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I. GENERAL FRAMEWORK TO STUDY THE CYCLO-STATIONARY DISTRIBUTIONS

A. Equation for the cyclo-stationary copy number distributions P ss
+ (y+) and P ss

− (y−)

In the main text, we present the equations for P i
+(y+,i, tsi) and P i

−(y−,i, tsi), the distributions of copy numbers just

after and just before the ith cell division respectively, as follows:

P i
+(y+,i, tsi) =

∑
y+,i−1

∑
x+,i

B(y+,i + x+,i,
1

2
, x+,i)p(y+,i + x+,i, tsi |y+,i−1) P

i−1
+ (y+,i−1, tsi−1), (1)

P i
−(y−,i, tsi) =

∑
y+,i−1

p(y−,i, tsi |y+,i−1) P
i−1
+ (y+,i−1, tsi−1). (2)

Integrating Eq. 1 over the joint probability distribution of g2(tsi , tsi−1) of successive division time intervals,∫ ∞

0

∫ ∞

0

dtsidtsi−1
g2(tsi , tsi−1

)P i
+(y+,i, tsi) =

∫ ∞

0

∫ ∞

0

dtsidtsi−1
g2(tsi , tsi−1

)
∑

y+,i−1

∑
x+,i

B(y+,i + x+,i,
1

2
, x+,i)

p(y+,i + x+,i|y+,i−1, tsi)P
i
+(y+,i−1, tsi−1

). (3)

If it is further assumed that successive division times are uncorrelated, i.e. g2(tsi , tsi−1) = g(tsi)g(tsi−1), where
g(tsi) is the normalized distributions of tsi , we have∫ ∞

0

∫ ∞

0

dtsidtsi−1
g(tsi)g(tsi−1

)P i
+(y+,i, tsi) =

∫ ∞

0

∫ ∞

0

dtsidtsi−1
g(tsi)g(tsi−1

)
∑

y+,i−1

∑
x+,i

B(y+,i + x+,i,
1

2
, x+,i)

p(y+,i + x+,i|y+,i−1, tsi)P
i
+(y+,i−1, tsi−1

) (4)

which simplifies to∫ ∞

0

dtsig(tsi)P
i
+(y+,i, tsi) =

∑
y+,i−1,x+,i

∫ ∞

0

dtsig(tsi)p(y+,i + x+,i|y+,i−1, tsi) B

(
y+,i + x+,i,

1

2
, x+,i

)

×
∫ ∞

0

dtsi−1
g(tsi−1

)P i
+(y+,i−1, tsi−1

) (5)

For i ≫ 1, as the cyclo-stationary regime is attained, we may define the distribution as cell birth, P ss
+ (y+) =∫∞

0
dtsig(tsi)P

i
+(y+,i, tsi). Dropping the subscripts i, and setting tsi = ts and y+,i−1 = y′+, Eq. 5 gives

P ss
+ (y+) =

∑
y′
+

∑
x+

∫ ∞

0

dtsg(ts) B(y+ + x+,
1

2
, x+)× p(y+ + x+, ts|y′+) P ss

+ (y′+). (6)

In a similar way, one may derive from Eq. 2 above, the cyclo-stationary distribution just before division, defined as
P ss
− (y−) =

∫∞
0

dtsig(tsi)P
i
−(y−,i, tsi), related to P ss

+ (y+):

P ss
− (y−) =

∑
y′
+

∫ ∞

0

dtsg(ts) p(y−, ts|y′+, ts) P ss
+ (y′+). (7)

Eqs. 6 and 7 are the two Eqs. 3 and 4 in the main text.

B. Self-consistent integral for the generating functions F+(q) and its relation to F−(q)

We define generating function F±(q) =
∑∞

y±=0 q
y±P ss

± (y±). Multiply
∑

y+
qy+ on both sides of Eq. 6 we get,

F+(q) =
∑
y′
+

∑
x+

∫ ∞

0

dtsg(ts)
∑
y+

qy+p(y+ + x+, ts|y′+) B(y+ + x+,
1

2
, x+)P

ss
+ (y′+) (8)
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We defining a new variable ỹ+ = y+ + x+, where x+ ≤ ỹ+ ≤ ∞. But since B(ỹ+,
1
2 , x+) = 0 for ỹ+ < x+, we put

ỹ+ ∈ [0,∞). Using the explicit form of the binomial function, the recursion relation of F+(q) may then be written as:

F+(q) =
∑
y′
+

∫ ∞

0

dtsg(ts)
∑
ỹ+

qỹ+p(ỹ+, ts|y′+)
ỹ+∑

x+=0

1

qx+

(
ỹ+
x+

)(
1

2

)ỹ+−x+
(
1

2

)x+

P ss
+ (y′+)

=
∑
y′
+

∫ ∞

0

dtsg(ts)

∑
ỹ+

qỹ+p(ỹ+, ts|y′+)
(
q + 1

2q

)ỹ+

P ss
+ (y′+)

=

∫ ∞

0

dtsg(ts)
∑
y′
+

F

(
q + 1

2
, ts

∣∣∣y′+)P ss
+ (y′+). (9)

Here F (q, t|y′) =
∑

y q
yp(y, t|y′) is the generating function of the probability p(y, t|y′) tied to the process of gene

expression. Let us assume that this generating function has a form F (q, t|y′) = H(q − 1, γyt) × (1 + (q − 1)e−γyt)
y′
.

