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Abstract. The sperm acrosome reaction is a Ca2÷-de - 
pendent secretory event required for fertilization. Ad- 
hesion to the egg's zona pellucida promotes Ca 2÷ influx 
through voltage-sensitive channels, thereby initiating 
secretion. We used potentiometric fluorescent probes 
to determine the role of sperm membrane potential in 
regulating Ca 2÷ entry. ZP3, the glycoprotein agonist of 
the zona pellucida, depolarizes sperm membranes by 
activating a pertussis toxin-insensitive mechanism with 
the characteristics of a poorly selective cation channel. 

ZP3 also activates a pertussis toxin-sensitive pathway 
that produces a transient rise in internal pH. The con- 
certed effects of depolarization and alkalinization open 
voltage-sensitive Ca 2÷ channels. These observations 
suggest that mammalian sperm utilize membrane po- 
tential-dependent signal transduction mechanisms and 
that a depolarization pathway is an upstream transduc- 
ing element coupling adhesion to secretion during fer- 
tilization. 

T 
HE acrosome reaction is a Ca2+-dependent secre- 
tory event in sperm that is an obligatory early step 
in the fertilization process. It results in the release 

of acrosomal granule contents, the extensive reorganiza- 
tion of sperm surface proteins, and the display of new 
membrane domains at the surface. Only sperm that have 
completed the acrosome reaction are capable of fusing 
with eggs (reviewed by 67). 

In mammals, acrosome reactions are triggered by con- 
tact with the zona pellucida (ZP), 1 the egg's extracellular 
matrix, or by treatment with soluble ZP extracts (reviewed 
by 60). Such extracts contain three glycoproteins, desig- 
nated ZP1, ZP2, and ZP3 (reviewed by 63 and 64). ZP3 
completely accounts for the acrosome reaction-inducing 
agonist activity, as demonstrated by studies with highly pu- 
rified oocyte ZP3 (10, 45) and with recombinant ZP3 ex- 
pressed by mammalian cells (5, 35). The mechanism of 
ZP3 action is presently a central, unresolved aspect of fer- 
tilization models. 

IntraceUular Ca 2÷ ([Ca2+]i) mediates stimulus-secretion 
coupling in many cellular systems, including the ZP3-acti- 
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1. Abbreviat ions used in this paper. BCECF, 2,7-bis(carboxyethyl)-5(6)- 
carboxyfluorescein; [Ca2+]i, intracellular CaZ+; DiSBAC2(3), bis-(1,3-di- 
ethylthiobarbituric acid) trimethine oxonol; DISC3(5), 3,3'-dipropylthiodi- 
carbocyanine iodide; pI-Ij, internal pH; PTx, pertussis toxin; ZP, zona pel- 
lucida, mZP and bZP, mouse and bovine zona pellucida. 

vated pathway in sperm. ZP glycoproteins produce sus- 
tained elevatations of sperm [Ca2÷]i, as reported by ion-se- 
lective fluorescent probes (4, 14, 21, 25, 38). Several lines 
of evidence indicate that ZP signals promote Ca 2+ influx 
through voltage-sensitive channels during initiation of acro- 
some reactions: a) ZP-dependent acrosome reactions and 
[Ca2+]i elevations are inhibited by several different struc- 
tural classes of voltage-sensitive Ca 2+ channel antagonists, 
including 1,4-dihydropyridines (21, 25). b) Depolarization 
of sperm membrane potential with [K÷]o or with gramaci- 
din D produces [Ca2+]i elevations as well as acrosome re- 
actions in the absence of ZP3. c) Depolarization-dependent 
responses are also attenuated by antagonists of voltage- 
sensitive Ca 2÷ channels (2, 25). This channel mediates an 
essential component of the ZP-dependent [Ca2+]i  eleva- 
tion leading to acrosome reactions and is a likely site of ac- 
tion for the reported human contraceptive effects of 1,4- 
dihydropyridines (6, 31). 

Present understanding of the mechanism of ZP3 signal 
transduction includes the identification of candidate sperm 
surface receptors (12, 39, 42) and the demonstration that 
both G protein (19, 27, 62) and tyrosine kinase (40, 57) sig- 
naling pathways are stimulated. Yet the coupling between 
receptor activation and Ca 2+ channel opening is presently 
not well understood. In somatic cells, extracellular signals 
activate voltage-sensitive Ca 2÷ channels by depolarizing 
membrane potential as well as by modulating channel 
function through phosphorylation of channel proteins or 
by a rapid, membrane-delimited mechanism that may rep- 
resent a direct interaction with G protein subunits (re- 
viewed by 32 and 66). 
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Here, the role of sperm membrane potential as an effec- 
tor of ZP3 signals was examined using potentiometric flu- 
orescent indicators. We find that ZP and ZP3 depolarize 
mouse and bovine sperm membrane potential by activat- 
ing a pertussis toxin (PTx)-insensitive pathway that has 
the characteristics of a poorly selective cation channel. ZP 
signals also activate a second PTx-sensitive pathway that 
produces transient elevations of sperm internal pH (pHi). 
Voltage-sensitive Ca 2+ channels function as a coincidence 
detector by integrating these two ZP-derived signals. These 
results suggest that sperm membrane potential is an im- 
portant effector of egg-induced sperm activation. 

