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To investigate the relationship between non-coding RNAs [especially circular RNAs
(circRNAs)] and docetaxel resistance in breast cancer, and to find potential predictive
biomarkers for taxane-containing therapies, we have performed transcriptome and
microRNA (miRNA) sequencing for two established docetaxel-resistant breast cancer
(DRBC) cell lines and their docetaxel-sensitive parental cell lines. Our analyses revealed
differences between circRNA signatures in the docetaxel-resistant and -sensitive breast
cancer cells, and discovered circRNAs generated by multidrug-resistance genes in
taxane-resistant cancer cells. In DRBC cells, circABCB1 was identified and validated as
a circRNA that is strongly up-regulated, whereas circEPHA3.1 and circEPHA3.2 are
strongly down-regulated. Furthermore, we investigated the potential functions of these
circRNAs by bioinformatics analysis, and miRNA analysis was performed to uncover
potential interactions between circRNAs and miRNAs. Our data showed that circABCB1,
circEPHA3.1 and circEPHA3.2 may sponge up eight significantly differentially expressed
miRNAs that are associated with chemotherapy and contribute to docetaxel resistance
via the PI3K-Akt and AGE-RAGE signaling pathways. We also integrated differential
expression data of mRNA, long non-coding RNA, circRNA, and miRNA to gain a global
profile of multi-level RNA changes in DRBC cells, and compared them with changes in
DNA copy numbers in the same cell lines. We found that Chromosome 7 q21.12-q21.2
was a common region dominated by multi-level RNA overexpression and DNA
amplification, indicating that overexpression of the RNA molecules transcribed from this
region may result from DNA amplification during stepwise exposure to docetaxel. These
findings may help to further our understanding of the mechanisms underlying docetaxel
resistance in breast cancer.
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INTRODUCTION

Breast cancer is the most prevalent and mortal cancer among
women worldwide (1). Chemotherapy is a very important
treatment for breast cancer, especially for hormone-insensitive,
advanced or metastatic breast cancer.

The taxane class of chemotherapy agents, including docetaxel
and paclitaxel, were introduced into the treatment of advanced
breast cancer about two decades ago and recognized as a
significant improvement for breast cancer treatment (2).
Paclitaxel is a derivative of the crude extract of the pacific yew
tree (Taxus brevifolia) (3). Docetaxel is a semisynthetic derivative
of paclitaxel, and regarded as a second-generation taxane (4).

The anti-cancer mechanism for taxanes involves binding and
stabilizing GDP-bound tubulin (5, 6), and thus causing cell cycle
arrest and apoptosis of cancer cells (7). Taxane-containing
treatment regimens have been shown to improve overall
survival in both early-stage and advanced breast cancer when
compared with non-taxane regimens (8, 9). Taxanes, either alone
or in combination, are commonly applied as first-line treatments
for advanced breast cancer (10). However, many patients
receiving taxanes develop drug resistance, which might be a
result of mutations or dysregulation of transcription in drug-
resistance genes, or post-transcriptional mechanisms (11–14).
However, no biomarkers have been successfully identified for
response to taxanes in clinical treatments of breast cancer.

Circular RNAs (circRNAs) are covalently closed RNA
molecules, usually generated from canonical splice sites and
comprised of exonic sequences (15). Their unique structure
allows them to escape from exonuclease-mediated degradation
and they therefore become more stable than linear RNAs (16).
Due to the lack of free ends, circRNAs are not capped and thus
are not predicted to be translated by cap-dependent mechanisms.
Thus, they are classified as non-coding RNAs (17). Although the
functions of circRNAs remain largely unknown, recent studies
have revealed that circRNAs may participate in biological
processes that include affecting mRNA expression by
competing with linear splicing (18), binding and sequestering
certain proteins (19), and functioning as microRNA sponges
(20). So far, the most well-documented function of circRNAs is
their ability to act as molecular sponges to bind microRNAs
(miRNAs) and thus reduce inhibition of their target genes. For
example, ciRS-7 (circular RNA sponge for miR-7) was found to
contain over 70 miRNA binding sites and to strongly reduce
miR-7 activity (20). Among 9 miRNAs bound by circHIPK3,
inhibition of miR-124 activity has been shown to promote
human cell growth (21). Also, evidence is accumulating that
circRNAs are involved in the development of cancer and other
diseases. For example, circTCF25 has been shown to sponge up
miR-107 and miR-103a-3p, thereby increasing expression of
CDK6, and to promote migration and proliferation of bladder
cancer cells (22). Differential expression of circRNAs is also
involved in radioresistance of esophageal cancer (23) and
chemotherapy resistance of acute myeloid leukemia and breast
cancer (24, 25). These findings point to circRNAs as potential
biomarkers for diagnosis and resistance to treatment of cancer.
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To investigate possible relationships between circRNAs and
docetaxel resistance in breast cancer, we performed RNA
sequencing and circRNA analysis of two cell lines, MDA-MB-
231 and MCF-7, and their docetaxel-resistant cell sublines
MDA-RES and MCF7-RES. We also performed miRNA
sequencing to explore potential interactions between circRNAs
and miRNAs. Our data show that circRNAs may sponge up
chemotherapy-associated miRNAs and regulate signaling
pathways that contribute to docetaxel resistance in breast
cancer cells.
MATERIALS AND METHODS

Cell Culture and Treatments
Two docetaxel-resistant human breast cancer cell lines, MDA-
RES and MCF7-RES, and their parental cells, MDA-MB-231 and
MCF-7, were obtained from Hansen et al. (12). Cells were
cultured in DMEM (Gibco, ThermoFisher Scientific,
Massachusetts, USA) containing L-glutamine, supplemented
with 10% fetal calf serum (FCS) (Gibco, ThermoFisher
Scientific, Massachusetts, USA) for MDA-MB-231, or 5% FCS
and 1% non-essential amino acids (Gibco, ThermoFisher
Scientific, Massachusetts, USA) for MCF-7. Cells were kept in
a humidified atmosphere containing 5% carbon dioxide at 37°C.
MCF-RES and MDA-RES cells were maintained in growth
medium with 65 and 150 nM docetaxel, respectively.

