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A spatially intensive sampling program was developed for mapping the submerged 
aquatic vegetation (SAV) over an area of approximately 20,000 ha in alarge, shallow lake 
in Florida, U.S. The sampling program integrates GeographicInformation System (GIS) 
technology with traditional field sampling of SAV andhas the capability of producing 
robust vegetation maps under a wide range ofconditions, including high turbidity, 
variable depth (0 to 2 m), and variablesediment types. Based on sampling carried out in 
AugustœSeptember 2000, wemeasured 1,050 to 4,300 ha of vascular SAV species and 
approximately 14,000 haof the macroalga Chara spp. The results were similar to those 
reported in the early1990s, when the last large-scale SAV sampling occurred. Occurrence 
of Chara was strongly associated with peat sediments, and maximal depths of 
occurrencevaried between sediment types (mud, sand, rock, and peat). A simple model 
ofChara occurrence, based only on water depth, had an accuracy of 55%. It predicted 
occurrence of Chara over large areas where the plant actually was notfound. A model 
based on sediment type and depth had an accuracy of 75% and produced a spatial map 
very similar to that based on observations. While thisapproach needs to be validated 
with independent data in order to test its general utility, we believe it may have 
application elsewhere. The simple modeling approach could serve as a coarse-scale tool 
for evaluating effects of water level management on Chara populations. .   
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INTRODUCTION 

Submerged aquatic vegetation (SAV) plays a keystone role in shallow lakes, providing habitat for fish, 
birds, and other wildlife, supporting epiphyton that can be an important source of carbon and energy in 
the lake food web, and directly affecting water quality. Plants stabilize sediments with their roots, reduce 
water flow velocity and shear stress on the sediment surface due to wave attenuation[1], and trap 
sediments among their roots. Along with their epiphyton, submerged plants sequester phosphorus from 
the sediments and water column[2,3,4]. In lakes with abundant and widespread SAV, there is a positive 
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feedback system that can prevent phytoplankton from reaching high densities[5,6] and is a strong in-lake 
sink for phosphorus[7]. In contrast, lakes without SAV generally are turbid and phytoplankton-
dominated[8,9], and their sediments are more prone to wind- and wave-driven sediment resuspension.  

A solid understanding of SAV dynamics is key to successful management of shallow lakes[9]. As 
such, there has been considerable focus on SAV in shallow lake research, predictive modeling, and long-
term ecosystem management. Research has been done to identify SAV responses to sediment type[10], 
water depth[11], transparency[12], bottom slope[13], and other attributes. Modeling has ranged from 
relatively simple empirical relationships[12,13] to complex mechanistic models of lake hydrodynamics 
and water quality[14,15]. Methods of long-term assessment are highly variable and include remote 
sensing[16,17,18], transect sampling[19], and point sampling[11,20].  

In this study, we address some of the challenges associated with the assessment and modeling of 
SAV in large, shallow lakes and estuaries. These include (1) the large spatial extent, (2) the sometimes 
great spatial heterogeneity in plant abundance and environmental conditions, and (3) the inability to 
detect plants with remote sensing if water is turbid. We describe a method that was used to rapidly sample 
and map SAV over an area of approximately 20,000 hectares and that can be used in an unbiased manner 
under a wide range of conditions (varying depth, turbidity, sediment type). Simple decision-tree models 
also were developed to explain the observed spatial variation in SAV over this large landscape. The 
macroalga Chara was the focus of the decision-tree modeling because it presently dominates the biomass 
in the study lake[21] and in many other shallow eutrophic lakes, especially those undergoing recovery 
from cultural eutrophication[20,22,23]. The main objective of the modeling was to determine whether 
water depth, a standard output parameter from regional hydrologic model runs, could be used (possibly in 
concert with information on sediment type) to predict the spatial distribution of Chara during restoration 
planning.    