Materials and Methods 

Solutions and Chemicals 

Bovine and mouse sperm were incubated in dTALP and in Hepes-buff- 
ered CM media, respectively (68). Medium HNKG contains (raM) 25 
Hepes, 120 Na÷-gluconate, and 5 K+-gluconate. Medium NT contains 
(mM) 105 N-methyl-D-glucamine + (NMDG +, adjusted to C1- form with 
HCI) and 22.6 Tris-carbonate, as well as concentrations of KC1, CaCl2, 
MgCI2, KHEPO4, Hepes, and metabolic substrates appropriate for bovine 
and mouse sperm (68). Additional modifications of these media, de- 
scribed under Results, are obtained by compensatory adjustment of 
[NaC1] or of [NMDG+CI-]. PO42- was removed during experiments with 
Cd z+, Co 2+, and La 3+. Polyvinylpyrrolidone (M~ 40,000) was substituted 
for albumin in protein-free media. Free divalent metal ion concentrations 
were calculated using the ALEX program (1). All media also contained 
22.5 mM lactic acid and 1 mM pyruvic acid and were adjusted to pH 7.4. 

Chemicals were obtained from the following sources: bis-(1,3-diethylth- 
iobarbituric acid) trimethine oxonol (DiSBAC2[3]), 3,3'-dipropylthiadi- 
carbocyanine iodide (DISC3[5]), ionomycin, and valinomycin from Molec- 
ular Probes, Inc. (Eugene OR); and pertussis toxin (PTx, with lots 
screened for activity towards intact sperm as described, 25), gramicidin D, 
and all other chemicals from Sigma Immunochemicals (St. Louis, MO). 

Biological Preparations 
Sperm were isolated from bovine seminal secretions and from mouse 
caudae epididymides, capacitated in vitro, and assayed for the ability to 
undergo ZP-initiated acrosome reactions and to fertilize eggs in vitro as 
described previously (25). Mouse and bovine ZPs were obtained from 
ovarian homogenates and soluble extracts were obtained as described 
(25). ZP glycoproteins were purified from mouse by SDS-PAGE under 
nonreducing conditions (8) and from bovine by two-dimensi0nal PAGE. 
SDS and other electrophoretic reagents were removed by sequential dial- 
ysis in 8 M urea and in a 25 mM Hepes/125 mM NaC1, pH 7.4, medium (8). 
Acrosome reactions were assayed by the Coomassie blue dye-binding 
method (43, 45) and, in fluorescence microscopic experiments, by differ- 
ential interference contrast microscopy (11). 

Experiments determining the zona pellucida-dependent alteration 
of Ca2+i, pHi, and acrosomal secretion used 100 t~g/ml zona pellucida 
glycoprotein concentration, similar to dose-response relationships de- 
scribed previously (10, 23). In contrast, membrane depolarization occurs 
at ~< 1 ixg/ml zona pellucida glycoprotein (see Fig. 2). Such differences 
may reflect distinct experimental conditions, such as the removal of media 
protein before membrane potential determinations, as well as the charac- 
teristics of a bifurcated signal transduction mechanism (see Discussion). 

Membrane Potential Determinations 
Sperm population membrane potentials were determined from the fluo- 
rescent emission of DiSBAC~(3) and of DiSCa(5), as previously (68). 
Sperm were capacitated, resuspended in albumin-free media (2.5-5 × 106 
sperm/ml), incubated with fluorescent probes (DiSBAC2[3], 0.5 I~M; 
DISC3[5], 0.25 ~M), and fluorescence emission monitored with an A1- 
phaScan II spectrofluorometer, as described (68). Excitation/emission 
wavelength pairs of 530/575 nm and 620/670 nm (3 nm bandpass) were 
used for DiSBAC~(3) and DISC3(5), respectively. Populations are stirred 
during data acquisition, particularly since some treatments (e.g., Cd 2÷ and 
Ni 2÷ experiments) reversibly inhibit sperm motility. Minimally disruptive 

conditions for stirring sperm suspensions were described (68). Values rep- 
resent population-averaged, apparent membrane potentials. 

pH i and [ Ca2+ ] i Determinations 
Sperm pHi and [Ca2+]i were calculated from the fluorescence emission of 
intracellular 2,7-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and 
fura 2, respectively. Methods for incorporation of dyes into sperm by incu- 
bation with membrane-permeant ester precursor forms, for sperm immo- 
bilization on Cell-Tak-coated coverslips, for image acquisition and analy- 
sis, and for the computation of apparent pH i and [Ca2+]i values were 
described previously (21, 24, 69). 

Results 

Effects of  Zonae PeUucidae on Sperm 
Membrane Potential 

The membrane potentials of capacitated mouse and bovine 
sperm populations were determined from the fluorescence 
emission of the anionic oxonol, DiSBAC2(3), and confirmed 
in parallel experiments with the cationic carbocyanine, 
DISC3(5). Following correction for the contributions of 
mitochondrial potentials to probe signals, the membrane 
potentials of mouse sperm populations reported by these 
two probes were -5 4  ___ 4 and -61  +_ 7 mV, respectively, 
while values for bovine sperm were -51  _ 3 and -57  ___ 8 
mV, respectively. These values are similar to those ob- 
tained previously (25, 68) and are stable during several 
minutes in protein-free media (Fig. 1 A and B; before pro- 
tein addition). 

