specificity for the 

presence of dementia and clinicopathological AD (Beach et al., 2012). The parahippocampal 
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gyrus is located in an MTL region that projects onto the hippocampus and is activated during 

olfactory encoding, working memory, and successful recognition memory (Cerf-Ducastel 

and Murphy, 2009; Haase et al., 2013; Luzzi et al., 2007; Stoub et al., 2006). The isthmus of 

the cingulate gyrus connects the cingulate gyrus to the parahippocampal gyrus and has 

shown long-term volume reduction in response to stressful life events and dementia within 

older populations (Calati et al., 2018; Sener, 1997; Yang et al., 2016).

Females demonstrated significantly greater thickness measurements in the left 

parahippocampal gyrus, relative to males (MF = 2.56 vs. MM = 2.21; p = 0.004). The ε4 

carrier group, relative to the ε4 non-carriers, demonstrated significantly larger volumes in the 

left putamen (M+ = 5216.33 vs. M− = 4668.43; p = 0.03) and right putamen (M+ = 5154.44 

vs. M− = 4412.14; p = 0.002).

The ε4 status × sex interaction effect was also significant (p = 0.041; Fig. 2). When simple 

effects were examined, male ε4 non-carriers demonstrated significantly greater thickness 

measurements relative to male ε4 carriers (MM− = 2.666 vs. MM+ = 2.359; p = 0.002).

3.5.2. Post hoc partial correlation analyses—We performed partial correlational 

analyses, controlling for age and ICV, between neuroimaging data and DRS scores using the 

same methods described in Section 2.4.4. We found a significant, positive association 

between DRS scores and functional activation in the right parahippocampal gyrus during 

FPs in male ε4 carriers (r = 0.952, p = 0.003; Fig. 3).

4. Discussion

4.1. Structural neuroimaging

Our first hypothesis, that ε4 carriers would demonstrate smaller volumetric and thickness 

measurements in memory regions relative to ε4 non-carriers, was not upheld. We found that 

ε4 carriers demonstrated significantly larger bilateral putamen volumes. The larger 

volumetric measurements may be related to inflammation, plaque accumulation, and shape 

abnormalities previously associated with striatal areas (Beach et al., 2012; Braak and Braak, 

1990; de Jong et al., 2008, 2011; Pievani et al., 2013; Rudelli et al., 1984). Inflammation and 

Aβ plaque accumulation have been suggested as possible explanations for increased 

thickness or volumetric measurements (Fox et al., 2005). An fluorodeoxyglucose (FDG)-

positron emission tomography (PET) study found that the putamen of cognitively normal 

ApoE ε4 homozygotes had the highest amyloid deposition relative to other brain regions 

(Pardo and Lee, 2018). Similarly, another fluorodeoxyglucose (FDG)-positron emission 

tomography (PET) study found that amyloid deposition occurs very early in the striatum, 

which is comprised of the caudate and putamen, and these deposits are often not associated 

with clinical symptoms (Klunk et al., 2007). Furthermore, an X-ray micro-diffraction study 

demonstrated that there can be structural heterogeneity of amyloid such that subjects with 

different clinical histories may contain different ensembles of fibrillar structures (Liu et al., 

2016). Polymorphism in the distribution of amyloid in plaques may be related to different 

disease states and variable manifestations of clinical symptoms (Liu et al., 2016; Lu et al., 

2013).
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The greater putamen volumes may also be attributed to neuronal compensation, which refers 

to a dissociation between brain pathology and behavioral change during the early and 

prodromal stages of neurodegenerative diseases (Gregory et al., 2017; Scheller et al., 2014). 

It has been proposed that in conjunction with pathological loss of brain tissue, there is a 

structural reorganization in the brain to compensate for these losses, which enables 

prodromal patients to perform functionally at the same level as those not at risk for AD 

(Gregory et al., 2017). It is the lack of behavioral differences between groups that indicates 

neuronal compensation (Gregory et al., 2017). Task performance data suggest that there 

were no differences between ε4 carriers and non-carriers, except for run 1, when ε4 carriers 

made more hits relative to ε4 non-carriers. Larger putamen volumes have also been found in 

other developmental or neurodegenerative disorders. When adults with autism spectrum 

disorder and typical developed controls were compared, the putamen was found to be 

significantly larger in the autism spectrum disorder group after controlling for age, sex, and 

ICV (Sato et al., 2014). Similarly, larger putamen volumes have been reported in individuals 

with bipolar disorder, schizophrenia, and obsessive-compulsive disorders (Luo et al., 2019). 