METHODS 

Study Sites 

The research was carried out on Lake Okeechobee, a large (area ~1,800 km
2
), shallow (mean depth ~2.7 

m) lake in Florida, U.S. (27
o
00‘ N latitude, 80

o
50‘ W longitude). The lake has three distinct zones. A 

littoral zone of emergent, submerged, and floating leaf plants along the west and south shoreline 
encompasses ~400 km

2
 of the lake. At low to moderate lake levels, it receives most of its water inputs 

from direct rainfall and is oligotrophic[24]. A central pelagic zone encompasses 1,200 km
2
 of the lake and 

has nutrient-rich turbid water due to resuspension of mud bottom sediments by wind and waves. It does 
not support any vascular plants. A pelagicœlittoral interface (near-shore) zone is the most dynamic region 
of the lake. It encompasses ~200 km

2
 and supports vascular plants and Chara under low water conditions 

(stage <3.9 m above sea level) but is phytoplankton dominated when water levels are high (stage >4.7 
m)[21,25]. The present study focuses on the near-shore zone.  
   

 

Sampling Methods and Map Development 
In order to carry out a systematic program of SAV sampling, a coverage of the lake surface was overlaid 
onto a rectangular grid of 500 þ 500 m cells in ARC/INFO. This scale of resolution reflected a consensus 
view among the investigators regarding what was practical and what was adequate to capture most of the 
spatial variation observed in the field. A pre-existing coverage[26] of the littoral zone was laid onto the 
map, and the common cells were clipped from the final coverage, as was the deeper central pelagic 
region. This resulted in a near-shore grid of approximately 2,000 cells. Coordinates for the grid cell center 
points were loaded into a Trimble Pathfinder GPS unit (differentially corrected) for use in navigating to 
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the sampling sites. A simple program was set up in the data logger so that users could enter information 
regarding water depth, Secchi depth, sediment type, presence vs. absence of SAV taxa, and a qualitative 
estimate of overall plant biomass (sparse, moderate, dense) based on the volume of material collected in a 
large plastic sorting tray.  

Sampling started in late August and was over 90% complete by the end of September 2000. 
Sampling began near the lakeshore and proceeded lakewards along each row of cells until two 
consecutive cells were encountered with no SAV. At the end of sampling, data had been collected from 
1,478 locations. The boat operator navigated to the site by GPS, where water depth was measured with a 
calibrated line and Secchi depth was measured with a 20-cm black-and-white disk. Plant sampling was 
done using a tool constructed of two standard garden rakes bolted together at midpoint to create a tonglike 
device. The degree of opening was constrained by placing a chain between the two handles, such that 
three replicate samplings with the device removed ~1 m

2
 of bottom cover. When the rakes were in a 

closed position (collecting plants), the distance between adjacent tines was approximately 10 mm. Plants 
were placed into a plastic tray, sorted by species, and the information described above was entered into a 
data logger. Sediment type was determined by inspection of material brought up in the rakes or by 
observation from the boat where water transparency was good. Sampling was possible up to a maximal 
depth of approximately 2 m.  

Field data were downloaded from the GPS logger into ARC/INFO, where maps were developed for 
each of the measured attributes and spatial extents were calculated in hectares. It was assumed that data 
collected at the center point of a grid cell represented that of the entire cell. While this may introduce 
error into the results, it was a necessary assumption given the large spatial scale of sampling.  

Model Development 
 

A set of simple decision-tree models was constructed in an Excel spreadsheet in an attempt to explain the 
observed spatial distribution of Chara. Models were constructed based on (1) depth alone, and (2) 
sediment type and depth. For each model, a range of cut-off points (e.g., for sand, critical depth >0.5 m = 
no Chara, depth ≤0.5 m = Chara) were tested at 0.5-m intervals until the best fit between observed and 
predicted patterns of presence/absence were observed. Model development involved sorting the 
spreadsheet data by depth and/or sediment type, identifying the cutoff point(s), and then classifying each 
sampling point (each row in the spreadsheet) as —Chara present“ or —Chara absent“ based on whether or 
not its depth fell below or above the cutoff point for each sediment category. These model predictions 
then were compared with a column of data indicating actual presence and absence information to 
determine overall accuracy. Model results also were mapped in GIS and compared visually to the maps 
based on observed data.  