Solubilized ZPs depolarize mouse and bovine sperm 
membrane potentials. Fig. 1 A shows the effects of bovine 
ZPs (bZP, 100 i~g/ml; 1 bZP ~27 ng protein; 23) on the 
membrane potential of homologous sperm as reported by 
DiSBAC2(3). In this experiment, the initial depolarization 
rate was 14.5 mV/min (Fig. 1 A, dashed line). Initial rates 
in both species are dose-dependent, as shown in Fig. 2. 
Mouse ZPs (mZP, 4 ng protein/mZP; 9) produce a half- 
maximal response at 44 _+ 9 ng/ml and a maximal rate of 
19.7 _-+ 3.7 mV/min at i>250 ng/ml (Fig. 2 A), while bovine 
sperm exhibit a half-maximal response with 83 _ 19 ng/ml 
bZP and a maximal response of 17.8 ___ 2.9 mV/min at I>1 
ixg/ml (Fig. 2 B). Similar conclusions were drawn from 
parallel experiments in both species using the DISC3(5) 
probe. 

The specificity of this response is indicated by several 
control experiments. First, comparable concentrations of 
an unrelated glycoprotein (fetuin) produced only minor 
effects on membrane potential (<0.7 mV/min) that proba- 
bly reflect direct binding of extracellular protein to probe. 
Similar effects were observed in sperm-free solutions. Sec- 
ond, depolarization occurred only when sperm were treated 
with homologous ZP solutions. Fig. 1 B shows that mZPs 
failed to depolarize bovine sperm membrane potential, 
and similar species selectivity was found when mouse 
sperm were treated with bZP. Finally, ZP-dependent re- 
sponses require a polarized membrane potential in sperm. 
When membrane potentials were dissipated with gramici- 
din D, the subsequent addition of ZPs had only minor ef- 
fects on probe fluorescence. These effects were similar to 
those observed in intact sperm treated with heterologous 
ZPs (not shown). 

ZP-dependent depolarization precedes acrosome reac- 
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Figure 1. Effects of homologous and heterologous zonae pellu- 
cidae on the membrane potential and acrosome reaction of bovine 
sperm populations. Membrane potentials ( - - )  were calculated 
from DiSBAC2(3) fluorescence emission and the occurrence of 
acrosome reactions (O) were determined as described in Materi- 
als and Methods. Shown are the calculated membrane potentials 
and incidence of acrosome reactions in bovine sperm populations 
before and after addition of: (A) soluble preparations of bovine 
zonae pellucidae (100 o.g/ml; arrow), which produces a maximal 
dye response (see Fig. 2); and (B) soluble preparations of mouse 
zonae pellucidae (100 ~g/ml; arrow). Fluorescence emission ac- 
quisition rate was 1 Hz and the initial rate of depolarization was 
estimated from linear fit of data obtained in the first 30 s (A, 
dashed line) following zona pellucida addition. Initial rates in the 
experiments shown here were (A) 14.5 mV/min, and (B) 0.4 mV/ 
min. Acrosome reactions data represent the mean (-+ SD) of trip- 
licate slides obtained from a sample at the indicated time point, 
with ~200 sperm assayed per slide. 

t ions in both  species. The  t ime courses of these two pro-  
cesses in bovine sperm popula t ions  are shown in Fig. 1 A. 
Such f luorescent  responses do not  reflect dye loss during 
the acrosome react ion since the DiSBACz(3 ) anion and 
the DiSC3(5) cat ion both  repor t  ZP-dependen t  depolar -  
izations, yet  they redis t r ibute  in oppos i te  directions.  Othe r  
prote ins  (BSA,  fetuin, and he tero logous  ZPs; Fig. 1 B) 
that  fail to ini t iate acrosome react ions also do not  p roduce  
apparen t  depolar izat ion.  These  exper iments  are  consistent  
with a model  in which an early componen t  of  the Z P  ago- 
n is t - in i t ia ted  signaling cascade includes depolar iza t ion  of  
sperm membrane  potential .  

Effects o f  ZP3 on Sperm Membrane Depolarization 

ZP3 binds specifically to sperm and initiates acrosome re- 
actions, while o ther  Z P  glycoproteins  do not  par t ic ipate  in 
these processes (10, 45, 47). W e  examined the effects of 
highly enr iched prepara t ions  of Z P  glycoproteins on 
mouse and bovine  sperm to de te rmine  whether  depolar -  
ization is a specific effect of ZP3. 