This leads to the following self-consistent integral for F+(q) (which is Eq. 6 in the main text):

F+(q) =

∫ ∞

0

dtsg(ts)H(
q − 1

2
, γyts)F+

(
1 +

(q − 1)

2
e−γyts

)
. (10)

In a similar way, by multiplying
∑

y−
qy− on both sides of Eq. 7 we get,

F−(q) =
∑
y−

qy−
∑
y′
+

∫ ∞

0

dtsg(ts)× p(y−, ts|y′+)× P ss
+ (y′+)

=

∫ ∞

0

dtsg(ts)
∑
y′
+

F (q, ts|y′+)P ss
+ (y′+)

=

∫ ∞

0

dtsg(ts)H(q − 1, γyts)F+

(
1 + (q − 1)e−γyts

)
. (11)

Putting q = 2q′ − 1 in Eq. 10 we have,

F+(2q
′ − 1) =

∫ ∞

0

dtsg(ts)H(q′ − 1, γyts)F+

(
1 + (q′ − 1)e−γyts

)
, (12)

and comparing with Eq. 11, we obtain (the Eq. 7 in the main text):

F−(q) = F+(2q − 1) (13)

C. Closed form of F+(q) for Fixed cell cycle times, and the intractable nested integrals for Random cell
cycle times

For fixed cell division times, i.e. g(ts) = δ(ts − T ), Eq. 10 reduces to

F+(q) = H
(
q − 1

2
, γyT

)
F+

(
1 +

(q − 1)

2
e−γyT

)
. (14)

If we set, q − 1 = w then Eq. 14 becomes to

F+(1 + w) = H
(w
2
, γyT

)
F+

(
1 +

w

2
e−γyT

)
. (15)

This recursion formula may be iterated to obtain

F+(1 + w) =

j∏
k=1

H
(
w

2

e−(k−1)γyT

2k−1
, γyT

)
F+

(
1 + w

(
e−γyT

2

)j
)
. (16)
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As j → ∞, F+

(
1 + w

(
e−γyT

2

)j)
→ F+(1) = 1, and hence

F+(1 + w) =

∞∏
k=1

H
(
w

2

e−(k−1)γyT

2k−1
, γyT

)
. (17)

Replacing back w = q − 1 Eq. 17 gives the closed form in Eq. 8 in the main text.

For random division times ts, with any general normalised function g(ts), when we substitute w = q − 1, Eq. 10
becomes:

F+(1 + w) =

∫ ∞

0

dts g(ts)H
(w
2
, γyts

)
F+

(
1 +

w

2
e−γyts

)
. (18)

Iterating one step, and replacing the F+ on the right side with an similar integral as Eq. 18, we obtain:

F+(w + 1) =

∫ ∞

0

dt1s g(t1s)H
(w
2
, γyt

1
s

)∫ ∞

0

dt2s g(t2s)H
(
w1(t

1
s)

2
, γyt

2
s

)
F+

(
1 +

w1(t
1
s)

2
e−γyt

2
s

)
, (19)

where w1(t
1
s) =

w
2 e

−γyt
1
s . Continuing with the next iteration,

F+(w + 1) =

∫ ∞

0

dt1s g(t1s)H
(w
2
, γyt

1
s

)∫ ∞

0

dt2s g(t2s)H
(w1

2
, γyt

2
s

)∫ ∞

0

dt3s g(t3s)H
(w2

2
, γyt

3
s

)
F+

(
1 +

w2

2
e−γyt

3
s

)
,

(20)

where w2 = w2(t
1
s, t

2
s) =

w1

2 e−γyt
2
s = w

22 e
−γyt

1
se−γyt

2
s . Repeating this indefinitely, as j → ∞ we have F+(1 + wj) →

F+(1) = 1, where wj =
wj−1

2 e−γyt
j
s , and hence

F+(1 + w) =

∞∏
k=1

∫ ∞

0

dtks g(tks)H
(wk−1

2
, γyt

k
s

)
. (21)

As wk = wk(t
1
s, t

2
s, ..., t

k
s) =

w
2k
e−γyt

1
se−γyt

2
s ...e−γyt

k
s , the above nested integrals are in general intractable. This is why

the problem has stayed challenging.