Although information was available regarding Chara relative density at the various sites, we used 
only presence/absence, which was judged to be more robust in terms of unbiased sampling across all 
sediment types and water depths. Secchi data were not used in the model development process, although 
they were collected during the mapping effort. Secchi depth is a very good predictor of Chara occurrence 
in the lake[21], and this will be taken into consideration when developing a more complex hydrodynamic 
water quality model.   
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FIGURE 1. GIS maps showing (A) the distribution of mud, peat, rock, and sand sediments; (B) water column depths; and (C) 
Secchi depths, as a percent of water column depth; in the near-shore region of Lake Okeechobee where submerged aquatic 
vegetation occurred in late summer 2000. Each square is 500 x 500 m. The light gray shaded area along the western shoreline is 
the lake‘s littoral zone of emergent vegetation. The white area is deeper water that was not mapped.  

 
 

RESULTS 

Mapping 
In the near-shore region where submerged vegetation occurred, there were four dominant sediment types 
(Fig. 1A). Mud sediments comprised 10% (3,525 ha) of the area, peat comprised 33% (12,025 ha), rock 
12% (4,300 ha), and sand 45% (16,125 ha) of the sampled region. Peat dominated in the south, while sand 
was the predominant sediment type in the northwest and north. Water depths in the sampling region (Fig. 
1B) ranged from less than 10 cm to over 2 m. Shallowest locations were in the bays at the south and west 
regions. In total, depths were between 0œ25 cm in 7% (2,550 ha) of the sampling area, between 26œ50 
cm in 12% (4,350 ha), 51œ75 cm in 18% (6,400 ha), 76œ100 cm in 13% (4,850 ha), and >100 cm in 50% 
(17,825 ha) of the area. Water depths at any given location did not vary substantially during the sampling 
program  
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 FIGURE 1B. 
 

relative to this range of observations. Secchi transparencies (as a percent of total depth) ranged from less 
than 10 to 100%, with a large region of maximal transparency occurring in the south and southwest 
regions (Fig. 1C). In total, relative Secchi depths were between 0œ25% in 9% (3,225 ha) of the sampling 
area, between 26œ50% in 31% (11,250 ha), 51œ75% in 28% (10,000 ha), and 76œ 100% in 32% (11,400 
ha) of the area.  

Vallisneria americana occurred primarily as two large stands in the south and west bays and as a 
narrow fringe along the northwest shore (Fig. 2A). In total, there was an estimated 4,273 ha of V. 
americana. Hydrilla verticillata occurred almost exclusively in the south and west bays and had an 
estimated coverage of 2,649 ha (Fig. 2B). Potamogeton illinoensis occurred only in the south end of the 
lake, with an estimated coverage of 1,000 ha (Fig. 2C), while Ceratophyllum demersum occurred both in 
the south and west, with an estimated coverage of 1,049 ha (Fig. 2D). The most wide-spread coverage 
was documented for the macroalga Chara spp., which occurred primarily in the south and southwest, with 
a total of 13,945 ha (Fig. 2E). When all species are considered, there was a total of 17,750 ha of 
submerged vegetation in the lake at the end of the 2000 growing season.  

The occurrence of Chara was strongly associated with peat sediments (Fig. 3A), water depths below 
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1.5 m (Fig. 3B), and high percent Secchi depth (Fig. 3C). 
 

 
FIGURE 1C 

 
 
 
 

 

Modeling  
The first decision model considered only water depth as an explanatory variable for Chara occurrence. 
The data set was screened at 0.5-m depth intervals until a breakpoint was identified that best accounted 
for the observed Chara distribution. A model with a decision based on the criterion [Chara present if 
depth <1.5 m, Chara absent if depth >1.5 m] gave the best fit but had a prediction accuracy of 55% (Fig. 
4A). The model predicted widespread occurrence of Chara in locations along the south, west, and 
northwest shoreline where the plant was not actually found.   

