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Capturing transient antibody conformations with
DNA origami epitopes
Ping Zhang1,10, Xiaoguo Liu 2,10, Pi Liu3,4,10, Fei Wang 2,5, Hirotaka Ariyama6, Toshio Ando 6,

Jianping Lin3,4, Lihua Wang7,8, Jun Hu1,7✉, Bin Li1,7✉ & Chunhai Fan 2,9✉

Revealing antibody-antigen interactions at the single-molecule level will deepen our under-

standing of immunology. However, structural determination under crystal or cryogenic

conditions does not provide temporal resolution for resolving transient, physiologically or

pathologically relevant functional antibody-antigen complexes. Here, we develop a triangular

DNA origami framework with site-specifically anchored and spatially organized artificial

epitopes to capture transient conformations of immunoglobulin Gs (IgGs) at room tem-

perature. The DNA origami epitopes (DOEs) allows programmed spatial distribution of

epitope spikes, which enables direct imaging of functional complexes with atomic force

microscopy (AFM). We establish the critical dependence of the IgG avidity on the lateral

distance of epitopes within 3–20 nm at the single-molecule level. High-speed AFM imaging of

transient conformations further provides structural and dynamic evidence for the IgG avidity

from monovalent to bivalent in a single event, which sheds light on various applications

including virus neutralization, diagnostic detection and cancer immunotherapy.
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Antibody (Ab)–antigen (Ag) interactions are important
natural defense strategies in the mammalian immune
system. Their unparalleled specificity has been popularly

exploited for developing tools in clinical diagnosis, treatment, and
prevention, as exemplified by conventional vaccine prevention
and rapidly emerging cancer immunotherapy1–7. The funda-
mental mechanism of Ab–Ag-binding processes is of great
importance for understanding immunology, however, revealing
dynamic Ab–Ag interactions at the single-molecule level remains
difficult8. Historically, the “Lock-and-Key” theory was proposed
to explain the intrinsic capability of Abs to bind their cognate Ags
with high specificity. Later on, the “induced-fit” model was
evolved to describe Ab–Ag interactions by taking consideration of
transient conformational changes of Abs/Ags9,10. As a powerful
method to determine protein structures with the atomistic reso-
lution, X-ray crystallography provides a route to experimentally
examine modes of Ab–Ag interactions11,12. Cryogenic electron
microscopy (cryo-EM) serves as a tool for imaging individual
Abs at atomic resolution, offering unprecedented capability to
determine complex structures. But important information on
conformational flexibility and intermediate Ab–Ag complexes
are likely lost due to the lack of temporal resolution ability of
cryo-EM13,14.

Atomic force microscopy (AFM) has allowed the imaging of
biomolecules under physiological conditions15–19, which provides
an alternative route to probe Ab–Ag interactions20–23. Previous
studies have demonstrated the potential of AFM for imaging Abs
with near-atomistic resolution24–26 and its ability for quantitatively
mapping nanomechanical forces of Ab–Ag interactions at the
single-molecule level27–29. Recently, high-speed (HS) AFM offers
up to video-rate temporal resolution, revealing certain types of
dynamic processes of IgGs, e.g., walking on the viral surface,
oligomerization, and complement activation upon antigen recog-
nition24,30,31. These exciting advances in unveiling distinctive
molecular events of Abs reveal its compelling implications in
resolving heterogeneous conformations of Ab–Ag complexes.
Nevertheless, the spatial resolution is generally sacrificed in the HS
mode. High-resolution imaging of transient functional Ab–Ag
complexes with AFM is difficult to implement.

Here, we reason that transient binding conformations of a single
IgG can be observed in aqueous solution at room temperature. We
devise DNA origami epitopes (DOEs) to elucidate the transient
binding conformations of immunoglobulin Gs (IgGs, 150 kDa).
Using AFM, HS-AFM and single-molecule FRET (smFRET), we
interrogate the structure, avidity, and dynamic binding processes of
IgGs at the single-molecule level.