D. Deriving the cyclo-stationary distributions at birth and before division, from the series expansion of
generating function about q = 1

Although P ss
+ (y+) are themselves coefficients of the series expansion of F+(q) about q = 0, we may start with an

alternate expansion of F+(q) =
∑∞

k=0
(q−1)k

k! F
(k)
+ (1) about q = 1. In that case,

P ss
+ (y+) =

1

y+!

[
∂y+

∂qy+
F+(q)

]
q=0

=
1

y+!

[
∂y+

∂qy+

∞∑
k=0

(q − 1)k

k!
F

(k)
+ (1)

]
q=0

=

∞∑
k=y+

(
k

y+

)
(−1)k−y+

k!
F

(k)
+ (1) (22)

Similarly, using Eq. 13, we have

P ss
− (y−) =

1

y−!

[
∂y−

∂qy−
F−(q)

]
q=0

=
1

y−!

[
∂y−

∂qy−
F+(2q − 1)

]
q=0

=
1

y−!

[
∂y−

∂qy−

∞∑
k=0

2k(q − 1)k

k!
F

(k)
+ (1)

∣∣∣∣
q=0

]

=

∞∑
k=y−

(
k

y−

)
(−1)k−y−

k!
2kF

(k)
+ (1) (23)

Thus above, we have the series expansions of P ss
+ (y+) and P ss

− (y−) (Eq. 11 and 12 in the main text) involving the

coefficients F
(k)
+ (1).
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E. The first three cumulants of P ss
+ (y+) in terms of the coefficients F

(k)
+ (1)

Using F+(q) =
∑

y+
P ss
+ (y+)q

y+ =
∑∞

k=0
(q−1)k

k! F
(k)
+ (1), we may obtain the cumulants as follows. The mean of y+:

⟨y+⟩ =
∑
y+

y+P
ss
+ (y+) = q

∂

∂q
F+(q)

∣∣∣∣
q=1

= q
∂

∂q

(∑
k

(q − 1)k

k!
F

(k)
+ (1)

)
q=1

= q
∑
k

k(q − 1)k−1

k!
F

(k)
+ (1)

∣∣∣∣
q=1

= F
(1)
+ (1)

(24)

The second moment

⟨y2+⟩ = q
∂

∂q
q
∂

∂q
F+(q)

∣∣∣∣
q=1

= q
∑
k

k(q − 1)k−1

k!
F

(k)
+ (1) + q2

∑
k

k(k − 1)(q − 1)k−2

k!
F

(k)
+ (1)

∣∣∣∣
q=1

= F
(1)
+ (1) + F

(2)
+ (1)

(25)

Hence the Variance

κ2 = ⟨y2+⟩ − ⟨y+⟩2 = F
(1)
+ (1) + F

(2)
+ (1)−

(
F

(1)
+ (1)

)2
(26)

The third moment

⟨y3+⟩ = q
d

dq
q
d

dq
q
d

dq
F+(q)

∣∣∣∣
q=1

= q
∑
k

k(q − 1)k−1

k!
F

(k)
+ (1) + 3q2

∑
k

k(k − 1)(q − 1)k−2

k!
F

(k)
+ (1) + q2

∑
k

k(k − 1)(k − 2)(q − 1)k−3

k!
F

(k)
+ (1)

∣∣∣∣
q=1

= F
(1)
+ (1) + 3F

(2)
+ (1) + F

(3)
+ (1) (27)

Hence the third cumulant is (see Eqs. 24, 26 and 27 above)

κ3 = ⟨(y+ − κ1)
3⟩ = [F

(1)
+ (1) + 3F

(2)
+ (1) + F

(3)
+ (1)]− 3κ1κ2 − κ3

1 (28)

The above equations appear as Eq. 13, 14 and 15 in the main text. Using the above cumulants we obtain CV 2 = κ2/κ
2
1

and Skewness = κ3/κ
3/2
2 in our study.

II. STATISTICS OF THE mRNA NUMBER IN THE CYCLO-STATIONARY STATE

A. The generating function related to the model of transcription, and thereby obtaining function H

The Master equation for the stochastic model of mRNA production and degradation is

dp(m, t|m′
+)

dt
= kmp(m− 1, t|m′

+) + γm(m+ 1)p(m+ 1, t|m′
+)− (γmm+ km)p(m, t|m′

+). (29)

Here km is the transcription rate, and γm is the degradation rate of mRNAs. The generating function F (q, t) =∑∞
j=0 q

mp(m, t|m′
+) of the distribution p(m, t|m′

+) satisfies (using Eq. 29 above) the following:

∂F (q, t)

∂t
+ γm(q − 1)

∂F

∂q
= km(q − 1)F. (30)

Eq. 30 can be solved by using the method of Lagrange characteristic, and one gets

