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Aromatase inhibitors (AI) are extensively used in the treatment of estrogen receptor-positive breast cancers,
however resistance to AI treatment is commonly observed. Apart from Estrogen receptor (ERα) expression, no
predictive biomarkers for response to AI treatment are clinically applied. Yet, since other therapeutic options
exist in the clinic, such as tamoxifen, there is an urgent medical need for the development of treatment-
selective biomarkers, enabling personalized endocrine treatment selection in breast cancer. In the described
dataset, ERα chromatin binding and histone marks H3K4me3 and H3K27me3 were assessed in a genome-
wide manner by Chromatin Immunoprecipitation (ChIP) combined with massive parallel sequencing (ChIP-
seq). These datasets were used to develop a classifier to stratify breast cancer patients on outcome after AI
treatment in the metastatic setting. Here we describe in detail the data and quality control metrics, as well as
the clinical information associated with the study, published by Jansen et al. [1]. The data is publicly available
through the GEO database with accession number GSE40867.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Experimental design, materials and methods

Study population and clinical data

The cohort of 84metastatic ERα-positive breast cancer patients, who
received AI therapy, was selected for evaluation. Tumor material
analyzed by genomic profiling was extracted from primary surgery
specimens. The patient selection criteria, definitions of follow-up,
tumor staging, and response to therapy were previously described by
Ramirez-Ardila et al. [2]. Briefly, fresh frozen ERα-positive breast tumor
tissue specimens were collected from female patients with primary
operable breast cancer and whose metastatic disease was treated with
first-line aromatase inhibitors (anastrozole, letrozole, exemestane).
Time to progression (TTP) was taken as the end point. Thirteen speci-
mens were selected for chromatin immunoprecipitation (ChIP) and
massive parallel sequencing (ChIP-seq) analyses, all on samples with
more than 50% ER-positive tumor cells. Poor outcome patients were
defined as patients with a TTP b 12 months, whereas good outcome
the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Table 1
Patient and tumor characteristics for the selected groups.

Patients (n = 13)

Characteristic No of patients

Good outcome Poor outcome

5 8
Age at diagnosis (mean), years 64 60
Age at start therapy (mean), years 68 63
Treatment type
Anastrozole 2 5
Exemestane 0 1
Exemestane 0 1
Letrozole 3 1

Grade
1 1 0
2 3 3
3 1 4

ER status
Negative 0 0
Positive 5 8

PR status
Negative 0 0
Positive 5 8

HER2 status
Negative 3 5
Positive 1 1

TTP (median), months 38 6.5
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patients were defined as patients with a TTP N 24 months. Clinical
characteristics of the selected groups of patients are provided in
Table 1 and clinical characteristics per sample are provided in the
Supplementary Table 1.
Table 2
Read count, number of peaks and quality parameters.

GEO accession ChIP Total reads Mapped reads (%)

GSM1003708 ERα 23,760,885 21,964,709 (92.4)
GSM1003709 H3K4me3 22,772,852 20,520,046 (90.1)
GSM1003710 H3K27me3 26,990,559 26,122,735 (96.8)
GSM1003711 ERα 23,802,294 22,002,226 (92.4)
GSM1003712 H3K4me3 22,591,289 20,813,064 (92.1)
GSM1003713 H3K27me3 22,096,326 21,343,362 (96.6)
GSM1003714 ERα 20,789,758 17,832,808 (85.8)
GSM1003715 H3K4me3 23,075,271 20,411,990 (88.5)
GSM1003716 H3K27me3 19,103,286 17,130,759 (89.7)
GSM1003717 ERα 22,555,195 21,115,239 (93.6)
GSM1003718 H3K4me3 19,872,399 18,226,845 (91.7)
GSM1003719 H3K27me3 23,961,464 22,493,285 (93.9)
GSM1003720 ERα 16,604,876 15,605,068 (94.0)
GSM1003721 H3K4me3 10,238,004 9,467,187 (92.5)
GSM1003722 H3K27me3 22,530,535 21,625,249 (96.0)
GSM1003723 ERα 19,902,396 18,778,288 (94.4)
GSM1003724 H3K4me3 20,235,985 18,151,245 (89.7)
GSM1003725 H3K27me3 24,169,596 23,067,266 (95.4)
GSM1003726 ERα 16,011,312 13,905,708 (86.8)
GSM1003727 H3K27me3 16,423,400 15,482,959 (94.2)
GSM1003728 ERα 21,552,073 17,908,925 (83.1)
GSM1003729 H3K4me3 27,693,755 25,171,058 (90.9)
GSM1003730 H3K27me3 27,372,177 24,765,816 (90.5)
GSM1003731 ERα 15,620,215 14,134,239 (90.5)
GSM1003732 H3K4me3 20,741,336 18,816,604 (90.7)
GSM1003733 H3K27me3 21,310,477 20,553,892 (96.4)
GSM1003734 ERα 18,169,785 16,090,891 (88.6)
GSM1003735 H3K4me3 26,621,106 24,586,405 (92.4)
GSM1003736 H3K27me3 26,069,531 25,135,569 (96.4)
GSM1003737 ERα 20,867,111 18,925,868 (90.7)
GSM1003738 H3K4me3 20,012,887 17,988,530 (89.9)
GSM1003739 H3K27me3 23,750,330 22,949,910 (96.6)
GSM1003740 ERα 13,499,179 12,530,097 (92.8)
GSM1003741 H3K4me3 26,027,543 24,076,775 (92.5)
GSM1003742 H3K27me3 31,996,441 30,602,420 (95.6)
GSM1003743 Input 27,097,497 25,588,905 (94.4)
The anonymized clinical datawere deposited in the Gene Expression
Omnibus database (GEO; [3]) under accession number GSE40867.

