
Siwiak and Zielenkiewicz Biology Direct  (2015) 10:18 
DOI 10.1186/s13062-015-0048-7

RESEARCH Open Access

Co-regulation of translation in protein
complexes
Marlena Siwiak1 and Piotr Zielenkiewicz1,2*

Abstract

Background: Co-regulation of gene expression has been known for many years, and studied widely both globally
and for individual genes. Nevertheless, most analyses concerned transcriptional control, which in case of physically
interacting proteins and protein complex subunits may be of secondary importance. This research is the first
quantitative analysis that provides global-scale evidence for translation co-regulation among associated proteins.

Results: By analyzing the results of our previous quantitative model of translation, we have demonstrated that
protein production rates plus several other translational parameters, such as mRNA and protein abundance, or
number of produced proteins from a gene, are well concerted between stable complex subunits and party hubs. This
may be energetically favorable during synthesis of complex building blocks and ensure their accurate production in
time. In contrast, for connections with regulatory particles and date hubs translational co-regulation is less visible,
indicating that in these cases maintenance of accurate levels of interacting particles is not necessarily beneficial.

Conclusions: Similar results obtained for distantly related model organisms, Saccharomyces cerevisiae and Homo
sapiens, suggest that the phenomenon of translational co-regulation applies to the variety of living organisms and
concerns many complex constituents. This phenomenon was also observed among the set of functionally linked
proteins from Escherichia coli operons. This leads to the conclusion that translational regulation of a protein should
always be studied with respect to the expression of its primary interacting partners.

Reviewers: This article was reviewed by Sandor Pongor and Claus Wilke.

Keywords: Translation control, Translation regulation, Protein complex, Protein-protein interaction, Computer
modeling, Protein production rate

Background
The majority of cellular proteins do not function in iso-
lation, but constitute subunits of larger, stoichiometric
protein complexes. In order to prevent the waste of energy
and resources during the synthesis of complex building
blocks, the expression of individual proteins should be
precisely controlled in time and space, and with respect to
other components of the complex. This may be achieved
by its co-regulation at many different levels, the best stud-
ied of which is presumably transcription. Coordination of
biosynthesis at this level involves many widely examined
mechanisms, like formation of operons [1], proper order
of genes in genomes [2], or development of transcription

*Correspondence: piotr@ibb.waw.pl
1Department of Bioinformatics, Institute of Biochemistry and Biophysics,
Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
2Laboratory of Plant Molecular Biology, Faculty of Biology, Warsaw University,
Pawinskiego 5a, 02-106 Warsaw, Poland

factors combinatorial networks [3]. It has been shown
that if such co-regulation is evolutionarily conserved, the
affected genes appear to participate in the same protein
complexes [4-6].
In case of translational co-regulation, however, there is

still much to be discovered. Although the phenomenon
has been studied globally, for example, as a cell wide
response to environmental stresses [7], and in some cases
its detailed mechanism has been unmasked [8], little
is known about translational co-regulation of complex
subunits. It has recently been shown that protein com-
plexes tend to assemble cotranslationally as one or several
interacting partners are being synthesized [9]. If so, the
coordination of these processes should require much con-
trol exercised at the level of translation of the individual
subunits. Somewhat different, yet not mutually exclu-
sive picture emerges from the study of dynamic complex
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formation during the yeast cell cycle [10], which argues
that most complexes are formed by both periodically and
constitutively expressed subunits. In such a case, some
complex components need not be transcriptionally or
translationally co-regulated in order to provide proper
timing of the final complex assembly. As for the remain-
ing subunits to which co-regulated expression may apply,
the main limitation of this and other studies integrating
interactomes with gene expression data (e.g. [11-13]) is
the usage of mRNA abundances as the sole indicator of
gene expression; this makes them again more focused on
transcriptional rather than translational co-regulation.
To overcome this problem, we used the results of a com-

putational model of translation [14] applied previously
to three organisms: Escherichia coli, Saccharomyces cere-
visiae, and Homo sapiens [15]. For each analyzed gene,
the model describes its translation quantitatively in terms
of several translational parameters, such as the mean
time required for translation initiation in seconds, or the
number of produced proteins from an mRNA during its
lifetime. For the purposes of this research, we enriched the
model with two additional parameters: steady-state pro-
tein abundance and average protein production rate of a
gene. The extended set of parameters enabled quantita-
tive analysis of translational co-regulation by estimating
the correlation strength of parameter values among inter-
acting proteins in three model organisms. The study was
performed separately for two types of interactions: binary
– detected mostly by high-throughput yeast two-hybrid
system, typically enriched with regulatory and signaling
inter-complex connections; and co-complex – gauged by
high-throughput affinity purification followed by mass
spectrometry, and reflecting the constituents of stable
protein complexes [16]. As expected, the two sets dif-
fered essentially in the amount of exercised translational
co-regulation. Some of the discrepancies in translational
parameters values between the associated proteins were
also shown, and largely explained by a detailed analysis of
protein production rates among the subunits of the three
yeast complexes.
Finally, we concentrated on highly connected nodes

from the yeast co-complex interactions network, and
compared the level of translational co-regulation between
party and date hubs. As defined previously [13], party
hubs represent integral proteome modules, performing
some biological function, and simultaneously interact
with most of their neighbors; while date hubs connect
these modules and may interact with different proteins at
different times and cell locations. Although the distinc-
tion between party and date hubs is not always clear cut
[13], and the concept of hub dichotomy provoked many
debates ([17-20]; for review, see [21]), our results revealed
clear differences in co-regulation of several translational
parameters between the two types of hubs.