Fig. 2 A shows that  mouse sperm are depolar ized  by 
mZP3 in a concen t ra t ion-dependent  manner .  The  half- 
maximal  and maximally effective concentrations were 1.4 ___ 
1.1 and N25 ng/ml. The  initial depolar iza t ion  rate  at satu- 
rat ing concentrat ions  of mZP3 was 14.8 -+ 3.0 mV/min 
(background corrected)  and accounts for essentially all of 
the membrane-depola r iz ing  activity found in unfract ion- 
a ted  mZPs.  In  contrast ,  mZP1 and mZP2  produced  only 
small  al terat ions ( < 4  mV/min)  in membrane  potentials .  
These  al terat ions were not  significantly different  from 
those observed with fetuin and, again, are l ikely the results 
of  direct  interact ions be tween pro te in  and repor te r  dye. 
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Figure 2. Initial rate of sperm membrane depolarization. Mem- 
brane potential was calculated from DiSBAC2(3) fluorescence 
emission and used to determine initial depolarization rates fol- 
lowing addition of unfractionated zonae pellucidae, enriched 
fractions of zona pellucida glycoproteins, and control proteins to 
mouse (A, open symbols) and bovine sperm (B, closed symbols). 
Initial rates were determined as indicated in Fig. 1, and data rep- 
resent the mean (_+ SD) of three to seven separate determina- 
tions. The effects of unfractionated zonae pellucidae and ZP3- 
enriched fractions were fit to the relationship: Rc = [(RMax + C)/ 
(K + C)] + N, where R c and Rmax are initial rates at each concen- 
tration of zona pellucida glycoproteins and the maximal initial 
rate, respectively; C is the concentration of zona pellucida glyco- 
protein; K is the apparent equilibrium constant for this reaction; 
and N is the nonspecific background depolarization rate follow- 
ing buffer addition. Values of RMax (mV/min), K (ng/ml), and N 
for fit curves ( - - )  were: mouse ZP, 19.7, 44, and 0.03; mouse ZP3, 
14.8, 1.2, and 0.9; bovine ZP, 16.7, 83, 3.4; bovine class III glyco- 
proteins, 21.1, 1.1, 1.4. Symbols: total ZP, (O, Q); ZP3-enriched 
fractions, (A, A); ZP1 + ZP2, (~7, T); fetuin, ( Q  4,). 
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Unlike the case in the mouse, bZP3 has not previously 
been identified. Fig. 3 shows that the bZP  consists of three 
distinct classes of  glycoproteins (Fig, 3, inset). To identify 
the group containing bZP3, individual groups were eluted 
from gel slices, dialyzed, and assayed for the ability to ini- 
tiate acrosome reactions in bovine sperm. Fig. 3 shows that 
class I I I  glycoproteins exclusively account for induction of 
acrosome reactions, whereas classes I + II  lack this activ- 
ity. Therefore, class I I I  is enriched in bZP3. 

Class I I I  glycoproteins also account for the ability of bo- 
vine ZPs to depolarize sperm membrane,  as shown in Fig. 
2 B (half-maximal response NI.1 __+ 0.4 ng/ml; maximal re- 
sponse ,~21.1 _ 3.1 mV/min). In contrast, classes I + II  
lack apparent stimulatory activity. These results demon- 
strate that in two mammalian species, fractions enriched in 
ZP3 depolarize sperm membrane potentials. 

Permeation Characteristics o f  a Zona 
PeUucida-activated Depolarization Pathway 

In order to deduce the ion selectivity of a ZP3-activated 

depolarization mechanism, we examined the effects of  me- 
dium ion composition on the initial rates of  response. Ca- 
pacitated sperm were suspended in test media containing 
DiSBAC2(3). After  fluorescence signals stabilized, ZP  ag- 
onists were added (mZP, 250 ng/ml; bZP, 1 I~g/ml) and the 
initial response rates were estimated from time courses 
similar to that in Fig. 1 A. 

Fig. 4 illustrates the results obtained in a complete ga- 
mete culture medium. In this series of experiments, the 
initial depolarization rate following buffer addition was 
<1.5 mV/min (mouse, 1.4 ___ 1.1 mV/min; bovine, 0.7 __- 0.5 
mV/min) and was enhanced by 1.5-2-fold following addi- 
tion of heterologous ZPs (Fig. 4) or fetuin (not shown). In 
contrast, homologous ZPs stimulated the initial rate by an 
additional 8-15-fold relative to control glycoproteins 
(mouse, 19.7 __- 3.7 mV/min; bovine, 17.8 -_+ 2.9 mV/min). 
In complete culture media, the ZP-dependent  depolariza- 
tion was not substantially reduced by either chelation of 
Ca 2÷ or of  all divalent cations but was inhibited by 10 mM 
Cd 2+ (not shown) or by 0.1 mM La 3+ (Fig. 4). Cd 2+ also in- 
hibits the voltage-sensitive Ca 2+ channel, but at 10-100- 
fold lower concentration (21), thereby differentiating that 
pathway from the depolarization mechanism described 
here. In the following series of experiments, La 3+ and 
Cd 2+ sensitivity provides a signature for the ZP3-activated 
pathway. 