Chromatin immunoprecipitations and sequencing

Chromatin immunoprecipitation (ChIP)was performed as described
before [1]. To obtain input material, tumor samples were cryosectioned
(30 × 30 mm sections) prior to further processing for ChIP-seq as
described before [7]. For each ChIP, 10mgof antibody and 100mL of Pro-
tein A magnetic beads (Invitrogen) were used. Antibodies against ERα
(SC-543; Santa Cruz), H3K4me3 (ab8580; Abcam), and H3K27me3
(07–449; Millipore) were used.

ChIP DNAwas amplified as described [1,4]. Sequenceswere generat-
ed by the IlluminaHiseq 2000genomeanalyzer (using 50bp reads), and
aligned to the Human Reference Genome (assembly hg19, February
2009). Non-ChIP input DNA from a randomly selected tumor was
sequenced as an input control. Enriched regions of the genome were
identified by comparing the ChIP samples to input using the MACS
peak caller [5] version 1.3.7.1 with default parameters, except for the
p-value cutoff that was set at 10−7. Details on the number of reads
obtained, the percentage of reads aligned, and the number of peaks
called can be found in Table 2. ChIP-seq data and sample annotations
were deposited in GEO under accession number GSE40867.

Quality control

Prior to analysis, visual inspection of the regions known to typically
bind ERα or contain histone modifications was performed using the
Integrative Genome Viewer IGV 2.1 (www.broadinstitute.org/igv/).
Examples of such regions are provided in Fig. 1A. As expected, ERα
No of peaks Fraction of reads in peaks, % NSC RSC

524 0.15 1.02 0.48
16,384 26.35 1.64 1.72
14,890 3.56 1.01 0.46
2255 0.6 1.02 0.47

16,857 31.03 1.61 1.49
10,078 2.91 1.01 0.32
15,381 4.38 1.09 0.89
25,111 11.97 1.07 0.53
4008 1.48 1.02 0.32
2726 0.84 1.04 0.76

16,320 9.05 1.05 0.44
3085 0.64 1.02 0.39

13,575 3.61 1.09 1.03
19,012 6.69 1.09 0.33
33,661 9.13 1.04 0.83
6387 1.46 1.04 0.7

18,351 41.23 1.83 1.56
30,588 7.44 1.02 0.42
2287 0.58 1.02 0.41

28,514 7.34 1.03 0.57
709 0.72 1.02 0.31

27,023 15.47 1.16 1.03
11,395 1.28 1.02 0.67
5170 2.48 1.05 0.72

26,821 14.94 1.1 0.57
27,122 3.28 1.02 0.49
19,716 5.43 1.14 1.19
23,785 1.58 1.11 0.87
59,910 22.03 1.06 1.23
1110 0.29 1.01 0.37

16,427 22.24 1.38 1.41
4256 0.79 1.01 0.33
924 1.76 1.02 0.33

26,396 11.24 1.13 0.96
7067 1.13 1.03 0.86
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Fig. 1. Quality control and data metrics of ChIP-seq data. (A) Example genomic regions with distinct and unique signal of ERα (red), H3K4me3 (blue), and H3K27me3 (green) binding
events. Genomic coordinates are indicated. Tag count is shown for each position. (B) Distribution of peak widths in different ChIP-seq datasets. (C) Example of a cross-correlation plot.
Blue dashed line indicates the ‘phantom’ peak corresponding to the read length, red dashed line marks the peak of the fragment length. (D) Distribution of ERα motifs relative to the
peak position of ERα binding events.
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peaks were found at the enhancers of known estrogen-responsive
genes (e.g. XBP1 (Fig. 1A), RARA, GREB1), H3K4me3 signal was
observed at promoters of estrogen-responsive genes and H3K27me3
marked genes not expressed in breast tissue, such as NEUROD1.
(Fig. 1A). The peaks of H3K4me3 histone modification are often wider
than the peaks of ERα binding [6], while the transcription repressive
histone mark H3K27me3 can cover large areas, including full gene
bodies [7], which also results in the identification of broad peaks for
this histone mark. Peak widths for all three datasets are illustrated by
the density distributions as depicted in Fig. 1B.