Hyperactivation in dopamine pathways within the striatum has been suggested to be the 

cause of this enlargement of the dopamine-rich putamen (Luo et al., 2019). We therefore 

suspect that the greater putamen volumes may be indicative of overcompensation which 

allows ε4 carriers to maintain functional performance in response to changes imposed by 

aging and ε4 status.

We found sex effects on thickness measurements in the left parahippocampal gyrus and left 

isthmus cingulate. Increasing asymmetry in these regions is associated with the transition of 

mild cognitive impairment (MCI) to AD (Long et al., 2013). A recent longitudinal study 

reported that when comparing ε4 carriers and ε4 non-carriers, ε4 carriers demonstrated 

greater rates of volume loss in the hippocampus and parahippocampal gyrus (Reiter et al., 

2017). The isthmus cingulate, which connects the cingulate gyrus to the parahippocampal 

gyrus, was significantly reduced in ε4 carriers and in male ε4 carriers relative to ε4 non-

carriers and male ε4 non-carriers, respectively (Sener,1997). This finding is supported by 

previous literature reporting greater atrophy and increased rate of cortical thinning in the 

isthmus cingulate in AD (Hayata et al., 2015; Mak et al., 2015; Vasconcelos et al., 2014).

4.2. Functional neuroimaging

Our second hypothesis, that ε4 carriers would demonstrate less functional activation during 

hits and greater functional activation during FPs, was partially upheld. Furthermore, we 

hypothesized that this activation would be especially pronounced in male ε4 carriers; this 

was strongly upheld. The ε4 carrier group, relative to ε4 non-carriers, and male ε4 carriers, 

relative to female ε4 carriers, showed greater recruitment during FPs and hits, respectively in 

brain regions associated with memory and decision-making (e.g., BA10, precuneus, PCC, 

ACC). The BA10 is an area associated with encoding the incentive value of a stimulus 

during decision-making and is activated by a reward stimulus when already activated by 

working memory processing (O’Doherty et al., 2001). The precuneus is an integral region 

associated with source memory retrieval and the PCC demonstrates activation during 

autobiographical memory retrieval (Bonnì et al., 2015; Maddock et al., 2001). Lateralization 

Kapoulea and Murphy Page 8

Neurobiol Aging. Author manuscript; available in PMC 2020 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the ACC has been activated in error processing and conflict monitoring, suggesting that 

the ACC is vital in making correct choices (Lütcke and Frahm, 2008).

The precuneus and PCC are not only associated with memory and information processing, 

but also affected early in AD progression. Hyperactivation in the left precuneus and right 

cingulate gyrus was found in early AD patients, relative to healthy controls, during a time 

representation task (Leyhe et al., 2009). During a semantic memory task, increased 

activation in the bilateral PCC and precuneus has been reported in asymptomatic ε4 carriers 

relative to controls (Seidenberg et al., 2009). Atrophy in tracts connecting the hippocampus 

to the precuneus and PCC differentiates normal controls from MCI and AD patients (Palesi 

et al., 2012). Furthermore, abnormal hypoperfusion in the PCC and precuneus distinguishes 

MCI patients from normal controls (Bradley et al., 2002; Rombouts et al., 2005).

It is noteworthy that despite no significant differences in FP rates, ε4 carriers demonstrated 

significantly greater cognitive expenditure during FPs when compared to non-carriers. 

Hyperactivation has been previously noted in AD populations and is often understood as a 

compensatory response to functional impairment and accumulating AD pathology, possibly 

even acting as a protective factor to help ε4 carriers maintain their cognitive abilities in the 

short-term (Dickerson et al., 2004; Leyhe et al., 2009; Seidenberg et al., 2009; Woodard et 

al., 2010). This compensatory response may occur to support task performance in response 

to reduced communication between brain regions that typically function together 

(Seidenberg et al., 2009; Zhu et al., 2015). Age-related activation increases have been 

correlated with poorer behavioral performance and lower white matter integrity (Zhu et al., 

2015). Furthermore, excessive hyperactivation over time can lead to excitotoxicity and 

ultimately result in synapse degeneration and death (Mattson and Chan, 2003; Poirier et al., 

1993; Woodard et al., 2010; Yanker, 1996) and has been suggested as one mechanism 

contributing to olfactory dysfunction in AD (Jacobson et al., 2019; Murphy, 2019). 