Results
Design and fabrication of DOEs for IgG capture. Epitope spikes
often distribute unevenly on the surface of viral particles (Fig. 1a),
which has been known to influence the avidity of antibodies32,33.
We were inspired to design DNA origami34–44-based DOEs
mimicking the distance distribution of viral epitopes to program
the antibody-binding ability (Fig. 1b). To do that, six pairs of
digoxin molecule (780 Da) were site specifically anchored on the
prescribed positions of a triangular DNA origami. The lateral
distances of each epitope pair were separated by 3–20 nm (Sup-
plementary Figs. 1 and 2).

Having established the DOE platform, we performed IgG
capture which was imaged with AFM. DOEs were deposited onto
a freshly cleaved mica substrate, which was then incubated with
IgGs. Figure 1c shows a solution-phase AFM image of IgG-bound
DOEs. We observed Y-shaped bright dots representing IgGs with
various binding structures located on all prescribed sites of DOEs.
Interestingly, on sites with the epitope distances of 8, 10, and

16 nm, the three arms of IgGs were clearly visible; however, the
three-arm structures of IgGs were not well defined on sites with
the epitope distances of 3, 5, and 20 nm (Fig. 1d), exhibiting
epitope distance-dependent binding behaviors. Especially, the
image of an IgG was blurred for the lateral distance of 20 nm,
suggesting that the bound IgG was mobile. In this situation, the
lateral distance exceeds the contour length of the two arms, which
possibly only supports monovalent binding of IgGs.

The high resolution of IgGs probably arises from the firm
binding of DOEs, which restricts the motions of IgGs when they
bivalently bind to the epitope pair (avidity of 2). Importantly, the
stiff DOEs not only rigidify IgGs but prevent their random
adsorption on mica. The near lying-flat orientation of IgGs
provides a precise tool for measuring the size and conformational
variations at different binding states at the single-molecule level.
The Y-shaped structure and the size of the three arms of IgGs
measured to be most 4.0 × 4.0 × 5.5 nm3 (Supplementary Fig. 3)
fit well with the molecular structure of IgGs obtained from the
Protein Data Bank (PDB entry, 1HZH) and the topographical
AFM image of IgGs from electron tomography (ET) and
AFM11,26,45. We assumed the two bound arms were the Fab
domains where the unbound one was the Fc domain (Fig. 1e). We
assigned the bound two arms as Fab regions. We also note that
the hinge domain was visible, as shown in Fig. 1e.

Conformational flexibility of DOE-confined IgGs. Having
established the DOE capture system, we next explored the con-
formational flexibility of DOE-confined IgGs with HS-AFM.
Figure 2a shows HS-AFM snapshots (2 frame s−1) of IgGs bound
to several DOEs sites (5, 8, 10, and 16 nm). We observed that
IgGs confined in all the four separation distances showed wagging
motions, as indicated by the arrows in Fig. 2a. Generally, two
types of wagging motions exist: out-of-plane wagging (the 5 nm
site, white circles) and in-plane wagging (8, 10, and 16 nm sites,
white arrows). The former appears to be a whole-body motion
when the two Fab domains are held tight, whereas the latter is
primarily the motion of the Fc domain (Supplementary Figs. 4
and 5). We also note that this flexibility of binding conformations
of IgGs is likely of relevant physiological functions46–51.

Next, we examined the relationship between the measured
distance of Fab barycenters and the epitope distances (Fig. 2b).
Despite the dynamic motions of IgGs, we found that the distance
of Fab barycenters were nearly fixed, providing a precise measure
for the stretching of Fab domains. As a general trend, the
measured distances increased along with the designed epitope
distances, suggesting that the two Fab domains of a single IgG
could be programmably stretched using epitope distance-
engineered DOEs. Of note, we found the deviation of two
distances especially at the longer distances. The measured
distances of two Fabs in IgGs are 4.6 ± 1.0, 6.0 ± 1.0, 8.1 ± 1.0,
9.7 ± 0.8, and 11.3 ± 1.2 nm for the designed digoxin distances 3,
5, 8, 10, and 16 nm, respectively (n= 10, central values= average
values, and ±= standard deviations (SD)) (Fig. 2c, Supplemen-
tary Fig. 6). This is possibly because the measured distance is the
distance between the barycenters of two Fabs, which is smaller
than the epitope distances, especially when the two Fabs are
stretched (e.g. at an epitope distance of 16 nm). Overall, we
showed that DOEs could program the stretching states of IgGs,
and image the stretching conformations at room temperature.