Results and discussion
Translational parameters and PPIs
The following translational parameters for E.coli,
S.cerevisiae and H.sapiens genes were downloaded from
the Transimulation website [15] and summarized in
Table 1: L, coding sequence length in codons; x, average
number of transcripts in a cell; g, ribosome density in the
number of ribosomes attached to a transcript per 100
codons; w, the absolute number of ribosomes on a tran-
script;m, estimated mean lifetime of a transcript; I, mean
time required for translation initiation; E, mean time
required for translation elongation; e, mean elongation
time of one codon of a transcript; and b, average number
of proteins produced from one molecule of transcript
during its lifespan. The average number of total proteins
produced from a gene was calculated as the product of
b and x and marked as B. However, since B does not
take into account protein degradation rates, it cannot be
treated as an estimation of protein abundances. The latter
were therefore obtained from several high-throughput
studies [22-24] and referred to as parameter A (in protein
molecules per cell). Additionally, a new parameter R was
introduced, indicating the average number of proteins
produced from a gene per second (for derivation, see
Methods).
For each organism the sets of its binary and co-complex

protein-protein interactions (PPIs) were taken from the
references listed in Table 2. Due to the lack of other data
for co-complex interactions in E.coli, we analyzed the

Table 1 The summary of translational parameters
calculated in themodel and used in this research

Parameter Description

L ORF length in codons

x average number of transcripts per cell

g ribosome density in number of ribosomes
per 100 codons

w number of ribosomes attached to a single
transcript

m transcript mean lifetime

I mean translation initiation time

E mean translation elongation time

e mean time required for elongation of one
codon of a transcript

b number of proteins produced from a single
transcript during its lifespan

B total number of proteinmolecules produced
from all transcripts of a gene

A number of protein molecules per cell taken
from high-throughput studies

R average number of proteins produced from
a gene per second
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Table 2 The summary of PPIs sets used in the analysis

Organism PPIs set Source #PPIs #PPIs-h #PPIs-R

E.coli binary Rajagopala et al. [31] 2 067 1 671 427

co-complex Hu et al. [25] 4 515 4 515 1 219

operon ProOpDB, 03-04-2014 [40] 4 989 4 989 1 311

S.cerevisiae binary Yu et al. [16] 2 930 2 705 1 965

co-complex Yu et al. [16] 9 070 9 070 6 115

H.sapiens binary HPRD, 02-28-2014 [30] 39 240 37 039 14 395

co-complex HPRD, 02-28-2014 [30] 31 237 23 918 11 506

Column description: (source) the references of protein-protein interactions sets with accession dates for on-line databases; (#PPIs) number of PPIs provided by the
source; (#PPIs-h) number of heterodimeric interactions in the set; and (#PPIs-R) number of heterodimeric PPIs, for which both interacting partners are attributed with
the value of the protein production rate R – these interactions were used in the analysis.

putative complexes identified previously by clustering of
physical interactions networks [25]. As the results for this
set did not agree well with those obtained for co-complex
interactions from other species (see below), we repeated
the analysis using E.coli operons. Even though operon pro-
teins need not interact physically [1,26], they are linked
functionally, and thus are expected to be translationally
co-regulated. This set, referred to as intra-operon pro-
teins, may also serve as a positive control as operon genes
in prokaryotes are typically transcribed as a polycistronic
mRNA [1,27], and thus should have well-concerted tran-
script abundances x and lifetimesm. As a negative control
we used a set of 3000 random interactions, generated for
each species separately with the exclusion of its binary
and co-complex PPIs (or intra-operon proteins). However,
such random interactions are known to form networks
dissimilar to those observed in biological systems. In par-
ticular, the degree distribution of random networks is
often binomial (depending on how the network was con-
structed), while biological networks are usually scale-free
[28]. To eliminate any interference stemming from this
fact, we used an additional negative control – a set of
interactions obtained by shuffling the nodes of the exist-
ing co-complex interactomes. Thus, the created networks
have similar characteristics as their corresponding co-
complex interactomes, but the connections within them
are random.

Correlations of translational parameters among
interacting proteins
For each translational parameter we calculated from a
given set of PPIs the correlation in its value between
interacting partners. As the order of proteins in inter-
acting pairs is arbitrary, in about half of the cases the
value for the first partner is smaller than for the sec-
ond, which results in uniform dispersion of data points
below and above the 45 degree straight line (Additional
file 1). The obtained correlations reflect the noisiness
of this linear relationship and typically are the strongest
(i.e. least noisy) for co-complex interactions. The only

exceptions are the co-complex PPIs for E.coli as they were
obtained from putative complexes determined by network
clustering rather than by direct experiment. If replaced
by intra-operon proteins, correlations’ strength becomes
similar to that observed in yeast or humans. Correlations
for binary interactions are almost always positive, but
weaker than the corresponding ones for co-complex PPIs.
In some cases, though, their sign cannot be determined,
or the effect may be minuscule or indistinguishable from
correlation sizes observed for controls. The 95% confi-
dence intervals (CI) and sample sizes for all calculated
correlations are presented in Figure 1.
Generally, the best agreement within co-complex inter-