Anion composition did not significantly influence ZP- 

Figure 3. Induction of bovine sperm acrosome reactions by ho- 
mologous zonae pellucidae. Capacitated bovine sperm were 
treated for 30 min with test reagents and then assayed for 
acrosome reactions. Treatment conditions were based on the 
concentrations of unfractionated bovine zona pellucida glycopro- 
reins shown previously to produce maximal rates of acrosome re- 
actions (see 24) and include: buffer, ionomycin (5 ixM), unfrac- 
tionated mouse zona pellucida extracts (mZP, 100 ixg/ml), 
unfractionated bovine zona pellucida extracts (bZP, 100 txg/ml), 
class I + II bovine zona pellucida glycoproteins (data pooled 
from separate treatments; 10 ixg/ml of each class), and class III 
bovine zona pellucida glycoproteins (10 ixg/ml). Data represent 
the mean (± standard deviation) of three to five separate experi- 
ments with each experiment consisting of triplicate samples and 
with 100--200 sperm assayed per sample. (Inset) Autoradiograph 
of 12SI-labeled bovine zonae pellucidae following resolution by 
two-dimensional gel electrophoresis. Derived Mr and pI values 
are: Class I, 81-94 kD and 4.4-4.8; Class II, 94-112 kD and 7.0- 
8.4; and Class III, 70-76 kD and 5.7-7.3. 
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Figure 4. Ion selectivity of the zona pellucida-dependent depo- 
larization mechanism. Initial depolarization rates for mouse 
(filled bars) and bovine sperm (open bars) were determined fol- 
lowing treatment with solubilized zonae pellucidae (mouse, 250 
ng/ml; bovine, 1 ixg/ml; see Fig. 2). Zona pellucida glycoprotein 
concentrations promote maximal depolarization rates in com- 
plete culture media, as shown in Fig. 2. Sperm are treated with 
heterologous or homologous zonae pellucidae (het. ZP and hom. 
ZP). The composition of the base medium is indicated and de- 
scribed in detail in Materials and Methods. Complete media for 
bovine and mouse sperm were dTALP and Hepes-buffered CM, 
respectively. Modifications of these basic media are also indi- 
cated. Results represent the mean (_+ SD) of two to seven sepa- 
rate experiments. 
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evoked depolarizations, as shown in experiments in 
H N K G  medium (Fig. 4). Robust  responses occur follow- 
ing ZP treatment in a Na+/K+-based media containing ei- 
ther monovalent-  or divalent anions (gluconate, Fig. 4; 
aspartate- ,  Br - ,  CI- ,  SCN-,  and SO4 z-, data not shown). 
La 3÷ (Fig. 4) and Cd 2÷ (data not shown) inhibited re- 
sponses in this simplified medium with potencies similiar 
to those ebserved in complete medium. 

In contrast, the ZP-induced sperm membrane  depolar- 
ization was dependent on the cation composition of  the 
medium. Responses were reduced by >90% in medium 
NT (Fig. 4), where Na ÷ and K ÷ are replaced by the larger 
cation, N-methyl-D-glucamine + (NMDG+).  Subsequent 
substitution of N M D G  ÷ in NT medium with smaller 
mono-  and divalent cations, such as Na ÷ (Fig. 4), K ÷, 
Ba 2+, Ca 2÷, Mn 2÷, or Ni 2÷ (not shown), restored ZP-de- 
pendent  depolarization. The responses that are restored 
following Na + or Ca 2÷ readdition are inhibited by 0.1 mM 
La 3÷ and by 10 mM Cd 2+, reflecting the activation of that 
same depolarization mechanism as was observed in com- 
plete medium (Na ÷, Fig. 4; Ca 2÷, data not shown). Alter- 
natively, ZP-evoked depolarizations could not be restored 
to sperm in medium NT by alterations of anion composi- 
tion, as shown when C1- was replaced with other aspartate-, 
Br - ,  SCN-,  or SO4 -2. Comparable results were obtained 
in a less extensive series of experiments with the bovine 
sperm using DiSC3(5). These observations suggest that 
ZP-dependent  depolarization activates a mechanism with 
the anticipated characteristics of a poorly selective cation 
channel. 

Role of  Membrane Depolarization in Zona 
PeUucida-controlled Acrosome Reactions 

Previous studies showed that pertussis toxin (PTx) inhibits 
an early component  of ZP3 signal transduction and miti- 
gates the induced elevations of  [Ca2+]i and pH i (4, 21, 24) 
as well as the ZP-dependent  acrosome reaction (19, 20). 
These effects most  likely reflect the activation of sperm 
Gil and/or Gi2 by ZP3 (62). Yet PTx treatment of mouse 
and bovine sperm had only minor effects on ZP-induced 
depolarization. Treatment  with 100 ng/ml PTx, which in- 
hibits the induced acrosome reaction by >80% (19, 24), 
reduced the ZP-dependent  initial depolarization rate of  
mouse sperm from 15.9 +_ 2.0 to 13.4 _+ 2.7 mV/min and of 
bovine sperm from 14.3 _ 2.6 to 11.1 _+ 1.8 mV/min (n = 
3, nonspecific background subtracted). We examined the 
coupling between membrane  depolarization and Ca ~+ 
channel activation in a series of single cell experiments. 
Stereotypic cells are illustrated in Fig. 5 and the results of  
these experiments are summarized in Fig. 6. 