F (q, t) = eλ(t)(q−1)(1 + (q − 1)e−γmt)m
′
+ , (31)

where λ(t) = (km/γm)[1 − e−γmt]. For brevity we will use λ(t) ≡ λ below. Thus comparing with Eq. 5 of the main
text (also see below Eq. 9), we identify the function

H = e
km
γm

[1−e−γmt](q−1). (32)
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B. Obtaining the coefficients F
(k)
+ (1) and the series of the distributions P ss

± (m±)

Using H from Eq. 32 in Eq. 10, and F+(q) =
∑∞

j=0
(q−1)j

j! F
(j)
+ (1) we have

F+(q) =

∫ ∞

0

dtsg(ts)e
λ((q−1)/2)F+(1 + ((q − 1)/2)e−γmts)

=

∫ ∞

0

dtsg(ts)e
λ((q−1)/2)

∞∑
j=0

F
(j)
+ (1)

j!

(
q − 1

2

)j

e−jγmts

=

∫ ∞

0

dtsg(ts)

∞∑
l=0

∞∑
j=0

λl
(
q−1
2

)l
l!

F
(j)
+ (1)

j!

(
q − 1

2

)j

e−jγmts

=

∫ ∞

0

dtsg(ts)

∞∑
l=0

∞∑
j=0

F
(j)
+ (1)

l!j!

(
q − 1

2

)l+j (
km
γm

)l

e−jγmts(1− e−γmts)l (33)

Changing summation indices to k = l + j and defining Ψk,j =
∫∞
0

dtsg(ts)e
−jγmts(1− e−γmts)k−j , Eq. 33 becomes

F+(q) =

∞∑
k=0

1

k!

(
q − 1

2

)k k∑
j=0

(
k

j

)(
km
γm

)k−j

Ψk,jF
(j)
+ (1) (34)

Using the relation F+(q) =
∑∞

k=0
(q−1)k

k! F k
+(1) on the left side of Eq. 34 above, and comparing coefficients we get

the desired recursion relation (which appears in Eq. 21 of the main text):

F k
+(1) =

1

2k

k∑
j=0

(
km
γm

)k−j (
k

j

)
Ψk,jF

j
+(1). (35)

The first few coefficients are explicitly as follows. As
∑

m+
P ss(m+) = 1 we firstly have F

(0)
+ (1) = 1. The next

coefficient (from Eq. 35) is

F 1
+(1) =

1

2

(
Ψ1,0

km
γm

+Ψ1,1F
(1)
+ (1)

)
=

km

γm

1
2Ψ1,0

1− 1
2Ψ1,1

(36)

Proceeding similarly we have F
(2)
+ (1) determined by F

(1)
+ (1) as follows:

F
(2)
+ (1) =

(
km

γm

)2
1
22Ψ2,0

1− 1
22Ψ2,2

+

(
km

γm

)2
1
23

(
2
1

)
Ψ2,1Ψ1,0

(1− 1
2Ψ1,1)(1− 1

22Ψ2,2)
(37)

Next, the coefficient

F 3(1) =

 1
23

(
km

γm

)3
Ψ3,0

1− 1
23Ψ3,3

+

 1
24

(
3
1

)
Ψ3,1Ψ1,0

(
km

γm

)3
(1− 1

23Ψ3,3)(1− 1
2Ψ1,1)

+

 1
25

(
3
2

)
Ψ3,2Ψ2,0

(
km

γm

)3
(1− 1

22Ψ2,2)(1− 1
23Ψ3,3)


+

 1
26

(
3
2

)
Ψ3,2Ψ2,1Ψ1,0

(
km

γm

)3
(1− 1

2Ψ1,1)(1− ( 1
22Ψ2,2)(1− 1

23Ψ3,3)

 (38)

Observing the pattern of the successive coefficients, we obtain the general solution for F
(k)
+ (1) as follows:

F
(k)
+ (1) =

(
km
γm

)k
1

2k
1(

1− 1
2k
Ψk,k

)
 ∑
{Sk−1}

( 12 )
∑

i jiϕk,jz ϕjz,jz−1
... ϕj1,0∏

i

(
1− 1

2ji
Ψji,ji

) + ϕk,0

 (39)
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where ϕk,j = Ψk,j

(
k
j

)
. Here {Sk−1} denotes the set of all the subsets Sk−1 = {ji} = (jz, jz−1...j1) of integers

ji ∈ (1, 2, ...k − 1) such that jz > jz−1 > ... > j1. For example for k = 3, the subsets are (1), (2), and (2,1) as is seen
in Eq. 38.