actions was obtained for the values of parameters R, B
(also b), A and x. For instance, the CIs for correlation of
protein production rate R are 0.60–0.63 in yeast, 0.37–
0.40 in humans, and 0.49–0.57 in E.coli operons. Similar
CIs, all larger than 0.37, were observed for the number of
proteins produced from a gene – B, and transcript abun-
dance – x. For protein abundance A, the obtained CIs are
close to those of B, with the exception of E.coli for which
the sample was too small (n=20) to guarantee sufficiently
narrow intervals. The results for parameters related to
translation time, I, E and e, do not allow definite con-
clusions. Although mean translation initiation time I is
moderately correlated among yeast co-complex PPIs and
E.coli operons (CI: 0.36–0.4 and 0.33–0.42, respectively),
its correlation in humans is much weaker (CI: 0.14–0.17),
yet still larger than in the control (e.g. CI: -0.01–0.06 for
random PPIs). Analogically, although the correlation of
mean codon elongation time e in yeast seems quite strong
(CI: 0.54–0.58), the results are much weaker for E.coli
(CI: 0.10–0.21), or close to the control for humans (CI:
0.02–0.06, while the largest absolute value of the control
confidence limit is 0.05). The remaining parameters are
either moderately or weakly correlated and may exhibit
noticeable inter-species differences. An interesting exam-
ple is provided by the case of mean transcript lifetime
m, for which the strongest correlation was reported for
E.coli operons (CI: 0.37–0.48), while for yeast and humans
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Figure 1 Correlation of translational parameters’ values among interacting proteins. The plots show 95% CIs for Spearman correlation coefficient
calculated separately for each translational parameter between the first and second partners from a given set of PPIs. For each species, four sets of
PPIs were analyzed: co-complex, binary, random, and extracted from a shuffled co-complex network. For E.coli the analysis was repeated using
intra-operon proteins instead of co-complex PPIs (right bottom panel). For most cases, the strongest correlations are observed for co-complex PPIs
(or intra-operon proteins for E.coli), especially for the protein production rate R, number of produced proteins from a gene B, transcript abundance x,
and in case of yeast also mean codon elongation time e; n – sample size.

PPIs its size never exceeds 0.25. This may be explained by
the fact that operon genes often share a common, poly-
cistronic mRNA – the moment it undergoes degradation,
all operon ORFs should become dysfunctional, which is
reflected by similar values of m. Further, more detailed
analyses were performed only for protein production rates
R in yeast.

Regulation of protein production rate global picture
Our next step was to study in detail the co-regulation of
translation by analyzing the differences in protein pro-
duction rates R among interacting and random protein

pairs. First, we calculated and compared the medians of R
fold change for four sets of protein pairs previously used:
co-complex PPIs, binary PPIs, random pairs and random
pairs obtained from the shuffled co-complex interactome.
For each analyzed protein pair the R ratio was calculated.
To facilitate interpretation, the larger R value was always
in the numerator, so that all obtained ratios were ≥
1. Such a procedure enables inter-sets comparisons of
modes (means or medians), which otherwise would all be
close to one. It is also justified by the fact that the ana-
lyzed protein pairs are symmetrical and only the distance
of R values between both partners is of interest, while
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their order is random and irrelevant. As expected, all dis-
tributions of thus computed R fold change are positively
skewed (Figure 2), but the medians for co-complex and
binary PPIs are always smaller than for random protein
pairs. In particular, for a typical co-complex PPI the pro-
tein production rate R for one protein is 1.77–1.85 times
higher than for its partner (the numbers are median 95%
CI limits), while for a typical binary PPI the fold change in
R is higher and equals 2.66–2.95. In contrast, for random
and shuffled control sets, the fold change in R is 3.67–4.07
and 3.42–3.69, respectively (see Figure 2A). This indicates
that for random protein pairs the R fold change is greater
by at least 1.59 than for co-complex interactions, and by
at least 0.55 than for binary interactions (see Figure 2B).
For comparison, the differences in R fold change
medians between two control sets range from -0.56
to 0.55.
Except for medians, the distributions of R fold changes

for PPIs and random protein pairs differ in standard devi-
ation (sd). To quantify this difference, for each pair a
logarithm of fold change in R was calculated, which guar-
antees symmetrical distribution of values around mean 0,
as shown in Additional file 2 (no restriction in the choice
of numerator is needed this time). For each data set the
95% CI for sd was calculated (see Additional file 2, panel
A). Not surprisingly, two control sets have higher sd, plau-
sible values of which lie between 2.17–2.31 and 2.31–2.41
for the random and shuffled data set, respectively. In con-
trast, sd for real PPIs log fold change distributions amount
to about 1.47–1.57 and 1.72–1.86 for co-complex and

binary PPIs, respectively. The difference in sd between
real PPIs and random protein pairs is at least 0.64 for
co-complex, and 0.35 for binary interactions (Additional
file 2, panel B). For comparison, the same difference cal-
culated between two control sets does not exceed 0.21.