 954



Havens: Large-Scale Mapping and Predictive Modeling TheScientificWorldJOURNAL  (2002) 2, 949-965 
 

The second model incorporated sediment type (mud, peat or rock, sand) as a first variable and then 
calibrated within sediment types for depth as described above. The best resulting decision tree was as 
follows:    

 
 

Mud Chara absent Peat or Rock Chara present if depth <1.5 m, Chara absent if depth >1.5 m 
Sand Chara present if depth <0.5 m, Chara absent if depth >0.5 m 

 

 
FIGURE 2. GIS maps showing the spatial distribution of (A) Vallisneria americana, (B) Hydrilla verticillata, (C) Potamogeton illinoensis, (D) 
Ceratophyllum demersum, and (E) Chara spp. in Lake Okeechobee during late summer 2000. Each square is 500 x 500 m. The light gray shaded 
area along the western shoreline is the lake‘s littoral zone of emergent vegetation. The white area is deeper water that was not mapped.  

 
The model using these three decision rules correctly predicted 75% of the observed spatial distribution of 
Chara (Fig. 4B). The only notable area of underprediction occurred in the north and along the western 
shore, where qualitative sampling (into categories of sparse, moderate, dense) suggested that the biomass 
of Chara was sparse. 
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DISCUSSION 

GIS-Based Sampling 
In this study, a GIS-based sampling program was used to effectively collect SAV and environmental data 
in a large, turbid lake. A total of 1,478 sites were sampled in a period of just under 2 months. Data 
processing was facilitated by using GPS units with pull-down menus for quick entry of information on 
sediment, plant species, water depth, and Secchi transparency.  
 

 
FIGURE 2B 

 
 

Collected data were directly downloaded into GIS, and map development proceeded as the project moved 
forward. This had two benefits: (1) it allowed field crews to immediately see the results for their work, 
and (2) it helped in selection of sampling regions on successive days of the project.  

Because plants were physically removed from the lake bottom and sorted on the boat to species, 
documentation of presence/absence is not affected by environmental conditions (in particular, turbidity 
and depth) that could interfere with more commonly used methods, such as aerial photography[27,28]. 
This ability to obtain consistent samples is of particular importance in Lake Okeechobee, where Secchi 

 956



Havens: Large-Scale Mapping and Predictive Modeling TheScientificWorldJOURNAL  (2002) 2, 949-965 
 

transparencies can vary from below 10 to over 150 cm, sometimes reaching the lake bottom[29].   
Judging from our field experiences, the rake tongs method might not be as effective in collecting 

small plants or very sparse plants where sediments are particularly compacted (e.g., hard packed sand). 
Until a quantitative comparison has been made with other sampling methods in the lake, we restrict data 
analysis from the mapping project to the presence/absence information. Other methods are used to 
quantify biomass of SAV in Lake Okeechobee but at a coarser spatial intensity. For example, we 
determine biomass approximately bimonthly at sites arranged along 15 transects perpendicular to the lake 
shore[25]. Divers underwater harvest all plants enclosed by 0.5-m

2 
quadrats (3 per site). Comparative 

analyses have shown that this approach may be more effective than raking (with a single rake) for 
documenting the occurrence of small and rare plants[30]. However, it remains to be seen how our quadrat 
sampling compares to sampling with a two-part rake tong that can effectively grasp and hold plant 
material. The rake tongs device (or similar oyster tongs) are used in other large-scale SAV mapping 
programs, such as that carried out on the Potomac River[31].  

 
 
 

 
FIGURE 2C 
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Historical Comparisons 
 

Although this is the first study to actually —map“ the submerged vegetation in Lake Okeechobee, there 
are previous data collected from less spatially intensive transect sampling programs. In particular, Zimba 
et al.[15] sampled SAV along 60 transects perpendicular to the shoreline in summer 1989œ1991. They 
constructed crude spatial maps for the dominant species by connecting the outermost points along each 
transect where the species was found, and then determining the area enclosed between that outer 
boundary and the lake shore with GIS. In the 3 sampling years, summer average lake stages (surface 
elevation above sea level) were approximately 3.5, 3.3, and 3.8 m, respectively. This compares with a 
mean stage of approximately 3.6 m in the present study. Zimba et al.[15] estimated that there were 
4,200√8,200 ha of V. americana (vs. 4,300 ha at present), 3,800√4,800 ha of H. verticillata (vs. 2,650 ha 
at present), 4,900√8,700 ha of P. illinoensis (vs. 1,000 ha at present), and 11,900√12,800 ha of Chara spp. 
(vs. 13,950 ha at present). Considering that a decade separates the two sampling events and that the 
methods were quite different, these results are surprisingly similar and indicate a degree of consistency in 
the lake‘s SAV community. The exception is P. illinoensis, which has displayed a substantial reduction in 
spatial extent.   