Fig. 5 A shows an example of  a bovine sperm labeled 
with the fura 2 and B C E C F  fluorescent probes, permitting 
simultaneous determination of relative [Ca2+]i and pHi 
levels, respectively. Addit ion of bZPs produces a sus- 
tained [Ca2+]i elevation, as reported previously (21, 24), as 
well as an increase in pHi. This cell completes the 
acrosome reaction within 12-13 min (Fig. 5 A, dashed 
line). As shown in Fig. 6, addition of homologous ZPs ele- 
vated [Ca2+]i by three- to fourfold and also increased the 
fraction of acrosome reacted sperm by threefold, relative 
to buffer-treated controls. 
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Figure 5. Bovine sperm phi modulates zona pellucida--depen- 
dent [Ca2+]i responses. Relative [Ca2+]i and pHi were monitored 
simultaneously in cells doubly labeled with fura 2 (0) and 
BCECF (©), respectively. Resting [Ca2+]i and pH i levels are sta- 
ble before treatment. (A) Addition of bovine zona peUucida ex- 
tracts (ZP, 100 i~g/ml) produces a transient alkalinization and a 
sustained elevation of [Ca2+]i . The acrosome reaction, detected 
using Normarski optics, occurred in this cell at 12-13 min (AR, 
dashed line). (B) Pretreatment (at t = -30 min) of sperm with 
10 I~M PN200-110 inhibits the ZP-induced elevation of [Ca2+]i 
but had no effect on the induced elevation of phi. (C) Sperm are 
treated sequentially with 100 ng/ml pertussis toxin (at t = -30 
min), with 100 i~g/ml bZP (at t = 5 min), and with 10 mM NH4 ÷ 
(at t = 17.5 min). The acrosome reaction occurred in this sperm 
at 23-24 min. (D) Treatment of sperm with 10 mM NH4 + (t = 5 
min) in the absence of ZP produces transient alkalinization with 
little or no effect on [Ca2+]i (see Fig. 6). K ÷ depolarization of 
sperm membrane potential (80 mM [K+]o, substituted for Na ÷) at 
t = 13 rain produced monotonic increases in [Ca2÷]i and did not 
significantly alter pHi. Addition of 10 mM NI-I4 + (t = 25 min) to 
sperm in K÷-based medium produces a transient alkalinization, 
sustained [Ca2÷]i elevation, and acrosome reaction (33-35 min). 

As shown in Fig. 5 B, the ZP-dependent  [Ca2+]i eleva- 
tion is inhibited by PN200-110 (21), the 1,4-dihydropyri- 
dine antagonist of some classes of voltage-sensitive Ca 2+ 
channels. In these experiments, 10 ~M PN200-110 reduced 
the peak [Ca2+]i response to ZP stimuli f rom a 3.15 ___ 0.13- 
fold increase to a 0.69 - 0.15-fold elevation (n = 78 and 61 
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Figure 6. Sperm [Ca2+]i is regulated by concerted membrane de- 
polarization and internal alkalinization. Bovine (open bars) and 
mouse (filled bars) sperm were treated with buffer, with homolo- 
gous zonae pellucidae (100 ixg/ml), with 10 mM NH4 ÷, with 80 
mM K ÷, and with the NH4 + + K +, as described in Materials and 
Methods. (A) [Ca2+]i was determined 5 rain after zona pellucida 
addition, based on time courses similar to those illustrated in Fig. 
5 A. Data represents the mean (-+ SD) of 41-77 cells in each 
treatment group, collected in three to five separate experiments. 
(B) Acrosome reactions were assayed 20 min after addition of zo- 
nae pellucidae. Data represent the mean (--- SD) of cells assayed 
inA. 

cells, respectively). There was a corresponding inhibition 
of the ZP-induced acrosome reaction: 10 IxM PN200-110 
reduces the level of acrosome reactions following ZP 
treatment from 47% (37/78) to 18% (11/61), similar to re- 
sults obtained previously (21, 25). These observations are 
consistent with the notion that ion influx through voltage- 
sensitive channels is an essential component of the [Ca2÷]i 
response to ZP stimuli (21, 25). 

In contrast, PN200-110 had no significant effect on the 
intracellular alkalinization promoted by ZP stimulus (Fig. 
5 B). Sperm pHi values were quantified in BCECF-loaded 
cells. This probe reports resting phi  values in mouse and 
bovine sperm that had been subjected to capacitating incu- 
bations of 6.72 + 0.04 (147 cells) and 6.61 ___ 0.05 (92 cells), 
respectively. Approximately half of these cells exhibited a 
ZP-dependent alkalinization: 58% (85/147) of mouse sperm 
and 47% (43/92) of bovine sperm responded, with peak al- 
kalinizations of 0.17 _+ 0.06 and 0.13 __- 0.03, respectively. 
Extensive heterogeneity was observed in the time course 
of pH i alterations. Among the cells that display ZP-depen- 
dent alkalinizations, ~70% (mouse, 62/85; bovine, 30/43) 
exhibit a transient pHi increase (Fig. 5 A) in which rates of 
alkalinization and reacidification vary extensively. Alka- 
linization in the remaining cells is either sustained, similar 
to the [Ca2+]i response shown in Fig. 1 A (mouse, 14/85; 
bovine, 9/43), or the cells display a biphasic response con- 
sisting of an initial rapid alkalinization followed by a 
slower secondary alkalinization (mouse, 9/85; bovine, 4/43). 
Within the subpopulation of sperm that exhibit ZP-depen- 

dent pH i response, >85% also complete the acrosome reac- 
tion within 20 min, whereas acrosome reactions occur in 
<10% of the cells where alkalinizations are not observed. 
Taken together with previous reports (24, 25), these obser- 
vations suggest that elevations of phi  are a component of 
ZP signaling. 

Fig. 5 C confirms that pretreatment with PTx substan- 
tially inhibits both the [Ca2+]i and pHi responses to ZP 
treatment. Only 11% of PTx-treated bovine sperm (17/ 
158) and 17% of mouse sperm (16/94) exhibited ZP- 
evoked pHi or [Ca2+]i elevations, and there was a corre- 
sponding attenuation of ZP-induced acrosome reactions. 
Permeant weak bases, such as 10 mM NIL +, produce tran- 
sient pH i alkalinization (3, 52, 69). Such experimental al- 
kalinization has only minor effects on [Ca2+]i and on 
acrosome reactions in the absence of ZP/ZP3 but is suffi- 
cient to restore these responses to PTx-blocked sperm 
(Fig. 5 C). These results suggest that activation of a pHi 
regulatory mechanism is the minimal PTx-sensitive ele- 
ment of ZP signal transduction. 