Regulation of protein production rate case study
Although the obtained correlations for the key transla-
tional parameters seem reasonably good, the agreement of
parameter values for many interacting protein pairs is not
always perfect. Such discrepancies may be explained by
the noise in biological data or deficiencies in the compu-
tational model used to calculate values of the parameters.
However, it is also possible that some of them reflect the
biological functions of the proteins and their role in the
complex or interactome. To illustrate this, we analyzed the
details of protein production rates R of the components
of several well-known complexes in yeast: two general
transcription factors (GTFs) and a proteasome.
Transcription factors TFIIA, TFIIB, TFIID, TFIIE,

TFIIF, and TFIIH constitute basal transcription factors
that bind to specific sites on DNA to activate transcrip-
tion, by forming an RNA polymerase II preinitiation
complex. They are involved in, i.a. proper positioning of
polymerase„ assembly of complex components, transcrip-
tion initiation coordination and channeling the regula-
tory signals. The subunits of all GTFs and their produc-
tion rates are presented in Figure 3. As may be seen,
they do not vary much – as the R values of all GTFs’
subunits lie between 0.03 and 0.58, while for the entire

Figure 2 Protein production rate fold change distributions and comparison of medians. The main plot shows distributions of R fold change for four
sets of protein pairs, as used previously. For each pair, the R ratio was calculated with the larger value always in the numerator; dashed lines mark
median point estimators. Panel A: 95% CIs for distribution medians; n – sample size. Panel B: 95% CIs for differences in medians, with the compared
medians indicated by arrows. As both control sets are equivalent, the difference in their medians was calculated twice (random PPIs median minus
shuffled PPIs median, and conversely). For a typical co-complex PPI the protein production rate of one protein is 1.77–1.85 times higher than for its
partner, while for random protein pairs this ratio is higher by at least 1.59 and equals about 3.40–4.00.
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Figure 3 Protein production rates of general transcription factors for RNA polymerase II. Top: schematic structure of the transcription initiation
complex in yeast. Bottom: composition of basal transcription factors (after KEGG [41], accessed May 2014), along with the values of the protein
production rate R for each subunit. R values correspond to the color intensity. Subunits forming other complexes (according to SGD [29], accessed
May 2014) are marked by blue symbols explained on the left. Protein production rates are similar for the majority of TFIID and TFIIH components.
Most of the observed discrepancies in Rmay be explained by an additional biological function of a subunit in other complexes.

genome between 0.0003 and 109. Nevertheless, some of
the observed differences may be explained by the func-
tions of individual proteins, as best seen for the largest
complexes, TFIID and TFIIH.
For instance, TFIID consists of a TATA binding pro-

tein (TBP) and several subunits of TBP-associated factors
(TAFs). Proper formation of the complex requires that
all subunits are present in stoichiometric proportions at
the right moment, which may be guaranteed by similar
production rates of its protein components. As shown in
Figure 3, such is the case for 7 out of 15 subunits of known
R, for which it has the same order of magnitude rang-
ing from 0.03 to 0.09. According to the Saccharomyces
Genome Database [29], all these subunits are known to
participate only in the TFIID complex, and thus their R
level may be treated as the baseline for the entire com-
plex. The remaining subunits, with the exception of TAF4,
are not TFIID specific. Five of them (TAF5, TAF6, TAF9,
TAF10 and TAF12), with R level ranging from 0.11 to
0.27, may also be found in the SAGA chromatin remod-
eling complex, while the TAF14 subunit of R =0.50 is an
important component of the SWI/SFN, NuA3 and INO80
chromatin remodeling complexes. The highest R value is
observed for TBP, which is not surprising as this is the
only subunit that participates in the formation of tran-
scription initiation complexes specific to all three types of
polymerases. The second transcription factor, TFIIH, con-
sists of ten subunits, nine of which share similar R values,

ranging from 0.05 to 0.10, while the tenth (TTDA) has a
small outstanding value of 0.20. All subunits of the TFIIH
core (see Figure 3), plus MAT1, also form the nucleotide
excision repair factor 3 (NEF3) complex; however, the
remaining kinase CDK7 and its associated cyclin CCNH
are not dissimilar in R values.
Another example, the proteasome, is a cylindrical pro-

tein complex which degrades unneeded or damaged pro-
teins by proteolysis. Its core consists of two inner and two
outer rings, each composed of seven individual β and α

subunits, respectively. The proteolytic activity of the core
is controlled by binding of the regulatory particle, built of
a base and a lid of 9 subunits each, or by binding of other
regulatory factors, that recognize polyubiquitin tags and
initiate the degradation process. As shown in Additional
file 3, protein production rates for most α and β subunits
and most of the 18 subunits of the cap are all remarkably
similar, and range from 0.50 to 0.76. Few subunits, α4,
Rpt3, Rpn2, and Rpn3, show slightly lower R values of 0.47,
0.42, 0.35, and 0.40, respectively, whereas subunits α5,
Rpn13, and Rpn15 show elevated rates of respectively 1.04,
0.85, and 1.49. In case of the Rpn15 subunit, this may be
explained by the fact that it also forms a TREX-2 complex
involved in mRNA export from the nucleus. In contrast,
an important proteasome activator PA200, which should
be needed in smaller amounts than the proteasome itself,
has a one order of magnitude lower protein production
rate (R =0.05).
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Translation regulation in party and date hubs
We also calculated and compared the agreement in values
of translational parameters between party/date hubs and
their interacting partners. For each of the 91 date hubs
and 108 party hubs identified previously in yeast [13], we
extracted its PPIs from the co-complex and binary inter-
actomes. As a control we used the sets of random inter-
actions of party and date hubs, prepared as described in
Methods. Next, for each translational parameter its agree-
ment within protein pairs was calculated as previously, i.e.
by calculating 95% CIs for the Spearman correlation coef-
ficient. The results for five parameters, x, e, B, A and R,
which had a correlation of at least 0.39 in the general anal-
ysis of co-complex associations, are presented in the left
panel of Figure 4, while the right panel shows 95% CIs for
correlation differences between party and date hubs for
co-complex PPIs (i), for binary PPIs (ii), and for random
PPIs (iii).