 

 
FIGURE 2D 
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FIGURE 2E 
 

We attribute this to (1) a period of prolonged high water levels in the late 1990s, and (2) impacts of a 
hurricane in fall 1999[25]. In contrast to V. americana and Chara spp., which seem to have widespread 
viable seeds and oospores, respectively, the sedimentary seed bank for P. illinoensis appears to have 
considerably depleted in this lake[32]. 

Factors Controlling the SAV  
In this study, vascular SAV was observed primarily in large southern and western beds where it was 
known to have occurred in previous years. As such, any predictive modeling of these plants must take 
into consideration the past history of occurrence as well as environmental conditions during the present 
growing season. Therefore the subsequent discussion is restricted to Chara spp., which is an annual plant 
in Lake Okeechobee, disappearing almost completely during winter months when colder and deeper 
conditions occur[33]. In this study, the occurrence of Chara spp. was strongly associated with peat 
sediments. Approximately 75% of sites with peat supported Chara, as compared to 10 to 30% of other 
sites. It is unknown whether there are physical or chemical characteristics of peat that are favorable for 
the growth of Chara, or whether it just .  
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FIGURE 3. Relationship between occurrence of Chara spp. in the near-shore region of Lake Okeechobee in late summer 2000 
and (A) sediment type; (B) water column depth; and (C) Secchi depth, as a percent of water column depth. 

 
occurs coincidentally with peat in the southern lake region. Another explanation is that Chara is absent 
from certain locations (mud sediments) because those locations support vascular plants (Vallisneria and 
Hydrilla) that outcompete Chara. It is known that many Chara-dominated lakes reported in the literature 
have peat sediments[20,23]. A final explanation is that Chara may occur primarily at the south end of the 
lake because it reflects a remnant population from the Everglades, which once was contiguous with the 
lake.  

Chara occurrence in Lake Okeechobee also was associated with depth of the water column. Sites 
with depths of 1.5 m or lower displayed approximately 50% occurrence of Chara, while this number 
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dropped to 25 and 0% at depths in excess of 1.5 and 2.0 m, respectively. As has been documented 
previously[21], there also is a strong relationship between Chara occurrence and the ratio of Secchi to 
total depth. Where that ratio was greater than 75%, there was a high probability  

 

 
 

FIGURE 4. Comparison of results of GIS mapping of Chara spp., based on actual observations in late summer 2000 vs. the 
predictions from (A) a decision model using only water depth as a predictor, and (B) a model using sediment type and then water 
depth as stepwise predictors. The white area is deeper water that was not mapped. 
 
of encountering Chara; where the ratio was lower than 75%, the probability of occurrence was low. Of the 
variables examined, this one had the most dramatic breakpoint, suggesting that light availability may be 
the critical attribute in mechanistic modeling of Chara. This reflects the findings of past research with this 
plant and the general approach that has been taken in Chara modeling in other ecosystems[14,15,34]. 

 

Decision Models for Chara  

One objective of this study was to determine if a simple model could be developed for predicting Chara 
responses to different lake management scenarios. The long-term goal of our lake modeling program is to 
develop an integrated hydrodynamic√water quality√SAV model, similar to that developed by Best et 
al.[34]. South Florida now is engaged in a multibillion-dollar project to restore the greater Everglades 
ecosystem, which includes Lake Okeechobee. Early screening of project components includes evaluations 
by scientists of potential system responses. For the lake, input data are comprised of daily hydrographs 
for a 30-year simulation period. Following a validation exercise in 2001œ2002, it should be possible to 
apply the sediment/depth decision-tree model for Chara to this management issue. The underlying 
concept is to provide a quantitative prediction about one system component (Chara) until such time that a 
more complex model can provide more detailed information about multiple components (Chara and 
vascular SAV species).  
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FIGURE 4B 
 