Interestingly, ApoE ε4 carrier mice show hyperactivation in olfactory areas that has been 

associated with olfactory deficits, suggesting that subtle, early olfactory deficits may presage 

future abnormalities in olfactory circuitry, and further supporting the hypothesis that 

hyperactivation is associated with olfactory dysfunction (East et al., 2018; Peng et al., 2017). 

This hyperactivation has been suggested to precede clinical symptoms in the AD 

pathological timeline (Gregory et al., 2017; Murphy, 2019).

4.3. Partial correlations: neuroimaging data

The third hypothesis, that neuroimaging data and DRS scores would be associated in all 

groups, was partially upheld. Partial correlations revealed significant associations between 

neuroimaging data and DRS scores within males. For male ε4 carriers, activation in the right 

parahippocampal gyrus was associated with higher DRS scores after age, ICV, and right 

parahippocampal gyrus thickness were partialed out. Higher DRS scores suggest greater 

global cognitive functioning (Mattis, 1998). These results support the hypothesis that 

hyperactivation may be protective against cognitive decline in the short term. In the male ε4 

non-carrier group, larger right hippocampal volume was associated with lower DRS scores 

after controlling for age and ICV. This association suggests that within this sample, greater 

right hippocampal volume does not necessarily mean better global cognitive functioning.
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5. Conclusions

The present study is the first to investigate how the interaction of sex and ApoE ε4 status 

impacts both structural MRI and fMRI activation during an olfactory recognition memory 

task in a non-demented, older population. The study demonstrates differential neuroimaging 

data and olfactory memory processing in relation to sex and ApoE ε4 status. No study to our 

knowledge has reported both structural and functional neuroimaging data within older, non-

demented ε4 carriers and non-carriers during an olfactory recognition memory task. 

Moreover, neuroimaging studies reporting on sex differences present in olfactory recognition 

memory processing are lacking. Our results expand preceding literature suggesting 

hyperactivation patterns in those at risk for AD and provide valuable information regarding 

structural differences between ε4 carriers and ε4 non-carriers before AD symptoms manifest. 

Results suggest that prior to developing AD symptomatology, male ε4 carriers demonstrate 

hyperactivation during odor recognition memory relative to other groups, which may 

ultimately lead to future brain atrophy and decreased cognitive functioning.

There were limitations to our study. First, the study would have benefitted from larger 

sample sizes. Although we considered structural neuroimaging data and fMRI, we did not 

include data on amyloid and plaque accumulation through other imaging methods (e.g., 

amyloid-PET imaging, diffusion tensor imaging), which allow for examination of pre-

mortem amyloid plaque burden (Hedden et al., 2013; Klunk et al., 2004). Future studies may 

consider these methods in conjunction with fMRI and structural MRI.

Together, our findings underscore the potential of incorporating MRI methodologies, 

genetics, and sex differences to identify those at risk for AD. As clinical trial research 

progresses to develop measures or interventions intended to slow or prevent AD clinical 

progression, it is imperative that we consider these factors to design interventions that are 

suitable, effective, and most beneficial for the population.
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Fig. 1. 
(A) Whole-brain activation during hits when functional activation of ε4 carrier females was 

subtracted from ε4 carrier males. Orange indicates the areas where ε4 carrier males had 

greater activation compared to ε4 carrier females. (B) Whole-brain activation during false 

positives when functional activation of ε4 non-carriers was subtracted from ε4 carriers. 

Yellow indicates the areas where ε4 carriers had greater activation than ε4 non-carriers. (C) 

Whole-brain activation during false positives when functional activation of ε4 carrier 

females was subtracted from ε4 carrier males. Blue indicates the areas where ε4 carrier 

females had greater functional activation than ε4 carrier males.
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Fig. 2. 
Association between right hippocampal volume (mm3) and Dementia Rating Scale scores in 

male ε4 non-carriers. Age and ICV were included as covariates. Abbreviation: ICV, 

intracranial volume.
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Fig. 3. 
Partial regression plots using age, ICV, and structure volume as covariates. Association 

between Dementia Rating Scale scores and functional activation in the right 

parahippocampal gyrus during false positives in male ε4 carriers. Abbreviation: ICV, 

intracranial volume.
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