In case of four parameters, e, x, R and B, party
hubs show stronger agreement than date hubs, but only
within co-complex interactions. The largest difference is
observed for the protein production rate R and transcript
abundance x, which is within 0.2–0.37 and 0.18–0.37,
respectively. For comparison, the correlation differences
between party and date hubs random PPIs are not larger
than 0.1 and 0.12 for R and x, respectively; moreover their
signs cannot be determined. For the mean codon elon-
gation time e this difference may be a bit smaller, as its
CI for co-complex PPIs ranges from 0.13 to 0.32, and is
only a little above the upper confidence limit of the con-
trol correlation difference. Furthermore, for the number
of produced proteins B party-date correlation difference
lies within 0.03–0.26 (for comparison, the control CI
is -0.18–0.07), and we cannot exclude the possibility that
it is negligible. For protein abundance A both party and
date hubs exhibit moderate, yet very similar correlations,

Figure 4 Correlations of translational parameters’ values within interactions of party and date hubs in yeast. Left: 95% CIs for Spearman correlation
coefficient calculated for translational parameters x, e, B, A, and R between the first and second partners of the given set of PPIs. The PPIs sets were
prepared by extracting all interactions for party (dark colors) and date hubs (light colors) from co-complex PPIs network (green), and binary PPIs
network (magenta). Random PPIs (gray) were prepared as described in Methods; n indicates the number of protein pairs in each subset. Right: 95%
CIs for difference in correlation coefficients between party and date hubs; for each translational parameter the difference was calculated separately
for each type of PPIs. For all parameters, except protein abundance A, correlations are the strongest for co-complex PPIs of party hubs. The results for
the remaining parameters are shown in Additional file 4.
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within 0.31–0.46 and 0.25–0.48, respectively; hence the
sign of the difference between them cannot be determined
(CI: -0.11–0.16).
In case of binary interactions, the sample sizes are sev-

eral times smaller, which leads to wider CIs and may
hide underlying effects. For instance, for all parame-
ters the observed correlations between hubs and their
partners cannot even be claimed as positive or nega-
tive. Nevertheless, taking into account their upper CI
limits, as well as the results presented in Figure 1, one
should not expect effects larger than for co-complex PPIs.
Also the results for the remaining translational param-
eters L, g, w, m, I, E, and b are not informative –
the sign of the obtained correlation difference cannot
be determined, or, in case of w, its size is very dif-
ficult to interpret due to statistical uncertainties (see
Additional file 4).

Conclusions
In this paper we have analyzed the results of our previ-
ous quantitative model of translation [14] in the context
of protein-protein interactions networks and revealed that
among interacting proteins translation is co-regulated at
many different levels. The values of several translational
parameters, for instance, mRNA and protein abundance,
number of produced proteins from a gene, or, newly intro-
duced, protein production rate, agree well between inter-
acting partners and consequently for both human and
yeast. This was further confirmed by the analysis of the
protein production rate in yeast co-complex PPIs, which
revealed that its fold change between interacting proteins
is typically smaller by at least 1.59 than in case of ran-
dom protein pairs (Figure 2), while standard deviation of
its log fold change distribution is smaller by at least 0.64
(Additional file 2).
The agreement between the values of translational

parameters is visible even despite the fact that most
proteins interact with more than one partner, which
makes translation co-regulation a multidimensional pro-
cess. In such a case, two-dimensional correlations may
only roughly outline the existing dependencies, and are
prone to “outliers” such as regulatory subunits, whose
translational regulation may be distinct from that of the
remaining components of a complex. This phenomenon
was depicted by the example of general transcription
factors (Figure 3), and to a lesser extent – proteasome
(Additional file 3), where many subunits produced in
excess in relation to the complex baseline were addition-
ally involved in formation of other functional modules.
Moreover, one must not forget that the underlying trans-
lational model is only theoretical, and that the quality
of its outcome strongly depends on the quality of input
data. In consequence, some of the observed discrepancies
may reflect estimation errors caused by biological noise

or model drawbacks. Finally, although the strength of
the obtained correlations is sufficient for some general
conclusions, it does not seem large enough to enable
more sophisticated analysis, such as relevant prediction
of existing PPIs on the basis of translational parameters
values.
Another conclusion of this research concerns the nature

of the used protein-protein interactions data sets. For
all performed analyses, the best results were obtained
for co-complex interactions, while correlations for binary
PPIs were typically much weaker, and in many cases
indistinguishable from the results for the control sets of
random interactions. Also the analysis of protein pro-
duction rate (fold change) revealed that its distribution
for binary PPIs resembles more closely the distribu-
tions for random PPIs, while the distribution for co-
complex PPIs has visibly smaller median and standard
deviation (for logged values). All this may be caused by
lower quality of binary PPIs. However, the opposite was
shown for at least two yeast sets [16]. Also, it should
be stressed that many low-affinity PPIs may be unde-
tectable by methods such as yeast two-hybrid system,
causing their under-representation in the binary sets that
may bias the outcome. Nevertheless, another explanation
is also possible – that for transient connections with reg-
ulatory and signaling proteins, maintenance of adequate
proportions of synthesized complex subunits, and thus
their translational co-regulation, is not always economi-
cally beneficial. Future research will aim to check whether
such binary interactions may be assigned to periodi-
cally expressed complex subunits [10], mentioned in the
Introduction.
Instead, the limited quality may be an issue in case of