There is no current consensus on the quality control metrics for
ChIP- and enrichment-based technologies, such as ChIP-seq, GRO-seq
and others. Commonly, the number of reads and peaks detected is re-
ported. The total number of reads, number of aligned reads and number
of peaks for each ChIP-seq sample are shown in Table 2. A few quality
control procedures have been suggested in the literature [8,9], however
their use is not established practice and some of themmay not be appli-
cable to a large variety of ChIP-seq data.

Here we employed quality control measures suggested by the
ENCODE consortium for assessing the quality of the data [8]. It is,
however, important to mention that ENCODE guidelines are used in
the analysis of the data from cell line experiments. Data from tumor
samples, used in the current study, are more difficult to process due to
intrinsic intra-tumor heterogeneity and biological variation. Therefore,
we cannot expect our tumor sample-based ChIP-seq data to fully meet
the criteria used for the cell line data. The minimal fraction of reads in
peaks as prescribed by ENCODE (1%), which is an indicator of ChIP
efficiency, was met in almost 80% of the samples (Table 2). Cross-
correlations of positive and negative strands were calculated using pub-
licly available scripts (http://code.google.com/p/phantompeakqualtools)
[10,11]. An example of a cross-correlation plot can be seen in Fig. 1C.
Dominant fragment and read lengths were calculated from the cross-

http://code.google.com/p/phantompeakqualtools)
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correlations, and the related measures, namely Normalized Strand
Coefficient (NSC) and Relative Strand Correlation (RSC), were assessed.
As can be seen from Table 2, not all the samples meet the ENCODE
criteria of NSC N 1.05 and RSC N 0.8. The best results for these parameters
are achieved in the H3K4me3 data with over 90%meeting the NSC crite-
rion and over 60% meeting the RSC criterion. Overall, the quality metrics
for ERα ChIP-seq have lower values than those for the histone marks.
However, it is not surprising for a number of reasons. First, immunopre-
cipitation of chromatin with histone marks is more efficient as histones
are the intrinsic part of the chromatin, whereas ERα is a transcription
factor not integrated in the structure of chromatin. Second, being a
hormone-dependent transcription factor, ERα chromatin interactions
are dependent on the physiological levels of E2, which may be at non-
saturated levels within the tumor and could vary from patient to patient.
Third, as shown before, high quality ChIP-seq datasetswith limited num-
ber of genuine binding sites may produce low NSC and RSC values [8].

We further validated that the peaks detected in ERα ChIP-seq data
are genuine signal and correspond to the binding sites of ERα. Called
peaks that were found in at least two tumor samples were considered
for analysis, resulting in 11,262 peaks for ERα dataset. This high number
of consensus peaks illustrates the quality of the data available for the
analysis. We subsequently defined the locations of ERα motifs in these
peaks by using the ScreenMotif tool from the Cistrome (cistrome.org).
As seen from the Fig. 1D, the motifs are clearly concentrated around
the center of identified peaks. This illustrates that despite the NSC and
RSC metrics having marginal values, the ERα peaks detected present a
genuine signal. R scripts for analysis are available upon request.

Discussion

Herewe describe a uniquedataset, inwhichweprofiled the chroma-
tin binding landscapes of ERα, H3K4me3 and H3K27me3 in primary
human ERα-positive luminal breast tumor specimens. Patients were
treated in themetastatic settingwith AIs, and survival data are available
and provided in the public data repositories. With this, our datasets
consist of two parts: clinical and ChIP-seq data. Clinical data includes
outcome upon treatment with aromatase inhibitors and other
important clinic-pathological characteristics. ChIP-seq data com-
prises genome-wide profiling of estrogen receptor (ERα) binding
to chromatin, promoter-specific histone modification H3K4me3 and
transcription repressive histone mark H3K27me3. This dataset has
been recently used in a publication for finding epigenetic signatures
related to the outcome upon aromatase inhibitors treatment for meta-
static breast cancer [1].

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2014.06.023.
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