Total RNA Purification and rRNA-Depleted
Transcriptome Sequencing
Total RNA from 3 passages (3 biological replicates) each of
MCF-7, MCF7-RES, MDA-MB-231 and MDA-RES cells was
purified using the RNAiso™ Plus Kit (TaKaRa, Japan). After
RNA purification and DNase I digestion, ribosomal RNAs
(rRNAs) were removed from total RNA with the RiboMinus
Eukaryote Kit (Qiagen, Valencia, CA). The remaining RNAs
were fragmented and used to synthesize cDNAs, followed by end
repairing and adenine connection. Then the sequencing adaptors
were ligated to the fragments and those with suitable sizes were
selected for PCR amplification. An ABI StepOnePlus System
(ThermoFisher Scientific, Massachusetts, USA) and an Agilent
2100 Bioanaylzer (Agilent Technologies, California, USA) were
used to quantify and qualify the sample libraries in the quality
control steps. Finally, all the libraries were sequenced by an
Illumina HiSeqTM 2000 sequencer.

Detection and Quantification of circRNAs
The raw sequencing reads were cleaned by cutting adaptor
sequences and filtering low quality reads that contained more
than 50% low quality bases (base quality < 10) and 5% undefined
nucleotides [NT]. To avoid introducing error into the next
analysis by reads mapped to the remaining rRNAs, we aligned
reads to vertebrate rRNA sequences and filtered the perfect
mapping reads. After this two-step filtering, the remaining
reads were considered clean and used in the subsequent
May 2021 | Volume 11 | Article 669270
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expression profile. Since circRNA is produced by the junction of
the downstream spliced donor and upstream spliced acceptor
sites, called “back-spliced sites”, we used Tophat2 software (26)
to distinguish the back-spliced reads from the clean reads.
CIRCexplorer software (27) uses back-spliced reads and NCBI
RefSeq gene annotations as input to identify circRNA. We kept
only exonic circRNAs for the next analysis. To quantify the
relative expression of circRNAs, the total number of reads
mapped to hg19 were calculated for each sample, and then the
number of back-spliced reads for each circRNA was normalized
by the total number of mapped reads and the read length. The
relative expression level for each circRNA was denoted as spliced
reads per billion mappings (SRPBM) (21).

Validation of circRNAs
Outward-facing primers were designed for circRNAs by using
Primer 5.0. The PCR products across the junction points ranged
from 200 bp to 500 bp. GAPDH served as an endogenous
control. Total RNA from each cell line was extracted using
RNAiso Plus (TAKARA, Japan). qPCR was performed in
triplicate (n=3) on a StepOnePlus instrument (Applied
Biosystems, Thermo Fisher Scientific, USA) using the SYBR
Premix Ex Taq II reagent (TAKARA, Japan). The relative
expression of circRNAs were calculated with the 2−DDCt

approach. Finally, the sequences of the PCR products were
detected by a 3730xl DNA Analyzer (ThermoFisher Scientific,
Massachusetts, USA) and then mapped to reference genome
hg19 to validate the exact junction points and the
cyclization events.

miRNA Binding-Site Prediction
Using circRNA annotation information provided by
CIRCexplorer software, we extracted the sequences of
circABCB1, circEPHA3.1, and circEPHA3.2 from the human
reference genome hg19 using bedtools software (28). Then, we
used 4 software tools, TargetScan v7.1 (29), Miranda (30), Pita
(31), and RNAhybrid (32) to predict potential microRNA target
sites on the 3 circRNAs. The sequences of the miRNAs were
downloaded from miRBase database v20 (http://www.mirbase.
org/ftp.shtml), which contains all mature human microRNA
sequences (2794 entries in total).

miRNA Extraction and Sequencing
The total RNA samples from 3 passages (3 biological replicates)
of the MCF-7, MCF7-RES, MDA-MB-231 and MDA-RES cell
lines were purified using the RNAiso™ Plus Kit (TaKaRa, Japan).
1mg total RNA from each sample was subjected to PAGE gel
separation, and the stripes of 18-30 NT were selected and
recycled. The small RNA libraries were constructed using the
MGIEasyTM Small RNA Library Prep Kit V1 (MGI, Cat No. 85-
05535-00). Briefly, the 3’ and 5’ adaptors were ligated to the
recycled RNA. Then, the cDNAs were prepared and PCR
amplification was performed for 16 cycles. PCR products were
purified on 6% acrylamide gels followed by elution and ethanol
precipitation, and then quantified using a Qubit fluorometer
(ThermoFisher Scientific, Massachusetts, USA) and pooled
Frontiers in Oncology | www.frontiersin.org 3
together to produce single-strand DNA (ssDNA) circles. Then
the ssDNA circles were used to produce DNA nanoballs (DNBs)
via rolling circle replication to amplify the fluorescent signals
during the sequencing process. Then the DNBs were loaded into
sequencing chips, and 50 bp single-end reads were generated on
a BGISEQ-500 platform (BGI, Shenzhen, China) for
subsequent analysis.

miRNA Sequencing Data Analysis
Clean reads were aligned to the mature miRNA sequences
downloaded from the miRBase database v20 (http://www.
mirbase.org/) and BLAST (basic local alignment search tool)
was used to identify known miRNAs. To quantify miRNA
expression levels, we counted read numbers mapped to each
miRNA. Thus, we obtained an miRNA expression matrix. To
find miRNAs differentially expressed between groups, we used
the DESeq2 (33) software package to analyze the expression
matrix in the R environment. The P value was calculated based
on a negative binomial distribution model and adjusted by the
Benjamini-Hochberg method (33).