co-complex PPIs detected by non-experimental methods,
as for E.coli co-complex PPIs. In particular, within this set
we were unable to determine the correlation sign for any
of the studied parameters except mRNA abundance x, but
even in this case, the correlation was much weaker than
the ones observed for yeast and humans (Figure 1). Only
after replacing the E.coli co-complex set with intra-operon
associations, the obtained results became coherent for
all the studied species. Another advantage of using oper-
ons is that they are transcriptionally co-regulated, and
even though their definition does not require a poly-
cistronic mRNA, it is often so in practice [1,27]. If so,
some parameters, such as transcript abundance x, or
mean mRNA lifetime m should have almost identical val-
ues for all genes from a given operon, resulting in size
of correlations close to one. The fact that the observed
correlations are not larger than 0.58 (for protein abun-
dance A the upper limit is even 0.77, but the correlation
CI is burdened with a high degree of uncertainty) indi-
cates that data used to gauge translational parameters are
still very noisy, or, less likely, the methods used to detect
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operons need to improve. On the other hand, however,
operon analysis may serve as a positive control defining
the limit of detectable co-regulation level of interacting
proteins, given all methodological constraints. Therefore,
obtaining correlations of similar sizes for many param-
eters within co-complex PPIs in yeast and humans sug-
gests that we have approached the maximum detectable
effect, which further confirms the quality of our computa-
tional model of translation and the examined co-complex
PPIs.
Moreover, the analysis of translational co-regulation

among yeast hubs showed that for party hubs, which rep-
resent integral elements within distinct proteome mod-
ules, the mRNA abundance x, protein production rate R,
mean codon elongation time e, and possibly the num-
ber of produced proteins from a gene B are more con-
certed between the hub and its partners than for date
hubs, which act as signal mediators between these mod-
ules (Figure 4). In contrast, protein abundance A may be
similarly well concerted for both types of hubs, while for
the remaining translational parameters the effect seems
either very weak or could not be detected in this analy-
sis. It should be noted, however, that in case of transcript
abundance x the results are not surprising, as the distinc-
tion between party and date hubs was made according
to the values of correlation coefficients between the hub
and each of its neighbors for mRNA expression [13]. In
particular, hubs with correlation below the cutoff of 0.5
were named date hubs, and above – party hubs. In such a
case, some proteins interacting with party hubs according
to our PPIs sets should have more similar values of param-
eter x, resulting in larger correlations. Our findings meet
these expectations, showing additionally that expression
co-regulation among party hubs and their partners is
not limited to the mRNA transcription level. This may
prove useful in detecting new date hubs, e.g. in pathogens,
as they are considered the best targets for therapeutic
intervention [13].
Summing up, this work provides global-scale evidence

for translation co-regulation among interacting proteins.
It is best visible while studying protein production rates
among components of stable complexes, indicating that
its main purpose is to prevent waste of resources during
synthesis of building blocks of stoichiometric complexes
and guarantee their on time production. Similar results
obtained for distantly related species suggest that this
phenomenon applies to the variety of living organisms
and concerns physically interacting as well as function-
ally linked proteins, as shown by the analysis of intra-
operons proteins in E.coli. Its prevalence and the fact that
proteins usually do not operate in isolation lead to the
conclusion that regulation of a protein translation should
always be studied with respect to expression of its primary
interacting partners.

Methods
Derivation of protein production rate
Translational parameters for 1738 E.coli, 4470 S.cerevisiae,
and 7497 H.sapiens genes were downloaded from the
Transimulation website [15]. For their derivation, see the
quantitative model of translation [14]. Additionally, a new
translational parameter – protein production rate – was
calculated for each gene on the basis of the existing
parameters. Under the assumption of a transcriptional
steady state, i.e. the same number of matured mRNAs
appearing in the cytoplasm as being degraded, the protein
production rate R for the gene i equals:

Ri = xi · bi
mi

, (1)

where xi stands for the number of mature transcripts of
gene i present in the cell, bi is the number of proteins
produced from one such transcript during its lifetime,
and mi is its mean lifetime in seconds. Thus, obtained
Ri is expressed as the number of protein molecules
produced per second by the gene’s mRNAs present in
the cell at that time. Due to the input data limitations
of the underlying translational model, the values of b
and m were provided only for the fraction of analyzed
genes. To solve this problem, we substituted b with the
quotient of m and I – the mean translation initiation
time of a given mRNA, as explained in the core model
publication [14]. In consequence, Ri may be calculated
simply as:

Ri = xi · mi
mi · Ii = xi

Ii
. (2)

Protein-protein interactions
The sets of binary and co-complex interactions for all
three species, along with their references, are summa-
rized in Table 2. Only if the interaction was heterodimeric
and both proteins had attributed translational parame-
ters values, it was retained for further analysis. For yeast,
the “Y2H-union” and “Combined-AP/MS” sets were used
as binary and co-complex PPIs, respectively [16]. In case
of humans, the HPRD database [30] classifies all experi-
mentally derived PPIs into binary, i.e. direct interactions
between two proteins, or complex, representing interac-
tions of unknown topology with more than two part-
ners. In case of E.coli, binary PPIs were gauged by yeast
two-hybrid screening [31], while multiprotein complexes
were predicted by clustering of protein physical interac-
tions network [25]. For the purpose of this research, we
obtained direct co-complex associations within E.coli and
human sets by forming all possible, non-redundant pairs
of proteins from each distinguished complex. An addi-
tional set of E.coli protein pairs was prepared based on the
operon genes determined elsewhere, as shown in Table 2.
In this case, for each reported operon we generated all