Dynamics of DOE-IgG binding. To probe the DOE-IgG-binding
dynamics, we employed HS-AFM (2 frames s−1) to trace transi-
tional binding of IgGs on tens of DOEs (Fig. 3a, Supplementary
Fig. 7). We observed a three-stage DOE-IgG-binding process:
(i) wandering state, (ii) monovalent binding, and (iii) bivalent
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binding state (Fig. 3a). Figure 3b shows three exemplary binding
events for the 3, 10, and 16 nm sites on DOEs. Especially, for
10 nm site (middle raw), initially, we found the IgG molecule
wandering in the bulk solution out of plane until 2.0 s (high-
lighted by orange circle). Then, in <0.5 s, one Fab arm of the IgG
was captured by an epitope spike (highlighted by cyan circle).
Finally, within another 0.5 s, the other Fab arm was captured by
the proximal epitope spike. Then the two Fab arms were firmly
held by the epitope pair, leaving a wagging Fc domain (high-
lighted by green circles). The phenomena that IgG underwent
three typical conformational states before achieving bivalent
binding were observed in various designed sites, except on the
20 nm site. It should be noted that 10 nm sites had the shortest
monovalent-to-bivalent binding intervals of ~1.0 s (n= 7,
SD= 0.5 s) (Supplementary Table 7, Supplementary Fig. 8). For
other distances, the intervals were generally ~85.0 s (3 nm, n= 5,
SD= 46.0 s), ~49.0 s (5 nm, n= 9, SD= 31.0 s), ~3.0 s (8 nm,
n= 5, SD= 2.4 s), and ~3.0 s (16 nm, n= 3, SD= 4.4 s), respec-
tively (Supplementary Table 7, Supplementary Figs. 10, 12, 14,
and 16). In addition, the dynamic motions of the Fab arms are
illustrated in detail with magnified HS-AFM images and movies
(Supplementary Figs. 9, 11, 13, 15, and 17, Movies 1–5).

Next, we employed total internal reflection fluorescence (TIRF)
microscopy to perform smFRET to validate the three-stage DOE-
IgG binding mechanism. To this end, Alexa 647 acceptor was
labeled on the IgG, a pair of ATTO 550 donors was located
proximal to the epitope spikes (10 nm) on DOE. Figure 3c shows
successive step-down fluorescence trajectory in a typical DOE-
IgG-binding event. Given that photobleaching of the two ATTO
550 dyes generated only two descending steps with intervals
generally longer than 10 s (Fig. 3d, Supplementary Fig. 18), the
initial fluorescence intensity descending steps at ~7 s and ~10 s
were assigned to a two-step FRET change brought by IgG
monovalent and bivalent binding states (Fig. 3c, insertions).
Generally, the smFRET analysis complements HS-AFM to
establish the three-stage DOE-IgG binding mechanism (Supple-
mentary Figs. 18 and 19).