Chemotherapy-Associated miRNA
Searching and Information Formatting
The search terms “chemotherapy” and “miRNA” were used for a
literature search in the PubMed databases. The abstracts of the
literature identified in the search were download and formatted
with a custom Perl script to form a reference list for
chemotherapy-related miRNA. We used the Pharmaco-miR
database (http://www.pharmaco-mir.org/), which links
miRNAs with drug effects, to download a list of miRNAs
related to the drugs docetaxel and paclitaxel. Finally, we
combined the PubMed references and Pharmaco-miR miRNA
list to form an annotation data source (named Reported.miR,
Supplementary Table 6) for further investigation of the
relationships between miRNAs and chemotherapy.

miRNA Target Gene Prediction and KEGG
Pathway Enrichment
The target genes for eligible miRNAs were predicted using the
miRWalk database (34), and KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathway enrichment analysis for the
predicted genes was performed using the KOBAS (KEGG
Orthology-Based Annotation System) server (35). P values
were calculated using the hypergeometric test. The Q value is
the P value corrected using the Benjamini-Hochberg method.
Pathways with a Q value smaller than 0.01 were considered to be
significantly enriched.

Integrated Analyses of mRNA, lncRNA,
circRNA, miRNA, and CNV
mRNA and long non-coding RNA (lncRNA) expression profiles
were derived from a previous study (36). And circos plots of
CNV (copy number variation) (13) and RNA expression were
drawn using the perl package Circos. Up- and down-regulation
of different kinds of RNA were determined using the DESeq2
software package as described above.
May 2021 | Volume 11 | Article 669270
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RESULTS

Identification of Circular RNAs in MDA-
MB-231 and MCF-7 Breast Cancer Cells
and Their Docetaxel-Resistant Sublines
Ribosomal RNA-depleted RNA-sequencing was performed to
profile circRNAs in the docetaxel-resistant MDA-RES and
MCF7-RES cell lines and their docetaxel-sensitive parental cell
lines, MDA-MB-231 and MCF-7, respectively. 3 biological
replicates were sequenced for each cell line.

A total of 1,825,984,984 raw reads were generated by the
Illumina HiSeqTM 2000 sequencer for the 12 RNA samples
(4 cell lines × 3 biological replicates each), and 1,750,124,272
clean reads (157.5 Gb) were obtained after data filtering,
resulting in 146 million clean reads per sample. By mapping
the reads to a human reference genome (hg19) with Tophat2
software, and using CIRCexplorer software to identify and
annotate circRNAs, we detected 8,246 high-reliability exonic
circRNAs from the 12 samples, with at least two unique back-
spliced reads in more than one sample (Figure 1A and
Supplementary Table 1). In the MCF7 and MDA cells, 7,588
and 5,515 circRNAs were detected, respectively, and 58.9% of
these circRNAs were shared by the two cell lines (Figure 1B).
Frontiers in Oncology | www.frontiersin.org 4
In MCF7 cells, the number of circRNAs ranged from 3,770 to
5,472, and the number of genes generating these circRNAs
ranged from 1,964 to 2,508, while in MDA cells the number of
circRNAs and the genes generating the circRNAs were both
lower than in MCF cells. There were no significant differences in
the number of circRNAs and circRNA genes between the
docetaxel-sensitive and -resistant groups in either of the two
cell types (Figure 1C). By analyzing the length distribution of the
detected circRNAs, we found that 90% were less than 1,200 NT
in length and the most abundant circRNAs ranged between 300
to 400 NT (Figure 1D). This result is consistent with previous
research by Zheng et al. on circRNAs in cancer tissues (21).

To evaluate the expression of circRNAs, we normalized
the number of back-spliced reads with the total number of
mapped reads and read lengths as described above (21). To
get an overview of the distribution and expression level of
circRNAs in both the DRBC cell lines and their parental cell
lines, we calculated the mean SRPBM for each circRNA in
docetaxel-sensitive and -resistant groups across the genome
(Supplementary Table 1). We found that circRNA expression
exhibited significant differences between the docetaxel-sensitive
and -resistant groups in some regions of the genome, especially
in Chromosome 7 q21.12 to Chromosome 7 q21.2, where the
A B C

D E F

FIGURE 1 | Overview of circular RNAs detected in 12 breast cancer cell samples (three biological replicates for each of the MCF-7, MCF7-RES, MDA-MB-231 and
MDA-RES cell lines). (A) The back-spliced reads and the number of circRNAs identified in 12 breast cancer cells. (B) The intersection of circRNAs detected in 6
MDA cells and 6 MCF cells. (C) The number of circRNAs and the number of circRNA genes in each sample. (D) The histogram shows the distribution of all detected
circRNA lengths. (E) The expression level of circRNAs (SRPBM) in different groups throughout the genome. The docetaxel-resistant group is shown in red and
docetaxel-sensitive group in blue. (F) Expression of circRNAs (SRPBM) in different groups across Chromosome 7. The resistant group is shown in red and the
sensitive group in blue.
May 2021 | Volume 11 | Article 669270
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circRNAs were expressed mainly in DRBC cells (Figures 1E, F).
This result indicates that some circRNAs may be specifically
expressed in docetaxel-sensitive or -resistant breast cancer cells.

Identification of circRNA Signatures and
Potential Functional circRNAs in Parental
and Docetaxel-Resistant Cell Lines
To identify circRNAs related to docetaxel sensitivity or
resistance, we comparatively analyzed the expression of
circRNAs in docetaxel-sensitive and -resistant cell lines. We
found that 380 circRNAs were specifically expressed in
docetaxel-resistant cell lines and 274 circRNAs were
specifically expressed in docetaxel-sensitive cell lines (Figure
2A and Supplementary Table 2). We further estimated the
abundance of specifically-expressed circRNAs by calculating
their SRPBM values and the expression frequencies in
docetaxel-resistant or -sensitive cell lines (Figure 2B and
Supplementary Table 2). The top 10 circRNAs with the
highest SRPBM values in docetaxel-resistant and -sensitive cell
lines are shown in Figure 2C.