Siwiak and Zielenkiewicz Biology Direct  (2015) 10:18 Page 10 of 13

possible protein pairs between the protein products of its
genes and refer to them as intra-operon proteins. If neces-
sary, protein names were transformed with the help of the
Uniprot on-line tools [32].
For the main analysis, random PPIs sets were generated

for each species separately by sampling with replacement
of protein pairs from the set of proteins of known trans-
lational parameters, with exclusion of existing (binary, co-
complex or intra-operon), redundant and homodimeric
interactions. The sampling was repeated until 3000 ran-
dom PPIs were obtained. The shuffled-interactome PPIs
(referred to as “shuffled PPIs”) were generated by shuf-
fling protein locations in the co-complex interactome of
each species, followed by the extraction of all protein
pairs from the created network. The shuffling proce-
dure yielded the same number of random interactions as
those present in the corresponding co-complex interac-
tomes. For the E.coli operon analysis, the shuffled PPIs
were generated by shuffling locations of genes in the
operons, followed by the extraction of all possible pairs
of their protein products from each of the created false
operons.

Party and date hubs
The lists of 108 party and 91 date hubs of S.cerevisiaewere
taken from ref. [13]. For each hub its interactions were
extracted from the binary and co-complex PPIs sets pre-
pared previously for yeast. As a result, we obtained 199
binary and 1024 co-complex interactions for party hubs,
and 187 binary and 891 co-complex interactions for date
hubs. Control sets of random PPIs were generated sep-
arately for party and date hubs. For each hub of known
translational parameters, n protein partners were sampled
without replacement from the set of proteins of known
translational parameters. The value of n was set accord-
ing to the number of real neighbors of known translational
parameters for this hub in the co-complex network. Thus,
we obtained 884 and 771 random PPIs for party and date
hubs controls, respectively.

Statistical analysis
All correlations reported in our analysis are the non-
parametric Spearman correlations. The 95% confidence
intervals (CIs) for correlation coefficients were calculated
using standard tools from the R environment. Correla-
tion differences CIs were calculated with the help of the
cocor.indep.groups function from the cocor R package
[33], with the zou2007 method applied [34].
95% CIs for medians and medians’ differences of the R

fold change, as well as 95%CIs for standard deviations and
standard deviations’ differences of log fold R change were
calculated with the help of the simpleboot R package [35].
The CI limits were gauged by both normal approxima-
tion and a percentile method – both calculations variants

returned almost identical results, and thus only normally
approximated CIs were shown. Bootstrap samples were
2000 for all analyses.

Reviewers’ comments
Reviewer report 1: Prof. Sandor Pongor, International
Centre for Genetic Engineering and Biotechnology (ICGEB),
Italy
The study of Siwiak and Zielenkiewicz examines the co-
regulation of translation rates of interacting proteins,
using analysis of correlations of several translational
parameters assigned to proteins in the interaction net-
work. These parameters are derived from a computational
model of translation described in the authors’ previous
works and further developed in this paper. The main
conclusion of this research is that members of stable com-
plex subunits and party hubs tend to be translationally
co-regulated, which is not the case for interactions with
regulatory proteins and date hubs. The authors suggest
that such regulation may be “energetically favorable” and
facilitate complex formation.
The presented article regards important an interest-

ing, yet very weakly understood natural phenomenon.
The authors present convincing analysis based on well-
designed tests performed on carefully chosen protein-
protein interaction data. The authors have chosen to
report the correlations as confidence intervals instead
of just p-values, offering readers much more reli-
able and comprehensible results. Generally, the text is
well written and suitable for publication in Biology
Direct.
Minor things:
1) Weak correlations for binary PPIs sets, received

mainly from Y2H experiments, may be caused by limi-
tation of this experimental methodology in detection of
low-affinity protein-protein interactions (requiring higher
concentrations of substrate subunits). Such limitations
should be mentioned in the discussion.
2) Page 1: Abstract, Conclusions. It is not clear to

me if the results obtained for E.coli are indeed simi-
lar to those for other two organisms, as the set used
for E.coli (“intra-operon PPIs”) was treated as a “posi-
tive control”. Besides, the name of this set is confusing.
Although authors stressed that this set does not need to
include physically interacting proteins, the acronym “PPI”
suggests it.
3) Page 5: What does “modes” in “comparisons of

modes” refer to?
4) Page 9-10: Inconsistent use of the index “i”, e.g. “i

gene’s mRNAs”.
5) Page 13: Line 2, “transcritption” instead of

“transcription”.
6) General remark: A table of parameters (including

abbreviations) used for calculations would be very helpful.
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Authors’ response: We agree with the prof. Sandor Pongor
comments and have corrected the manuscript accord-
ingly. As for the second remark, indeed, the intra-operon
set is different, as many proteins produced from one
operon do not interact physically, which we mentioned
in Results before. They are, however, linked functionally
and may also be translationally co-regulated. Although
the abstract length is limited and does not allow for more
detailed explanations, we decided to signal this distinc-
tion at least. Also, all instances of the misleading term
“intra-operon PPIs” were substituted with “intra-operon
proteins”.