Engineering DOEs for evoking the IgG avidity. To quantify the
epitope distance effect on the IgG avidity, we explored the tran-
sition binding kinetics of IgGs from monovalent (avidity of 1) to
bivalent (avidity of 2) using HS-AFM. The transition time varied
greatly from sub-second to over 100 second at different epitope
distance. We found that the 10 nm site led to the shortest
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transition time (Fig. 4a, upper), implying a preferable distance for
bivalent binding of IgGs. Shortened distances (3, 5, and 8 nm)
resulted in longer transition time, possibly due to the increased
steric effects under these circumstances. Increasing the distance to
16 nm also slightly extended the transition, suggesting that
stretching the two IgG arms requires significant relaxation time
which is consistent with previous studies that, structurally, the
two Fab arms cannot be stretched over 20 nm33. The epitope
distance effect on the IgG avidity was further tested using
PeakForce-AFM. The difference between 8 nm and 10 nm, 10 nm
and 16 nm is statistically significant (*P < 0.05, ANOVA) when
judged from the monovalent/bivalent binding efficiency. Com-
pared with monovalent/bivalent binding efficiency of 19.5%/
80.6% for distance of 10 nm, monovalent/bivalent binding effi-
ciency of 32.7%/60.1% and 47.1%/53.3% correspond to distances
of 8 and 16 nm, respectively (Supplementary Fig. 20), indicating
that it is more difficult to achieve bivalent binding at both 8 and
16 nm as compared to 10 nm distance.

The bivalent binding efficiency was further evaluated with
different epitope distances (Fig. 4a, bottom, Supplementary
Figs. 20–24). Consistent with the transition kinetics, we found
that the 10 nm distance led to the highest bivalent binding
efficiency, whereas shorter or longer distances decreased the
efficiency. The generality of this distance-dependent-binding
efficiency was substantiated with the use of biotin and anti-
biotin IgG, as well as cholesterol and anti-cholesterol IgG pairs
on designed DOEs (Supplementary Figs. 25–32). We should
note that although DNA origami enables the modification of
molecules with nanometer precision, entities modified on the
ends of the DNA staple strand may endure uncertainty.
For example, Shaw et al.41 showed that the optimal distance
for IgG binding to two epitopes is 16 nm, whereas our results

showed that this distance is about 10 nm. Different uncertainty
estimation method, characterization technique, and design
strategies for DNA origami that cause extensions at binding
sites are presumable reasons for explaining this discrepancy
(Supplementary Fig. 2).

To understand the mechanism of the epitope distance-dependent
avidity of IgGs, we performed coarse-grained molecular dynamics
(MD) simulations on IgG-DOE binding. Interestingly, we found
that IgG had the lowest potential of mean force (PMF) at a binding
barycenter distance (d) of ~9.4 nm (Fig. 4b). According to the PMF
equation:

PMF ¼ �kTlnPðrÞ; ð1Þ
where P(r) is the probability that a certain IgG conformation
forms at a given d, k is the Boltzmann constant, and T is the
system temperature. Hence, conformations at ~9.4 nm have the
highest probability of occurrence and the lowest potential,
which is consistent with the experimental results that the 10 nm
sites are kinetically and thermodynamically favored. The PFM
profile shows that conformations with d smaller or greater than
9.4 nm were all energetically unfavored. In other words, the
favored ~9.4 nm conformation at equilibrium corresponds to
the average value of the Fab–Fab angle ~ 105°. This finding is
in good agreement with previous structure analysis of the
intact IgGs with Fab–Fab angle ~ 110° in cryo-EM46. Note
that when d > 16 nm, the molecular structure of IgG start to
collapse during computation. Taking the active radius into
consideration, the maximum stretching length of IgGs is no
more than ~18 nm, which is consistent with our experimental
observations.

We further employed MD simulations to compute the
dynamic conformations of bivalently bound IgGs (Fig. 4c).
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We found that IgG could take conformations ranging from
highly compact (d= 6.2 nm) to far stretched (d= 16.0 nm). The
design of epitope distances on DOEs provides a straightforward
and programmable approach to observe these transient,
functional conformations at room temperature. Of note, the
measured barycenter distance d is smaller than the designed
distance D. Importantly, we imaged these transient conforma-
tions of IgGs in solution with AFM, which were all captured at
prescribed distances (Fig. 4d).

Discussion
In this study, we devised DOEs to mimic the distance dis-
tribution of epitopes on viral particles by exploiting the spatial
addressability of DNA origami. The positioning ability and
stiffness of DOEs enables room-temperature freezing of IgGs
for high-resolution imaging of transient, functional IgG binding
conformations at the single-molecule level. The precision
in programmable control of the lateral distances of epitopes
on DOEs allows unequivocal determination of the epitope
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distance-dependent IgG avidity. This DOE platform also sup-
ports HS-AFM and smFRET analysis to probe the dynamics of
single IgG binding events on DOEs.