Although the decision model is based on a rather simplistic calibration exercise with a one-time 
survey program, it accounted for 75% of the spatial variation of Chara presence/absence, and it 
corresponds with results from an experimental study on the ecophysiology of Chara. Steinman et al.[33] 
carried out photosynthesisœirradiance studies with Chara collected from the southern region of Lake 
Okeechobee and documented a compensation point (no net primary production) of approximately 10 
µmol photons m

œ2
 s

œ1
. On examining recently collected data on water depth and near-bottom irradiances 

in the lake, we find that this corresponds to a depth of  
1.5 to 2 m, the observed cutoff point for Chara occurrence in the mapping project. Similarly, Chambers 
and Kalff[35] developed a polynomial regression model that, when applied to Lake Okeechobee, 
suggested one would not expect to find Chara beyond the 1.5-m zone, given the typical Secchi depths in 
the near-shore region of the lake. Canfield et al.[12] developed a regression model using SAV data from 
lakes in Florida, Finland, and Wisconsin, and based on that model, the expected outer extent of SAV in 
Lake Okeechobee also is in the 1.5 to 2 m range, as observed by Steinman et al.[33].  

The finding that a model based on sediment type and depth is much better in predicting Chara 
occurrence than is depth alone also is consistent with results of SAV research on other lakes. Ganfy and 
Gasith[11] evaluated SAV at a large number of sites around the perimeter of Lake Kinneret, Israel and 
found that the main factor controlling spatial variability was sediment type. Depth of the lake determined 
whether plants could attain a high biomass in any given year. In years when depth was below 1.5 to 2 m 
in the littoral zone, plants were able to develop a high biomass, with their location determined by the 
composition of sediments. Lehmann et al.[27] examined the relationships between SAV and 
environmental variables in Lake Geneva and found that depth and sediment type were strongly associated 
with the occurrence of different species of Potamogeton. In Lake Okeechobee, it is easy to discern why 
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mud sediments did not support Chara – these sediments are highly fluid in nature and do not provide a 
stable substrate for plant attachment and growth. Areas with mud sediments also tended to have very poor 
transparency, likely caused by wind-driven resuspension of this material, which has a negligible critical 
shearing stress. The reason for greater Chara occurrence at any given depth in peat vs. sand is unclear and 
will be resolved with controlled experiments in a future study.  

Limitations of the Sampling and Modeling Protocol 
An underlying premise in the annual SAV mapping of Lake Okeechobee is that the spatial extent of 
plants measured in AugustœSeptember represents the yearly maximum. This same approach is used in 
other large-scale regional SAV survey programs, such as the Chesapeake Bay[16,17]. If the timing of the 
most active —growing season“ (a function of photoperiod and lake surface elevation) varies from one 
year to the next, this may introduce a bias into the interyear comparison. Therefore, we feel that the yearly 
mapping project provides information most applicable for evaluating long-term trends in SAV 
distribution, whereas the program of bimonthly sampling of SAV along fixed transects is better suited for 
identifying changes at yearly time scales. The simple decision-tree model provides meaningful results 
only where water depths measured at the time of SAV sampling reflect the depths that plants experienced 
during that summer‘s growth. In 2000, the surface elevation of Lake Okeechobee varied only slightly 
from mid June to mid September, an ideal situation for model development. This may not always be the 
case.  

CONCLUSIONS 

The sampling method described here, with intensive field sampling using rapid methods coupled with 
automatic data logging and GIS mapping, is an effective approach for sampling SAV in turbid, shallow 
lakes. The presence/absence of plants can be effectively determined regardless of water clarity. An 
approach also was described for developing a simple decision model for predicting the occurrence of 
Chara across the near-shore landscape. The model accounted for 75% of the observed spatial variation, 
and the results were consistent with findings from studies carried out on other lakes and with 
ecophysiological studies of Chara in Lake Okeechobee. This decision-tree modeling approach might have 
general application in other lake ecosystems, but it will require validation with independent data for this 
and other lakes before its utility can be fully understood.  
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