Notably, we found that three of the most highly expressed
circRNAs were generated by genes closely associated with multi-
drug resistance in cancer cells. Circ.26318 is generated by the
well-known multi-drug resistance gene ABCB1 (12, 37). We
designated this newly identified circRNA “circABCB1”. The
specific detection of circABCB1 in DRBC cells suggests that
the expression of this circRNA may be related to the resistant
phenotype. Two of the highly abundant circRNAs, circ.22881
and circ.5255, were specifically detected in docetaxel-sensitive
parental cells and annotated to the multi-drug resistance gene
EPHA3 (38, 39). We designated these two newly identified
circRNAs “circEPHA3.1” and “circEPHA3.2”.

To investigate the relationship between these three circRNAs
and their linear isoforms, we performed correlation analysis on
the expression data of these three circRNAs and their linear
isoforms. We found that the level of circABCB1 was positively
correlated with the level of linear ABCB1 transcripts (Pearson
correlation test, R=0.684, P=0.0142, Figure 2D). Similarly,
expression of circEPHA3.1 and circEPHA3.2 were both
positively correlated with the expression of the linear EPHA3
transcripts (Pearson correlation test, R=0.829, P=8.5×10-4 and
R=0.893, P=9.11×10-5, Figure 2D). These results suggested that
there may be a regulatory relationship between these circRNAs
and their linear isoforms.

Genomic Structure Analysis and Validation
of circRNAs Generated by ABCB1
and EPHA3
We first analyzed the genomic structure of these three circRNAs.
Our analyses showed that circABCB1 was formed by exon7,
exon8, exon9 and exon10 of the ABCB1 gene. The 5’ boundary of
exon7 joins with the 3’ boundary of exon10 to yield a 661 bp-
length lariat structure (Figure 3A). The circEPHA3.1 was formed
by the junction of the 5’ and the 3’ boundaries of exon3 of the
EPHA3 gene and the length of the circular product was 661 bp.
The circEPHA3.2 was formed by the junction of the 5’ boundary
Frontiers in Oncology | www.frontiersin.org 5
of exon4 and the 3’ boundary of exon5 of the EPHA3 gene and
the length of circEPHA3.2 was 492 bp (Figure 3C).

To validate the circRNAs generated by the ABCB1 and
EPHA3 genes, outward-facing primers were designed based on
the sequences flanking both sides of the junction points of each
circRNA. The three putative circRNAs — circABCB1,
circEPHA3.1 and circEPHA3.2 — were validated and
quantified with cDNA from the DRBC cells and their parental
cells. Furthermore, the amplicons were validated by Sanger-
sequencing. The qPCR data confirmed a strong up-regulation
of circABCB1 in docetaxel-resistant cells (Figure 3B). Since the
sequences obtained from Sanger sequencing perfectly mapped
onto the flanking sequences on both sides of the junction points
of circABCB1 (Figure 3A), this demonstrated the existence of
this circRNA. Moreover, by performing qPCR, we also found
that the expression levels of both circEPHA3.1 and circEPHA3.2
were strongly down-regulated in DRBC cells compared to the
docetaxel-sensitive cells (Figure 3D). Sanger sequencing on these
amplicons also demonstrated the existence of these two
circRNAs (Figure 3C).

Prediction of the Interactions of
circABCB1, circEPHA3.1 and circEPHA3.2
with miRNA
Since circRNAs bind miRNAs through their miRNA response
elements (MREs), we screened the MREs on the sequences of
circABCB1, circEPHA3.1 and circEPHA3.2. To improve the
accuracy of these predictions, we employed 4 software tools
(TargetScan v7.1, Miranda, Pita, and RNAhybrid) to predict
potential miRNA target sites on the three circRNAs, and the
miRNAs that were predicted to bind to the same circRNA
by at least two software tools were chosen as candidate target
miRNAs for that circRNA. All the predicted candidate miRNAs
are listed in Supplementary Table 3. The interaction networks
of the three circRNAs and the predicted candidate miRNAs
were constructed with Cytoscape. A total of 903 miRNAs were
predicted to bind to the three circRNAs, within which 139
miRNAs were predicted by 3 software tools, and 31 miRNAs
were predicted by all four of the software tools (Figure 4 and
Supplementary Table 3).

miRNA Sequencing Reveals the Potential
Regulation of miRNA Expression by
circRNAs in DRBC Cells
To further investigate the interaction of circRNAs and miRNAs,
we performed miRNA sequencing using total RNA purified from
the MCF-7, MCF7-RES, MDA-MB-231 and MDA-RES cells
(three biological replicates were sequenced for each cell line).

By performing bioinformatic analysis, we identified a total of
2104 miRNAs from the 12 samples (Supplementary Table 4).
miRNAs that were differentially expressed between the
docetaxel-sensitive and -resistant cell groups were identified
using DESeq2 (33). The criteria of |log2(fold-change)|>1,
P<0.05 was used to select significantly differentially expressed
(SDE) miRNAs. We identified 82 SDE miRNAs (44 down-
regulated and 38 up-regulated) in DRBC cells by comparing
May 2021 | Volume 11 | Article 669270
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them to docetaxel-sensitive breast cancer cells (Figure 5A and
Supplementary Table 5).

To select the potentially functional SDE miRNAs, we
conducted a literature survey of PubMed databases. The
miRNAs reported to be associated with chemotherapy
resistance were selected and formatted as a reference list and
combined with the Pharmaco-miR docetaxel- and paclitaxel-
related miRNA list to establish a data source linking miRNAs to
chemotherapy resistance and the response to docetaxel and
paclitaxel (named Reported.miR, Supplementary Table 6).