Reviewer report 2: Dr ClausWilke, The University of Texas
at Austin, United States of America
The paper attempts to study the extent to which inter-
acting proteins are co-translationally regulated. This is an
interesting question; however, I’m not entirely convinced
that the available data are of sufficiently high quality.
Therefore, I’m not sure how reliable the conclusions are
that are presented here.
First, all the translational data basically stems from a

fit of a model, not from individual measurements. By the
authors’ own words from their 2010 paper, their model
yielded only “reasonably good correlations” with avail-
able data. I’m not sure how much we can trust such a
model when we then want to use it to make downstream
inferences.

Authors’ response: We share these doubts with dr Claus
Wilke and are aware of the limitations of this research
and the former model, which was stressed in Conclusions.
However, we are also aware that the quality of the model
outcome cannot be larger than the quality of its input on
which we have no influence. We try to choose the most reli-
able data but even sets from highly published papers raise
some quality concerns (for instance, lack of measurements
precision estimates). In our previous paper [15], we have
demonstrated that for some parameters the predictions
of our model show similar agreement with experimen-
tal studies as the experimental studies among themselves.
But these experimental studies can explain even as lit-
tle as 12% of their counterpart variance. Replicability of
high-throughput experimental measurements was also dis-
cussed by others, e.g. [36]. Based on such observations,
we believe that “reasonably good correlations” is the best
we can achieve in this field with the current technology.
Despite these limitations, some signal is still visible, espe-
cially in comparison with negative and positive controls.
It is hard to believe that it is entirely caused by the noise.
Nevertheless, taking into account its strength and the com-
plexity of the analyzed matter, we try to be very cautious
with our conclusions and discuss our concerns honestly in
the paper.

Second, several of the protein-protein interaction data
sets are also dubious. In particular, yeast two-hybrid
measurements contain such a large amount of false pos-
itives that they are basically useless. Further, the authors
admit that the E.coli data are not very good but do the
analysis anyway. Why not just leave out E.coli if the data
availability is poor?

Authors’ response: For the most extensively used Y2H set
(binary PPIs for yeast) the quality seems at least accept-
able and comparable to the quality of data from affinity
purification followed by mass spectrometry (see the refer-
ence paper [16]). Besides, it is not always obvious which
data sets are useless or of poor quality before one tries to
perform an analysis on them (as in the case of E.coli co-
complex set). We believe that after the analysis is finished
all such disappointing results should be reported with an
appropriate commentary. Note that none of the papers on
PPIs we cite was retracted so far. Other researchers may
want to use them in their own research, unless they find
similar reports to ours. Showing how badly these data per-
form in comparison with other sets may save others a lot of
time and money. Sweeping these facts under the rug leads
instead to false beliefs that high-throughput experimental
measurements (e.g. on PPIs, or translational parameters
discussed above) are more reliable than they really are,
and may provoke excessive expectations in relation to the
results that are realistically possible to obtain.

Overall, when reading this paper, I felt like I just had
just been sent back in time by about a decade. For
example, the authors refer to a 2006 paper as “recent”.
Moreover, the idea of date and party hubs, in particular,
was highly fashionable around 2005-2007 but most anal-
yses since have shown that that distinction is likely not
very meaningful. For example, after about 5 minutes of
googling, I came across this paper: Agarwal et al., Plos
Comput Biol, 2010, doi:10.1371/journal.pcbi.1000817,
which looks highly relevant but is not cited by the
authors.

Authors’ response: Indeed, the word “recently” may
not be relevant here and we have corrected it. Nev-
ertheless, we still find the mentioned paper worth cit-
ing, as it was presumably the first critique of the party
and date hubs concept published in the times when the
idea was still highly fashionable. In that case, other
criticizing papers published since 2007 are newer, but
not that novel. Although the debate about party and
date hubs was signaled in the introduction before, we
decided to supplement it with some up-to-date references,
as suggested by dr Claus Wilke. Additionally, some of
them show that hub dichotomy is still an open problem
(e.g. [21]).



Siwiak and Zielenkiewicz Biology Direct  (2015) 10:18 Page 12 of 13

Minor comments: “In particular, the degree distribution
of random networks is binomial”. That depends on how
the random networks were constructed.

Authors’ response: We agree and have corrected the text
accordingly.

I don’t understand this sentence on p. 4: “In some cases,
though, their sign cannot be determine”. How can we not
determine the sign of a correlation coefficient? Once the
coefficient is calculated, we can look at it and see the sign.
If the authors want to express that the coefficient is not
significantly different from zero, then they need to say
that.

Authors’ response: Typically, researchers report only
point estimates of correlation coefficients along with their
p-values. Such an approach has many drawbacks [37-39],
thus we adopt thinking in terms of confidence intervals
throughout the entire paper. Here, the obtained confidence
interval for correlation coefficient contained both nega-
tive and positive values (e.g. [-0.1, 0.15]), thus the true
value of the coefficient (i.e. for the entire population, not
just sample) lies anywhere within this interval with 95%
confidence. This value may be negative or positive, but
we were not able to determine it more precisely in our
research. Writing instead that “correlation is not signif-
icantly different from zero” is very often interpreted as
“correlation equals zero” or “there is no correlation”, which
is not true, as further research on larger samples may show
that its CI lies entirely, e.g., above zero. To avoid these and
other misunderstandings, we concentrate on interval esti-
mates and magnitude of the observed effects, which we find
more favorable than the popular statistical significance
approach.
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