With the coefficients given by Eq. 39, the cyclo-stationary distributions are formally given by the series:

P ss
+ (m+) =

∞∑
k=m+

(
k

m+

)
(−1)k−m+

k!
F

(k)
+ (1) (40)

P ss
− (m−) =

∞∑
k=m−

(
k

m−

)
(−1)k−m−2k

k!
F

(k)
+ (1) (41)

C. The cyclo-stationary mRNA distributions are Poisson for fixed cell-division times T

For fixed cell division times, g(ts) = δ(ts − T ), we have Ψk,j = e−jγmT (1− e−γmT )k−j , and

Ψk,jzΨjz,jz−1 . . .Ψj1,0 = e−jzγmT (1− e−γmT )k−jze−jz−1γmT (1− e−γmT )jz−jz−1 ....e−0∗γmT (1− e−γmT )j1

= e−γmT
∑z

i=1 ji(1− e−γmT )k (42)

Consequently from Eqs. 40 and 39,

P ss
+ (m+) =

∞∑
k=m+

(−1)k−m+

k!

(
k

m+

)
F

(k)
+ (1)

=

∞∑
k=m+

(−1)j−m+

k!

(
k

m+

)(km
γm

)k
1

2k
1(

1− 1
2k
Ψk,k

)
 ∑
{Sk−1}

( 12 )
∑

jiϕk,jzϕjz,jz−1 ...ϕj1,0∏
i

(
1− 1

2ji
Ψji,ji

) + ϕk,0


=

∞∑
k=m+

(−1)k−m+

j!

(
k

m+

)(
km
γm

)k 1
2k

1− 1
2k
Ψk,k

(1− e−γmT )k

1 + ∑
{Sk−1}

(
k

jz

)(
jz

jz−1

)
...

(
j2
j1

) ∏
i

(
1
2e

−γmT
)ji∏

i

(
1− ( 12e

−γmT )ji
)


(43)

Using the the following identity [1], with x = 1
2e

−γmT in this case,

1 +
∑

{Sk−1}

(
k

jz

)(
jz

jz−1

)
...

(
j2
j1

)∏
i

xji

1− xji
=

1− xk

(1− x)k
(44)

Thus the (1− xk) factors cancel from the numerator and denominator, and Eq. 43 simplifies to

Pss(m+) =

∞∑
k=m+

(
k

m+

)
(−1)k−m+

k!

(
km
γm

)k 1
2k

(1− e−γmT 1
2 )

k
(1− e−γmT )k

=

∞∑
k=m+

dk

m+!(k −m+)!
(−1)k−m+ (45)

with d =
(

km

γm

)
(1−e−γmT )
(2−e−γmT )

. Thus F
(k)
+ (1) = dk. Replacing k −m+ = r, then Eq. 45 reduces to a Poisson distribution:

P ss
+ (m+) =

dm+

m+!

∞∑
r=0

(−1)rdr

r!
=

dm+

m+!
exp(−d). (46)

Since Eq. 41 has an extra factor of 2k multiplying F
(k)
+ (1), we would have d replaced by 2d and the distribution:

P ss
− (m−) =

(2d)m−

m−!
exp(−2d). (47)
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D. Simplified form of the cyclo-stationary distributions for Exponentially distributed cell cycle times

For exponentially distributed division times, g(ts) = λe−λts (with λ = 1/T ), and

Ψk,j =

∫ ∞

0

dtsg(ts)e
−γmts(1− e−γmts)k−j = λ/γm B

(
λ+ jγm

γm
, k − j + 1

)
=

λ

γm

Γ(k − j + 1)Γ
(

λ
γm

+ j
)

Γ
(

λ
γm

+ k + 1
) (48)

and Ψk,k = λ
γm

Γ(1)Γ( λ
γm

+k)
Γ( λ

γm
+k+1)

= λ
λ+γmk . Then

ϕk,j =

(
k

j

)
Ψk,j =

(
λ

γm

)
Γ(k + 1)Γ[ λ

γm
+ j]

Γ(j + 1)Γ[ λ
γm

+ k + 1]
(49)

Hence ϕk,0 = k!
Γ( λ

γm
)

Γ( λ
γm

+k+1)
. Furthermore,

ϕn,jz ϕjz,jz−1 ... ϕj1,0 =
λz+1

γz+1
m

k! Γ[ λ
γm

]

Γ[ λ
γm

+ k + 1]

∏
i=1

γm
λ+ γmji

(50)

Substituting the above, in Eq. 40 and 39, we have

P ss
+ (m+) =

∞∑
k=m+

(
k

m+

)
(−1)k−m+

1

k!