To investigate the potential relationships of the circRNAs and
miRNAs and their contribution to chemotherapy resistance, a
three-way Venn diagram was drawn using the SDE miRNAs
(SDE.miR), the miRNAs from literature survey (Reported.miR)
Frontiers in Oncology | www.frontiersin.org 6
and the miRNAs predicted to bind to the three circRNAs
(Predicted.miR) (Figure 5B).

The result showed that there are 24/82 (29%) SDE miRNAs
that overlap with the miRNAs in Reported.miR list, indicating
that nearly one third of the SDE miRNAs identified in our DRBC
cells were associated with response to chemotherapy and may
contribute to docetaxel resistance in breast cancer cells
(Supplementary Table 7). Moreover, there are 36/82 (43.9%)
SDE miRNAs that overlap with the miRNAs in the
Predicted.miR list, suggested that quite a large portion of SDE
miRNAs are predicted by at least two software tools to bind the
three circRNAs. More intriguingly, we found that within the 24
SDE miRNAs associated with response to chemotherapy, 8 were
also predicted to bind to the three circRNAs by at least two
A

C

D

B

FIGURE 2 | Expression level of circRNA specifically detected in docetaxel-resistant or -sensitive cells. (A) The intersection of circRNAs detected in docetaxel-
resistant and -sensitive cells after filtering. (B) CircRNAs specifically detected in the docetaxel-resistant and docetaxel-sensitive groups. The central heatmap
indicates the expression level (SRPBM) of 654 specifically expressed circRNAs in each sample. The bar plot next to the central heatmap indicates the sum of
SRPBM in all samples of a circRNA. The bar plots on the left or right indicate the frequency of a circRNA detected in the samples. The red rectangle marks the top
10 circRNAs specifically detected in the docetaxel-resistant or -sensitive groups. (C) Detailed information for the top 10 circRNAs specifically detected in the
docetaxel-resistant or -sensitive groups. (D) Correlation of the three highly abundant circRNAs and their linear isoforms from the same genes.
May 2021 | Volume 11 | Article 669270
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software tools (Figures 5B–D and Table 1). These results
strongly suggest that the three potentially functional circRNAs
— circABCB1, circEPHA3.1 and circEPHA3.2—may contribute
to chemotherapy resistance or sensitivity via regulation of these
miRNAs. We then used the miRWalk database to predict the
target genes for the 8 eligible miRNAs, and performed KEGG
pathway analysis for the target genes (Supplementary Table 8).
We found that the target genes for the 8 eligible miRNAs were
significantly enriched in 13 signaling pathways (Figure 5E).
Notably, the PI3K-Akt signaling pathway and AGE-RAGE
signaling pathway in diabetic complications, are consistent
with pathway enrichment for SDE mRNAs between the
Frontiers in Oncology | www.frontiersin.org 7
docetaxel-sensitive and -resistant cells groups in our previous
study (36) (Supplementary Figures 2A, B).

Integrated Analyses of mRNA, lncRNA,
circRNA and miRNA in Docetaxel
Resistant Breast Cancer Cells
mRNA and lncRNA expression data were derived from our
previous study that used the same samples (36). We integrated
the differential expression data of mRNA, lncRNA, circRNA and
miRNA in docetaxel-resistant breast cancer cells and located the
RNAs on the whole genome (Figure 6A). We also adopted the
whole exome sequencing data of (13) and calculated the copy
A B

C D

FIGURE 3 | Structure analysis and qPCR validation of circRNAs. (A) The upper panel shows the cyclized exons and the structure of circABCB1 in the ABCB1 gene
locus. The bottom panel shows Sanger sequencing of the PCR product of the junction sequence. (B) qPCR validation of circABCB1 expression in MCF-7 and MDA
cells, with GAPDH used as an endogenous control. The heights of the red columns represent the logarithmically transformed mean fold-changes between the
resistant and parental cells detected by qPCR. Data from triplicate measurements are presented as mean ± standard error. (C) The upper panel shows the cyclized
exons and structures of circEPHA3.1 and circEPHA3.2 in the EPHA3 gene locus. The bottom panel shows Sanger sequencing of the PCR product of the junction
sequence. (D) qPCR validation of circEPHA3.1 and circEPHA3.2 expression in MCF-7 and MDA cells, with GAPDH used as an endogenous control. The heights of
the blue columns represent the logarithmically transformed mean fold-changes between the resistant and parental cells detected by qPCR. Data from triplicate
measurements are presented as mean ± standard error.
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number changes between the docetaxel-resistant and -sensitive
cell lines (Figure 6B).

By comparing the regions of changes in RNA and DNA copy
number, we found that Chromosome 7 q21.12-q21.2 was a
common region dominated by DNA amplification and RNA
overexpression (Supplementary Table 9). Some SDE miRNA
and lncRNA loci, and specifically expressed circRNAs, overlap
with the CNV regions identified by (13). Intriguingly, we
observed DNA copy number gain and overexpression of
ABCB1 mRNA and lncRNAs as well as circRNAs specifically
expressed in DRBC cells in the ABCB1 gene locus. It seems
reasonable to suggest that overexpression of different RNA
molecules in the ABCB1 gene locus may be caused by
amplification of the ABCB1 gene during exposure to docetaxel
(13). Overexpression of ABCB1 mRNA may directly contribute
to docetaxel resistance, and overexpression of lncRNAs in the
ABCB1 gene locus was also linked to upregulation of ABCB1
mRNA in our previous study (36).
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In this study, we identified specifically expressed circABCB1
in docetaxel-resistant breast cancer cells, and the qPCR
experiment confirmed the overexpression of circABCB1 in
docetaxel-resistant breast cancer cells in comparison to the
sensitive parental cells, which indicated that the expression of
circABCB1 in docetaxel-resistant breast cancer cells may also has
been caused by the amplification of ABCB1 gene.