The dynamics of Ab–Ag binding has been extensively studied
theoretically and experimentally24,52–56. However, direct capture
of transient binding conformations of Ab–Ag complexes at room
temperature remains difficult. Our DOE platform provides direct
structural evidence for the transient, functional conformations of
IgGs at room temperature, which may deepen our understanding
of physiologically or pathologically relevant Ab–Ag complexes.
Especially, we find that IgGs can take flexible conformations
ranging from high compact to far stretched in response to short-
to-long epitope distances. Importantly, the binding kinetics and
efficiency for bivalent IgG binding is the highest when the two
epitopes are separated by ~10 nm.

The distance-dependent binding of IgGs on epitopes has
important physiologically or pathologically relevance. Viruses
have been well known to adopt wise strategies to escape Ab-
mediated neutralization strategy by tuning the spatial distribution
of epitope spike on their surfaces32, e.g. average spike distances on
the surface of HIV is >20 nm, which is far beyond the span of two
Fabs in a single Ab molecule33. Consequently, the flexibility of
IgG binding with the two arms is critically important for their
affinity/avidity51. The designability and programmability of
DOEs thus offer an intuitive method to imitate viral epitope
distribution. DOEs thus not only increase the design space for
understanding Ab–Ab interactions at the single-molecule level
but also provide a potentially powerful platform for engineering
immunological tools.

Methods
Materials. The long single-stranded M13mp18 DNA molecule was obtained from
New England Biolabs (NEB). Digoxin-labeled, biotin-labeled, cholesterol-labeled,
cholesterol-modified poly A (chol-A), and the rest of staple strands were bought
from Sangon Biotech Co., Ltd (Shanghai, China). ATTO 550-labeled DNA short
staple strands were bought from Takara, China. Anti-digoxin antibody and anti-
biotin antibody were obtained from Sigma Aldrich, China. Anti-cholesterol anti-
body was brought from Lifespan Bioscience, Inc. 1,2-Dioleoyl-sn-glycero-3-phos-
phocholine (DOPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)
were obtained from Avanti Polar Lipids, USA. Alexa Fluor 647-IgG (Alexa 647-
IgG) was obtained from the Jackson laboratory, USA.

All reagents were kept at −20 °C until use. Deionized (DI) Water used in the
experiments was 18.2 MΩ cm−1. Milli-Q water was generated by a Millipore
system. Polycarbonate (PC) membrane (Whatman, Fisher Scientific) with a pore
diameter of 100 nm was used in vesicle extrusion. Millipore was obtained from GE
Healthcare (Little Chalfont, UK). The PCR instrument used was the Eppendorf
Mastercycler Personal Machine. The concentration of DNA origami was measured
with NanoPhotomer-P330 (IMPLEN, Munich, Germany).

Design and fabrication of DOEs for IgG capture. The DOE comprised a trian-
gular DNA origami tile fixed with epitopes. The sites and sequences of the staple
strands for generating the DNA origami have been previously reported34. The
DOEs were based on paired distances of digoxins, biotins, or cholesterols on the
DNA origami. To obtain potentially accurate distance for the paired epitopes, all
epitopes were modified directly at the 5′-, 3′- and/or interval of the staple strand on
the DNA origami, and no extra linker was added. The designed distances of the
paired epitopes (approximately 3, 5, 8, 10, 16, and 20 nm) were based on the
numbers of nucleotides within the DNA origami: a one-turn helix (32 nt) had a
length of 10.6 nm. However, some uncertainties can be expected due to the flex-
ibility of the helix structure, the size of epitope, and considering that the B-helix
structure has a distance of 0.34 nm per base pair and a 2.0 nm diameter per helix,
we estimated that the spatial variance of the designed distance was <3.0 nm.
Therefore, all lateral distances are described in terms of their design distances,
unless mentioned.
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The sites and sequences of (1) the staple strands labeled with digoxin, biotin,
cholesterol, and ATTO 550; (2) the extended sequences of staple strands for
anchoring DNA origami on a supported lipid bilayer (SLB); and (3) the DNA
origami makers used are listed as Supplementary Tables 1–6, respectively. All staple
sequences listed in the tables are presented in 5′–3′ order.