(
km
γm

)k
1/2k

(1− 1/2kΨk,k)

 ∑
{Sk−1}

( 12 )
∑

jiϕk,jz ϕjz,jz−1 ... ϕj1,0∏
i(1−

1
2ji

Ψji,ji)
+ ϕk,0


=

∞∑
k=m+

(
k

m+

)
(−1)k−m+

1
2k

(
km

γm

)k
(
1− 1

2k
Ψk,k

)
 λ

γm

Γ( λ
γm

)

Γ( λ
γm

+ k + 1)
+

∑
{Sk−1}

( 12 )
∑

ji λ
z+1

γz+1
m

Γ(λ/γm)
Γ(λ/γm+k+1)∏

i

(
1− 1

2ji
Ψji,ji

) ∏
i

γm
λ+ γmji


=

∞∑
k=m+

(
k

m+

)
(−1)k−m+

1
2k

(
km

γm

)k
(
1− 1

2k
Ψk,k

) Γ( λ
γm

+ 1)

Γ( λ
γm

+ k + 1)

1 + ∑
{Sk−1}

∏
i

1
2ji

Ψji,ji

(1− 1
2ji

Ψji,ji)


=

∞∑
k=m+

(
k

m+

)
(−1)k−m+

1
2k

(
km

γm

)k
(
1− 1

2k
Ψk,k

) Γ( λ
γm

+ 1)

Γ( λ
γm

+ k + 1)

1∏k−1
i (1− 1

2iΨi,i)

=

∞∑
k=m+

(
k

m+

)
(−1)k−m+

k!

k!
(
km

2

)k∏k
i (λ+ γmi− 1

2iλ)
, (51)

where we have used an identity [1], with f(ji) =
1
2ji

Ψji,ji as follows:

1 +
∑

{Sk−1}

∏
i

f(ji)

(1− f(ji)
=

1∏k−1
i (1− f(i))

(52)

Eq. 51 shows that F
(k)
+ (1) = k!

(
km

2

)k
/
∏k

i (λ+ γmi− 1
2iλ). For obtaining the distribution before division, we note

the extra factor of 2k in Eq. 41, and that implies (comparing with Eq. 51)

P ss
− (m−) =

∞∑
k=m−

(
k

m−

)
(−1)k−m−

k!

k! (km)
k∏k

i (λ+ γmi− 1
2iλ)

. (53)

E. Expressions of CV 2 and Skewness of the distribution P ss
+ (m+) of mRNA at cell birth.

Using the exact expressions of F
(1)
+ (1), F

(2)
+ (1), and F

(3)
+ (1) in Eqs. 36, 37 and 38, we have obtained the cumulants

(from Eqs. 24, 26 and 28), and thus studied the mean, CV 2 and Skewness in the main text.
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FIG. 1. Cyclo-stationary distribution P ss
− (m−) of mRNA for the four g(ts) shown in Fig. 3 in the main text (corresponding

colours being the same)

III. STATISTICS OF CYCLO-STATIONARY PROTEIN COUNT

A. The generating function for protein kinetics, and thereby obtaining function H

The Master equation for the bursty protein translation is the following (with initial copy number being n′
+):

∂P (n, t|n′
+)

∂t
= km

[
n∑

r=1

br

(b+ 1)r+1
P (n− r, t|n′

+)−
b

b+ 1
P (n, t|n′

+)

]
+ γp

[
(n+ 1)P (n+ 1, t|n′

+)− nP (n, t|n′
+)
]
.

(54)

The generating function F (q, t|n′
+) =

∑∞
j=0 q

np(n, t|n′
+) is known to satisfy [2]

1

v

∂F

∂τ
+

∂F

∂v
=

ab

1− bv
F (55)

where v = q − 1, τ = γpt and a = km

γp
. The solution of Eq. 54 by the method of Lagrange characteristics yield [2]

F (q, t|n′
+) =

(
1− b(q − 1)e−γpts

1− b(q − 1)

)a

×
(
1 + (q − 1) e−γpts

)n′
+ . (56)

Thus comparing with Eq. 5 of the main text (also see below Eq. 9), we identify the function

H =

(
1− b(q − 1)e−γpts

1− b(q − 1)

)a

. (57)
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B. Obtaining the recursion relation for the coefficients F
(k)
+ (1) in the series of the distributions P ss

± (m±)

Using H from Eq. 57 in Eq. 10, and F+(q) =
∑∞

j=0
(q−1)j

j! F
(j)
+ (1) we have

F+(q) =

∫ ∞

0

dtsg(ts)

(
1− b

2 (q − 1) e−γpts

1− b
2 (q − 1)

)a

F+

(
1 +

(q − 1)

2
e−γpts

)

=

∫ ∞

0

dtsg(ts)

(
1− b

2 (q − 1) e−γpts

1− b
2 (q − 1)

)a ∞∑
j=0

F j
+(1) (q − 1)j

2jj!
e−jγpts

=

∫ ∞

0

dtsg(ts)

∞∑
l=0

Γ(a+ 1)

Γ(a− l + 1)

(
b

2

)l
(−1)l(q − 1)le−lγpts

l!

∞∑
s=0

Γ(a+ s)

Γ(a)

(
b

2

)s
(q − 1)s

s!

∞∑
j=0

F j
+(1)e

−jγpts(q − 1)j

2jj!