Yet alkalinization with NH4 + in the absence of ZP/ZP3 
fails to produce robust [Ca2+]i responses (Figs. 5 D and 6; 
ref. 2): slow, monotonic increases in [Ca2+]i occur in most 
cells (mouse, 41/57; bovine, 33/48) and result in a <0.5- 
fold increase in [Ca2+]i (mouse, 0.46 _+ 0.07-fold; bovine, 
0.31 _+ 0.04-fold). This is in contrast to the greater than 
threefold increases in [Ca2+]i produced by ZP (Figs. 5 A 
and 6; ref. 21, 24). In addition, NIL  + alkalinization did not 
promote acrosome reactions in most sperm, as described 
previously (25). These observations suggest that additional 
signaling elements are activated by ZP contact, are not 
due to alkalinization, and are PTx insensitive. Similarly, 
Figs. 5 D and 6 show that K+-depolarization in the absence 
of pH i alkalinization also did not promote either a sus- 
tained [Ca2+]i response (2) or initiate acrosome reactions 
(25). In contrast, concerted depolarization and alkaliniza- 
tion (with K+o and NH4 +, respectively) induce both 
[Ca2+]i elevations and acrosomal secretion even in the ab- 
sence of treatment with ZP (Figs. 5 D and 6). 

Discussion 

There are two central observations in this study. First, 
sperm membrane potential is depolarized during contact 
with the ZP as a result of ZP3-dependent activation of a 
pathway with the anticipated characteristics of a cation 
channel. Second, depolarization mediates a component of 
ZP3 signaling leading to [Ca2+]i elevations and acrosome 
reactions. 

Fluorescent probes report that capacitated sperm have a 
resting membrane potential of - 5 0  to - 6 0  mV and that 
ZP3 depolarizes this potential by ~30 mV. The applica- 
tion of both anionic and cationic probes in two species 
lends confidence that depolarization is a general aspect of 
ZP3 signal transduction. Depolarization is produced by ac- 
tivating a mechanism with the anticipated characteristics 
of a cation channel, and the selectivity of this pathway was 
determined from the effects of ion depletion on the initial 
rate of probe response. This approach permits qualitative 
discrimination between ionic species that support the op- 
eration of this pathway and species that are not permis- 
sive, thereby establishing cation dependence. The more 
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typical method of establishing ion selectivity from the cur- 
rent reversal potential (32) was not feasible with sperm, 
where cytoplasmic dialysis using the whole-cell patch clamp 
has not been reported successfully. 

Previously, we used fura 2 fluorescence and fluores- 
cence-quenching methods to describe a cation transport 
mechanism in the bovine sperm head that is activated by 
ZPs (21). Divalent cation transport through that pathway 
was demo.astrated, strongly supporting the notion that it is 
a channel. That cation transporter shares several func- 
tional features with the depolarization mechanism de- 
scribed here, including: cation selectivity (both are perme- 
able to Ca 2+, Mn 2÷, and Ni2÷), anion rejection, inhibition 
by high concentrations of Cd 2+, and activation by ZP/ZP3 
through a PTx-insensitive mechanism. These two experi- 
mental approaches most likely reveal a single ZP3-regu- 
lated mechanism in the sperm head. The relationship of 
this depolarization mechanism to the other cation-selec- 
tive channels that have been described in mammalian (16, 
26, 56, 65) and echinoderm sperm (29) must be estab- 
lished. 

ZP3-evoked depolarization is slow compared to the 
time course of activation of ion channels. The protracted 
kinetics may be due to several factors. First, mammalian 
sperm response to ZPs is unsynchronized and heteroge- 
neous. Extensive cell-to-ceU variation is observed in the 
lag time that precedes ZP-induced responses. In addition, 
only a subpopulation (25-50%) of sperm complete the ca- 
pacitation process and respond to ZPs, further adding to 
population heterogenity (23, 61). This functional hetero- 
geneity dominates the population kinetics of ZP-depen- 
dent [Ca2÷]i and acrosome reaction responses (21, 24, 38). 
The redistribution-type probes used here provide spatially 
averaged membrane potentials for populations and thus 
do not directly reflect the time course of either membrane 
depolarization in individual cells or the activation kinetics 
of a cation channel. Single cell determinations of mem- 
brane potential are required to assess the contribution of 
population heterogeneity in these responses. Second, cat- 
ion channel density has not been determined and may con- 
tribute to the protracted kinetics. Finally, certain other 
secretory systems also exhibit slow depolarizations that 
are a component of the signal transduction mechanism 
(for example, 44). 

The most likely function of ZP3-dependent depolariza- 
tion during sperm-egg interaction is to participate in the 
control of Ca 2÷ channels. A model for ZP3-activated 
[Ca2+]i responses during mammalian fertilization can be 
proposed based on the results of these and other experi- 
ments (Fig. 7). A central feature of this model is the ZP3- 
dependent activation of a sperm cation channel which, in 
the presence of an inwardly negative membrane potential 
(present study, 25, 68), mediates a depolarizing current. 
Insensitivity to PTx inhibition is a signature of this portion 
of the signaling pathway. Plausible mechanisms of ZP3-de- 
polarization coupling include the direct activation of a 
ligand-gated cation channel as well as the mediation of 
PTx-insensitive transduction elements. In this regard, 
sperm possess both a ZP3-stimulated tyrosine kinase ac- 
tivity (39, 40) as well as the PTx-insensitive G proteins, Gq 
and Gz (60). 