Although we did not find any SDE miRNAs locating within
the region of Chromosome 7 q21.12-q21.2. According to the
hypothesis of ceRNETs (competing endogenous RNAs
networks), some miRNAs may bind to multiple RNA
molecules to form competing endogenous RNAs networks and
regulate the expression of target genes (56). For example, in our
study mir-877-3p was found to bind to both of the circABCB1
and ABCB1 mRNA (Figure 4; Supplementary Table 8), which
indicated that circABCB1 may act as a competing endogenous
RNA (ceRNA) to sponge miR-877-3p and led to upregulation of
ABCB1 expression and finally contribute to docetaxel resistance
FIGURE 4 | Interaction network of three circRNAs and miRNA. Nodes in the plot represent a circRNA or a miRNA in the interaction network, edges in the plot
represent the binding of miRNAs to circRNA. Attributes of the nodes are represented by shape and color. Red hexagons represent circRNAs. Purple triangle nodes
indicate microRNAs that target circRNAs as predicted by 4 software tools. Cyan diamond nodes indicate microRNAs that target circRNAs as predicted by 3
software tools. Yellow dots indicate microRNAs that target circRNAs as predicted by 2 software tools. The color of the edges also indicates the number of tools
used. Purple indicates that 4 software tools predicted the relationship, while cyan indicates 3 tools and light grey indicates 2 tools.
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in breast cancer cell. Thus, combining observations of changes in
DNA and RNA may help to deepen understanding of the
mechanisms underlying docetaxel resistance in breast cancer.
DISCUSSION

Taxanes (including docetaxel and paclitaxel) have been first-line
treatments for breast cancer (57). However, inherited or acquired
resistance hampers the usefulness of these drugs, and no
biomarkers have been identified with sufficient clinical
evidence to predict taxane resistance (12).

Although the functions of circRNAs remain largely unknown,
recent studies have shown that they can act as microRNA
sponges (20) and affect mRNA expression by competing with
linear splicing (18). Accumulating evidence also has shown that
the circRNA-miRNA-mRNA axis plays important regulatory
roles in the development of different types of cancer (22, 58).
However, there is still very little data available regarding any
roles circRNAs might play in responses to medical treatments.
Recently, a study indicated that dysregulation of circRNAs was
Frontiers in Oncology | www.frontiersin.org 9
involved in the development of radiation resistance in esophageal
cancer (23) and more recently, three independent studies have
linked circRNAs to chemotherapy sensitivity/resistance in acute
myeloid leukemia (24), colorectal cancer (59) and breast cancer
(25). These findings raise the possibility that circRNAs may also
affect the response to docetaxel in breast cancer.

To investigate the potential roles of circRNAs in DRBC cells,
we carried out RNA sequencing and analysis of circRNAs in two
DRBC cell lines and their parental cell lines. CircRNAs were
detected by CIRCexplorer, which is one of the most reliable
software tools available for analysis of circRNAs (especially for
detection of exonic circRNAs), and these results were used in
conjunction with those of four other algorithms (60). In total, we
detected 8,246 highly reliable exonic circRNAs from the 12
samples. By comparing the expression of circRNAs in
docetaxel-sensitive and -resistant cell lines, 380 circRNAs were
found to be specifically expressed in docetaxel-resistant cell lines,
and 274 circRNAs were found specifically expressed in
docetaxel-sensitive cell lines (Figures 2A, B), indicating these
circRNAs may be associated with the development of resistance
to docetaxel.
A B

D E

C

FIGURE 5 | Analysis of miRNA targeting of circRNAs. (A) Volcano plot of all miRNAs. The X-axis represents the log2(fold-change) of miRNA between docetaxel-
resistant cells and -sensitive cells. The Y-axis represents the -log10(P value) of the differential expression between the two groups. Blue dots represent miRNAs that
were SDE by the two groups. Red dots represent the 8 eligible miRNAs. (B) A three-way Venn diagram representing the intersection of 3 miRNA groups: the red
cycle represents miRNAs that may relate to chemotherapy reported in PubMed, the green cycle represents SDE miRNAs in our data, and the blue cycle represents
miRNAs predicted to target the 3 potentially chemotherapy-resistant circular RNAs, miRNAs predicted by at least three software tools are indicated by red letters.
(C, D) Log2(fold-change) of 8 eligible miRNAs. (E) KEGG pathway enrichment for the target genes of the 8 eligible miRNAs.
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Low levels of circRNAs may not be sufficient to affect their
target miRNAs (24), and we therefore used SRPBM values to
select potentially functional circRNAs by ranking all the
specifically expressed circRNAs in both docetaxel-resistant
and -sensitive cell lines by their abundance. Notably,
among the top 10 most abundant circRNAs in the docetaxel-
resistant and -sensitive cell lines, we identified the three most
highly expressed circRNAs, which were generated by genes
Frontiers in Oncology | www.frontiersin.org 10
closely associated with docetaxel resistance. Circ.26318 was
detected in 5/6 of the DRBC cells and ranked second in the
specifically-expressed circRNAs list. Intriguingly, gene
annotation revealed that this circRNA was generated by the
most studied multi-drug resistance gene, ABCB1, which has been
reported to be dramatically up-regulated in DRBC cells and
recognized as a key mediator of docetaxel resistance (12). We
designated the name circABCB1 for this newly identified circular
A B

FIGURE 6 | Integrated profile of RNAs and copy number variation. (A) Expression profiles of miRNA, lncRNA, circRNA and mRNA in DRBC cell lines. The first
(outermost) circle represents the genome location. And the second to the fifth circles show SDE circRNA, mRNA, lncRNA and miRNA. All significantly expressed
RNAs were obtained by comparing resistant samples against the corresponding sensitive samples, with red and blue bars for increased and reduced expression,
respectively. (B) DNA copy number variations in MCF7 and MDA cell lines are depicted by the outer and inner circles, with the blue and red bars representing
deletion and amplification, respectively.
TABLE 1 | Differential expression of the 8 miRNAs that were associated with response to chemotherapy and predicted to bind to the three circRNAs by at least two
software tools.