=

∞∑
l=0

∞∑
j=0

∞∑
s=0

∫ ∞

0

dtsg(ts)(−1)
l Γ(a+ 1)

Γ(a− l + 1)

Γ(a+ s)

Γ(a)

(
b

2

)l+s

(q − 1)
l+j+s

e−(l+j)γpts

(
a+ k − 1

k

)
F

(j)
+ (1)

2j l! s! j!

(58)

We define Ll+j =
∫∞
0

dtsg(ts)e
−(l+j)γpts , and replace indices l + j + s = k, which leads to

F+(q) =

∞∑
k=0

(q − 1)k

k!

k∑
l=0

k−l∑
j=0

a
k!Γ(a+ k − l − j)

Γ(a− l + 1)
(−1)

l

(
b

2

)k−j Ll+jF
(j)
+ (1)

l!j!(k − l − j)!2j
(59)

A series expansion on the left side of Eq. 59 about q = 1, and comparing with the right side, yields the desired
recursion relation:

F
(k)
+ (1) = ak!

k∑
l=0

k−l∑
j=0

(−1)l
bk−j

2k
Ll+j

(a+ k − l − j − 1)!

(a− l)! l! j! (k − l − j)!
F

(j)
+ (1) (60)

The above Eq. 60 appears as Eq. 26 in the main text. Once these coefficients F
(k)
+ (1) are solved for, they may be

used to obtain the cyclo-stationary distributions

P
(ss)
+ (n+) =

∞∑
k=n+

(
k

n+

)
(−1)k−n+

k!
F

(k)
+ (1) (61)

P
(ss)
− (n−) =

∞∑
k=n−

(
k

n−

)
(−1)k−n−2k

k!
F

(k)
+ (1) (62)

C. Expressions of first three F
(k)
+ (1) which determine exactly CV 2 and Skewness of the distribution P ss

+ (n+)
of protein.

Firstly, F
(0)
+ (1) = 1. Then using the above Eq. 60 recursively, we get

F
(1)
+ (1) = ab

1− L1

2− L1
(63)

then,

F
(2)
+ (1) =

ab2

4− L2

[
(1− L2) + a

(2− 3L1 + L1L2)

(2− L1)

]
(64)

and then,

F
(3)
+ (1) =

1

8− L3

[
ab3
(
(1 + a)(2 + a)− 3a((1 + a)L1 − (a− 1)L2)− (a− 2)(a− 1)L3

)
+ 3ab2

(
(1 + a)L1 − 2aL2 + (a− 1)L3

)
F

(1)
+ (1) + 3ab

(
L2 − L3

)
F

(2)
+ (1)

]
(65)
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The constants L1, L2 and L3 may be evaluated given a g(ts). Then the above Eqs. 63, 64 and 65 are substituted in
the Eqs. 24, 26 and 28, to obtain the cumulants and thus CV 2 and Skewness, which are studied in the main text.

IV. COMPUTATIONAL METHODS

A. Precautions to perform numerical sums of different series to obtain the coefficients F
(k)
+ (1) and the

theoretical cyclo-stationary distributions P ss
±

In this work we had to sum various series to obtain the desired coefficients and functions.
The equations for the coefficients F

(k)
+ (1) appear as Eq. 35 for mRNA, and Eq. 60 for protein, and are of the form

F
(k)
+ (1) =

k−1∑
j=1

ck,jF
(j)
+ (1) (66)

As the values of F
(j)
+ (1) grow very fast with j we loose precision soon in ordinary calculations. A better way to store

large numbers is by taking logarithm, and we do so for terms in Eq. 66. Thus we store terms

uk,j = ln ck,j + lnF
(j)
+ (1). (67)

We specify very high precision for such calculation and storage in Mathematica (through the SetPrecision[d] command)
up to d = 100 decimal places in case of mRNA and d = 200 decimal places for protein. We reconstruct back the
coefficient

F
(k)
+ (1) =

k−1∑
j=1

euk,j . (68)

Once the coefficients F
(k)
+ (1) are obtained by the above method, up to some desired k, we put them in the series

in Eqs. 40 and 41 for mRNA, and Eqs. 61, 62 for protein, to obatin the cyclo-stationary distributions. For mRNA,
convergence was attained for ∼ 30− 50 terms in the series of P ss

± (m±).
For protein, ordinary sum of the series of P ss

± (n±) were not enough with reasonable values of k. We used Borel
sum formula as follows:

P ss
± (n±) =

∞∑
k=n±

f(k, n±) = P ss
± (n±)

∣∣∣∣∣
Borel

= lim
t→∞

e−t
M→∞∑
n=0

tn

n!

n∑
k′=0

f(k′ + n±, n±) (69)

In calculations we chooseM ∼ 200−250 and t = 30 to obtain convergence of the protein cyclo-stationary distributions.