It is known that ZP3 also activates sperm phi  regulatory 

Figure 7. Model of ZP3 signal transduction. Binding of ZP3 to a 
complimentary receptor on sperm (R) initiates a bifurcated sig- 
naling pathway, a) A cation channel is activated through a pertus- 
sis toxin (PTx)-insensitive mechanism, leading to cation influx 
and membrane depolarization (AVM). This limb is mimiced by 
high [K÷]o depolarization, b) A PTx-sensitive pathway is acti- 
vated, leading to the stimulation of an acid efflux mechanism and 
to transient intracellular alkalinization (April). Transient alkalin- 
ization can be produced experimentally by application of NH4 + 
and other permeant weak bases (69). The inhibitory effects of 
PTx likely reflect the mediatory role of sperm Gil and/or Gi2. 
These concerted responses regulate the activity of a voltage-sen- 
sitive, pHi-modulated Ca 2÷ channel, leading to Ca 2÷ influx and 
triggering acrosome reactions. The figure also indicates the site at 
which signal transduction in inhibited by Cd 2÷, La 3÷, PTx, and di- 
hydropyridines ( DHP). 

mechanisms (20, 24, 25, 38) and that the resultant alkalin- 
ization modulates membrane potential-dependent regula- 
tion of sperm Ca 2÷ channels and acrosome reactions (2, 25). 
Our data demonstrate that the induced alterations of pHi 
constitute the PTx-sensitive step of ZP signal transduction. 
This is illustrated most directly by the effects of 10 mM 
NH4 +. At this concentration, this permeant weak base does 
not induce [Ca2+]i elevations (Figs. 5, C and D and 6) or 
acrosome reactions (Fig. 6; ref. 25) in the absence of ZP 
stimulation, yet it is sufficient to restore both the ionic and 
secretory response to ZPs in PTx-treated sperm (see Fig. 
5 C). These observations strongly suggest that a pHi-regu- 
latory pathway is the major PTx-sensitive step in ZP3 sig- 
nal transduction. Functional studies demonstrate that the 
principal regulators of sperm pH i include a Na÷-depen - 
dent CI-/HCO 3- exchanger and an anion-independent, 
arylaminobenzoate-sensitive regulator (69), while immuno- 
fluorescence and northern hybridization suggest that a 
Na÷-H + exchanger and a Na+-independent C1-/HCO3- 
exchanger may also be present (48, 49). The pathway that 
mediates PTx-sensitive alkalinization in response to ZP3 
stimuli has not been identified. In this regard, ZP3 activa- 
tion of PTx-sensitive Gil and Gi2 has been demonstrated in 
detergent-permeabilized sperm (62) and may control a 
sperm pHi-regulatory pathway. 
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Thus, these observations suggest that ZP3 activates a bi- 
furcated signaling cascade consisting of the opening of a 
PTx-insensitive cation channel and the stimulation o f  a 
PTx-sensitive pHi regulator (Fig. 7). Concerted depolar- 
ization and alkalinization are more effective in promoting 
[Ca2+]i elevations than either signal alone. A branched sig- 
nal transduction structure, with high- and low-affinity 
limbs, may account for the observed differences in potency 
of zona pellucida-dependent depolarizations and pHi re- 
sponses. 

The [Ca2+]i response mechanism functions operationally 
as the integrator of a coincidence detecting system. Simi- 
larly, voltage-sensitive Ca 2÷ channels in somatic cells (18, 
34, 36, 41, 51, 58; reviewed in 41), as well as other ligand- 
and voltage-regulated channels (for example, 7, 13, 15, 17, 
28, 30, 37, 55; reviewed in 46), are also modulated by phi. 
Frequently, such Ca 2+ channel modulation is observed at 
values that are more acidic than the typical range of so- 
matic cell pH i and may function as a health sensor, curtail- 
ing cellular activity during internal acidification. In con- 
trast, pH i in mammalian sperm is relatively acidic, as 
determined by fluorescent probes (2, 3, 24, 50, 53, 59, 69) 
and by 31p-NMR (54). Under these conditions, this mecha- 
nism of Ca 2+ channel modulation may function within the 
physiological range of pHi values and operate as a behav- 
ioral switch. 

Given that sperm have only a single secretory granule 
and that the fertilizing ability of this cell is compromised 
when acrosome reactions are either induced prematurely 
or inhibited (22), it is anticipated that secretion may be 
regulated stringently. Dual modulation by membrane po- 
tential and pHi provides a means of suppressing Ca 2+ en- 
try until ZP contact. The utility of a channel-based coinci- 
dence detector is illustrated by considering the storage 
state of sperm within the cauda epididymides. The luminal 
fluid of that compartment has a Na+:K ÷ ratio of 1:2 (33), 
sufficient to depolarize sperm membrane potential (23, 
68). The relatively acidic conditions within epididymidal 
plasma (pH <7; ref. 33) may limit Ca 2÷ entry through volt- 
age-sensitive channels and may account for the low levels 
of spontaneous exocytosis during storage. 
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