miRNA log2FC(Resistant/Sensitive) P value circRNAtarget Publications associated with chemotherapy response

miR-346 2.04 5.51x10-3 circEPHA3.1 Du L. et al. (40)
Braun FK. et al. (41)
Yang et al. (42)

miR-124-3p 1.58 1.22x10-2 circEPHA3.2 Liu YX. et al. (43)
He C. et al. (44)
Khalil S. et al. (45)

miR-204-5p -3.64 1.95x10-5 circEPHA3.2 Bian Z. et al. (46)
Yin Y. et al. (47)

miR-1248 1.78 1.69x10-2 circEPHA3.2 Xu et al. (48)
miR-204-3p -3.30 5.01x10-5 circEPHA3.2 Chen PH. et al. (49)
miR-34b-3p -1.87 2.96x10-2 circABCB1 Zhou et al. (50)

Hermeking et al. (51)
miR-29c-3p -1.10 3.61x10-2 circABCB1 Zhang et al. (52)

Ma X. et al. (53)
miR-877-3p -1.05 1.25x10-2 circABCB1 Huang et al. (54)

Li et al. (55)
FC, fold-change. The miRNAs differentially expressed between the parental and docetaxel-resistant cell lines were calculated by DESeq2. The P value was calculated based on a negative
binomial distribution model.
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RNA. We found that circABCB1 was formed by the back-spliced
junction of exon7 and exon10 of the ABCB1 gene, which results
in a 661 bp lariat structure consisting of exon7, exon8, exon9 and
exon10. This back-spliced junction was validated by qPCR
Sanger sequencing.

It is well documented that circRNAs are not simply the
byproducts of mis-splicing (21), and many circRNAs have
been shown to play a role in different types of cancer (22, 61).
Although the relationships between circular and linear RNA
isoforms are largely unknown, it has been shown that circRNAs
can regulate genes by competing with linear splicing (18).
Interestingly, a recent study has also shown that cir-ITCH
increases the expression of ITCH, probably by competing for
binding to its associated miRNAs (61). This finding suggests that
the functions of circRNAs may be closely associated with those of
their linear isoforms. In our study, circABCB1 was specifically
detected in DRBC cells by RNA-sequencing, and its levels
positively correlated with the linear transcripts of the ABCB1
gene. These results strongly suggest that circABCB1 may affect
the expression of ABCB1 linear transcripts and thus contribute
to docetaxel resistance. Therefore, circABCB1 was selected for
further investigation as a potential functional circRNA.

Moreover, in the top-10 most abundant circRNAs list for
docetaxel-sensitive cell lines, we found that two highly abundant
circRNAs, circEPHA3.1 and circEPHA3.2, were specifically
expressed in docetaxel-sensitive MCF-7 breast cancer cells, and
the expression of these two circRNAs was positively correlated
with the linear transcripts of EPHA3 gene (Figure 2D). These
two circRNAs were also validated by qPCR Sanger sequencing.
EPHA3 encodes a transmembrane protein that belongs to the
ephrin receptor family. This gene has been implicated in various
biological processes, including cancer development and
progression (62, 63). Recent studies have shown that EPHA3 is
down-regulated in chemotherapy-resistant ovarian cancer cells
(38) and implicated in regulation of multidrug resistance in small
cell lung cancer via the PI3K signaling pathway, which has been
frequently linked to taxane resistance (39, 64). High expression
of circEPHA3.1 and circEPHA3.2 in docetaxel-sensitive breast
cancer cells, and their depletion in DRBC cells, indicates that
these two circRNAs may be involved in maintaining docetaxel
sensitivity in breast cancer cells.

Besides ABCB1 and EPHA3, we found that the annotation
genes for the top 10 circRNAs in docetaxel-resistant breast
cancer cells are involved in neuronal development, synaptic
vesicle trafficking, histone-binding, and maintaining epithelial
function via the PI3K/AKT signaling pathways. In contrast,
those in docetaxel-sensitive breast cancer cells are involved in
assembly of the 26S proteasome, G-protein ligand binding,
nuclear receptor coactivation, intracellular trafficking,
chromatin remodeling, and negative regulation of the TGF-
beta signaling pathway (Supplementary Table 10). We
speculate that some of these genes may be implicated in
mediating signal transduction and maintaining the docetaxel-
resistant or -sensitive phenotypes in a synergistic way. Although
we found none of these genes were directly implicated in
docetaxel resistance, some of the genes have been reported to
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be associated with sensitivity or resistance to chemotherapy or
targeted-therapy drugs, such as PCLO, BPTF and CHD4. Thus,
the circRNAs generated by these genes may contribute to
docetaxel resistance or sensitivity in breast cancer cells. Future
functional studies of circRNAs potentially associated with
docetaxel resistance in breast cancer cells should take these
circRNAs into consideration.

Since acting as an miRNA sponge is currently the most
commonly reported function for circRNA (65), and several
circRNAs have been shown to bind to miRNAs and thus
repress their function (20, 34), we hypothesized that the three
candidate circRNAs may act as inhibitors of miRNA and thereby
regulate expression of miRNA target genes. Therefore, we
performed a bioinformatics analysis to identify miRNA targets
for these three circRNAs. As with the database miRWalk (34),
this is an effective way to obtain accurate predictions via
integrating different algorithms. Four prominent target
prediction programs, including TargetScan v7.1, Miranda, Pita
and RNAhybrid, were employed to predict potential miRNA
target sites on the three circRNAs, and finally, 903 overlapping
miRNAs predicted by at least two software tools were chosen as
candidate targets for the three circRNAs (Figure 4).