B. Kinetic Monte Carlo Simulations

We perform Kinetic Monte Carlo (KMC) or Gillespie [3] simulations for the various models governing the tran-
scription or translation models of mRNA and protein this paper, undergoing Binomial partitioning after random time
intervals ts drawn from some distribution g(ts). Thus, at any instant, there are three possible events to either increase,
decrease, or reset the copy number (due to cell partition). We typically use ∼ 107 histories for getting the data for
various distributions and cumulants, which were then compared with the theory.

V. AGE DEPENDENT CYCLO-STATIONARY DISTRIBUTIONS

The cyclo-stationary distribution P ss(y, τ) of cells at an age τ before the next cell division, may written with respect
to P ss

+ (y+) at birth, as follows:

P ss(y, τ) =
∑
y+

P ss
+ (y+)p(y, τ |y+). (70)
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Using its generating function G̃(q, τ) =
∑

y q
yP ss(y, τ), from Eq. 70 (and using the same steps as in Eqs. 9 and 10)

G̃(q, τ) =
∑
y+

P ss
+ (y+)F (q, τ |y+) = H(q − 1, γyτ) F+(1 + (q − 1)e−γyτ )

=
∑
k

(q − 1)k

k!
G(k)

y (τ) (71)

The defined quantities G
(k)
y (τ) are obtained in Eq. 71 by expressing F+(q) =

∑∞
j=0

(q−1)j

j! F
(j)
+ (1), and expanding H

as a power series of (q − 1). The resulting expression of G
(k)
y (τ) are of the form of the integrands of Eqs. 33 or 58

(without the
∫∞
0

dtSg(ts)/2
k factors), and are explicitly given for mRNA and protein in Eqs. 30 and 31 in the main

text. Finally it is easy to obtain the desired age-dependent distributions in terms of G
(k)
y (τ) as

P ss(y, τ) =
1

y!

∂yG̃

∂qy

∣∣∣∣∣
q=0

=

∞∑
k=y

(
k

y

)
(−1)k−y

k!
G(k)

y (τ). (72)

VI. GENERATING FUNCTIONS OF PROTEIN DISTRIBUTION AT BIRTH, FOR DETERMINISTIC
PARTITIONING, AND DETERMINISTIC GENE EXPRESSION

If we have a deterministic partitioning, we would replace the binomial distribution B(ỹ+,
1
2 , x+) in Eqs. 8 and 9 by

δx+,ỹ+/2 and as a result

F+(q) =
∑
y′
+

∫ ∞

0

dtsg(ts)
∑
ỹ+

qỹ+p(ỹ+, ts|y′+)
ỹ+∑

x+=0

1

qx+
δ
x+,

ỹ+
2

P ss
+ (y′+)

=
∑
y′
+

∫ ∞

0

dtsg(ts)

∑
ỹ+

qỹ+/2p(ỹ+, ts|y′+)

P ss
+ (y′+)

=

∫ ∞

0

dtsg(ts)
∑
y′
+

F
(√

q, ts

∣∣∣y′+)P ss
+ (y′+). (73)

For proteins y ≡ n, and using the appropriate F (q, t|n′
+) from Eq. 56, we have the counterpart of Eq. 10 as:

F+(q) =

∫ ∞

0

dtsg(ts)

(
1− b

(√
q − 1

)
e−γpts

1− b
(√

q − 1
) )a

F+

(
1 + (

√
q − 1)e−γpts

)
(74)

If in addition to deterministic partitioning, one also has deterministic protein kinetics

dn

dt
= kmb− γpn, (75)

then ñ+ = n′
+e

−γpts + ab(1− e−γpts) and F in Eq. 73 gets replaced by q
1
2 (λp+n′

+e−γpts ) where λp = ab(1− e−γpts), i.e.

F+(q) =
∑
n′
+

∫ ∞

0

dtsg(ts)

∑
ñ+

qñ+/2p(ñ+, ts|n′
+)

P ss
+ (n′

+)

=

∫ ∞

0

dtsg(ts)
∑
n′
+

P ss
+ (n′

+)q
1
2 (λp+n′

+e−γpts )

=

∫ ∞

0

dtsg(ts)q
1
2λp

∑
n′
+

P ss
+ (n′

+)
(
q

1
2 e

−γpts
)n′

+

=

∫ ∞

0

dtsg(ts)q
1
2λpF+(q

1
2 e

−γpts
) (76)
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The moment ⟨n+⟩ = q ∂
∂qF+(q)

∣∣∣∣
q=1

and ⟨n2
+⟩ = q ∂

∂q q
∂
∂qF+(q)

∣∣∣∣
q=1

, and hence taking derivatives of on two sides of

Eq. 74 and 76 respectively, and setting q = 1, we may obtain the moments in the two cases above. The explicit forms
of CV 2 thus obtained are shown in Eq. 32 in the main text (corresponding to Eq. 74) and in Eq. 34 in the main text
(corresponding to Eq. 76).
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