To further investigate the relationships between the circRNAs
and miRNAs, we performed miRNA sequencing in the DRBC
cell lines as well as in their parental cell lines, and identified 82
SDE miRNAs. By conducting a literature survey in the PubMed
and Pharmaco-miR databases, we found that 29% (24/82) of the
SDE miRNAs identified in our DRBC cells were associated with a
response to chemotherapy, suggesting that these SDE miRNAs
may contribute to docetaxel resistance in breast cancer cells.
More intriguingly, eight of these chemotherapy-associated SDE
miRNAs were also predicted to bind to the three circRNAs by at
least two software tools. These results strongly suggest that the
three potential functional circRNAs (circABCB1, circEPHA3.1
and circEPHA3.2) may together regulate the chemotherapy-
associated SDE miRNAs and thus affect sensitivity for
docetaxel in breast cancer cells.

Among the 8 eligible miRNAs, we found that miR-346 was
the only miRNA predicted by all four of the software tools to
bind to circEPHA3.1, indicating the robustness of this result.
MiR-346 has been shown to act as an oncogenic miRNA in
cutaneous squamous cell carcinoma (66) and promote a
malignant phenotype in cervical cancer cells (67). More
importantly, a recent study showed that the level of miR-346
in breast cancer tissues was higher than in non-cancerous tissues,
and overexpression of miR-346 in a breast cancer cell line
promoted resistance to docetaxel (42). These reports are
consistent with ours in showing that miR-346 is significantly
up-regulated in DRBC cells compared with their docetaxel-
sensitive parental cell lines (Figure 5C), and suggest that the
dramatic down-regulation of circEPHA3.1 in DRBC cells may
reduce binding and inhibition of miR-346, thus contributing to
development of docetaxel resistance.

MiR-1248 was predicted to bind to circEPHA3.2 by three
different software tools and was found to be significantly up-
regulated in DRBC cells. Although the function of miR-1248
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remains largely unknown, it has been implicated in regulating
the response to platinum-based chemotherapy (48). It would be
interesting to further investigate the relationship between
circEPHA3.2 and miR-1248, and to uncover the exact function
of miR-1248 in DRBC.

MiR-877-3p, miR-29c-3p, and miR-34b-3p are three miRNAs
significantly down-regulated in DRBC cells and predicted to bind
to circABCB1 by at least two software tools. By performing a
literature survey, we found that miR-877-3p functions as a tumor
suppressor and inhibits bladder cancer proliferation (55),
consistent with our data showing that over-expression of miR-
877 in hepatocellular carcinoma cells increases paclitaxel
sensitivity (54). Similarly, low expression of miR-29c was
reported to be positively associated with chemotherapy
resistance in nasopharyngeal carcinoma patients (52). More
interestingly, miR-34b was reported to directly target ABCB1
mRNAs and increase the sensitivity of human osteosarcoma cells
to multiple chemotherapeutic agents (50). These findings suggest
that circABCB1 probably binds to and down-regulates miRNAs
associated with chemotherapy sensitivity in cancer and thus
facilitates cancer cell proliferation while contributing to
docetaxel resistance in breast cancer. Therefore, the functions
of circABCB1 should be explored further.

Finally, to shed some light on the function of the eight eligible
miRNAs, we predicted their target genes and performed pathway
enrichment analyses for the predicted genes. We identified 13
significantly enriched pathways, and found the PI3K-Akt
signaling pathway and AGE-RAGE signaling pathway in
diabetic complications to be consistent with the pathway
enrichment results for the SDE mRNAs identified in the same
cell lines (36) (Supplementary Figures 2A, B). In recent years,
disruptions of the PI3K-Akt signaling pathway have been
frequently identified in cancers, and dysregulation of this
pathway has been linked to docetaxel resistance in prostate
cancer (68, 69). Although the role of the AGE-RAGE signaling
pathway in chemotherapy resistance is largely unknown, it has
been reported to activate the PI3K-Akt signaling pathway (70).
Taken together, our results indicate that dysregulation of the
PI3K-Akt signaling pathway may contribute to the development
of docetaxel resistance in breast cancer, and certain circRNA-
miRNA-mRNA axes may regulate this pathway.

The current in vitro and in silico study is the first to identify
circRNAs associated with taxane resistance in breast cancer cells,
and we have identified circRNAs generated by well-known
multiple drug-resistance genes in DRBC cells and uncovered
potential functions of these circRNAs. Also, we obtained a global
profile of multi-level RNA alterations in DRBC cells that may
lead to a more complete and comprehensive understanding of
the mechanisms underlying docetaxel resistance in breast cancer.

These results should be followed up by (1) analyses of some of
the identified circRNAs that were not analyzed, (2) experimental
investigations of the functions of the circRNAs related to taxane-
resistant phenotypes, and (3) analyses of clinical material from
breast cancer patients who have relapsed while undergoing
taxane treatment.
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To sum up, we have performed RNA and miRNA sequencing
in two DRBC cell lines and their docetaxel-sensitive parental cell
lines. Our analyses revealed different circRNA signatures in the
docetaxel-resistant and -sensitive breast cancer cells, and for the
first time, uncovered circRNAs generated by multidrug-
resistance genes in taxane-resistant cancer cells. CircABCB1
was identified and validated as strongly up-regulated in DRBC
cells, whereas circEPHA3.1 and circEPHA3.2 were strongly
down-regulated. Furthermore, we investigated potential
functions of these circRNAs by bioinformatics analysis, and
miRNA analyses were also performed to uncover potential
interactions between circRNAs and miRNAs. Our data show
that circABCB1, circEPHA3.1 and circEPHA3.2 probably
sponge up the eight chemotherapy-associated SDE miRNAs
and contribute to docetaxel resistance via the PI3K-Akt and
AGE-RAGE signaling pathways. Our results should help to
deepen understanding of the mechanism of docetaxel
resistance in breast cancer and identify novel therapeutic
targets or predictive biomarkers for overcoming docetaxel
resistance in breast cancer.
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