Constructing a DOE based on assembly with digoxin, or biotin, or cholesterol
using DNA origamis. The DOE was constructed by assembly of triangular DNA
origami tile, with digoxin/biotin/cholesterol-labeled replacing strands. For smFRET
experiments, strands labeled with ATTO 550 and extended by 20-dT were added
during the self-assembly process. Self-assembly was conducted in TAE/Mg2+

buffer (40.0 mM Tris, 2.0 mM EDTA, and 12.5 mM MgCl2, pH 8.0)57. Briefly, a
5.0 nM single-stranded M13mp18 DNA, a 10-fold molar excess of staple strands,
and 10-fold molar excess of digoxin, biotin, or cholesterol-labeled staple strands
were mixed, followed by annealing treatment from 95 °C to 4 °C at a speed of 0.1 °C
per 10 s. The excess staple strands were removed by ultrafiltration three times using
1× TAE/Mg2+ buffer using 100 kDa cutoff filters (Amicon).

For preparing the DOEs used in the single-molecule smFRET experiments,
single-stranded M13mp18, a 10-fold molar excess of staple strands, a 10-fold molar
excess of digoxin, and a 400-fold molar excess of ATTO 550-labeled strands were
mixed, followed by the same annealing and ultrafiltration process described above.

Preparation of the SLB. The small unilamellar vesicles composed of DOPC or
DMPC were generated58. A particular volume of chloroform solution of DOPC or
DMPC was placed in a 25 ml round-bottomed flask. Then, the lipid film was dried
under a stream of N2 using a rotary evaporator to evaporate the chloroform. The
thoroughly dried mixture was immersed in DI water and sonicated for 10 min. A
lipid solution (5 mgml−1) was extruded through a pore of polycarbonate mem-
brane (100 nm in diameter) >30 times. The resulting small unilamellar vesicles
solution was used immediately.

An SLB was generated on a cover glass by fusion of small unilamellar vesicles.
The cover glass used to support the SLB glass was dried using N2 after sonicating
for 15 min in chloroform, acetone, ethanol, KOH, and DI water successively to
avoid influence of fluorescence background. Then, a quadrate chip fence in an
edge length of 0.5 cm was attached to the cover glass to construct a sample
chamber, using 50 µl of small unilamellar vesicles solution for incubation for
30 min at 25 °C. Excess unfused small unilamellar vesicles were removed by
thoroughly rinsing with DI water.

Tethering of the DOE on the SLB. Poly-A staple strands (400 nM) were added to
the prepared SLB for 1 h incubation at 25 °C. Then, the DOE solution (100 pM)
was added for 30 min incubation at 25 °C, after washed by 1× TAE to remove the
excess poly-A staple strands. The resulting tethered DOEs on the SLB were ready to
use after the excess DOEs were washed away using 1× TAE buffer.

AFM sample preparation. To quantify binding efficiency, experiments of DOE-
bound IgGs were conducted in solutions, in which the concentration of the DNA
origami in the reaction was kept in below 0.2 nM. Anti-digoxin antibody (Catalog
Number: D8156) was diluted 800 to 3200 times with TAE buffer before reaction
with an equal volume DOE solution. Anti-biotin antibody (Catalog Number
B7653) and anti-cholesterol antibody (Catalog Number LS-C295824) were diluted
with TAE buffer into final concentration from 30 to 90 nM and 78 to 312 nM,
respectively.

HS-AFM imaging. HS-AFM Images were collected using tapping mode HS-AFM
(RIBM, Japan). Silicon cantilevers (AC40, Olympus, Tokyo, Japan) with nominal
spring constants of 0.09 Nm−1 and a resonance frequency of 110 kHz were used.
HS-AFM was performed at room temperate (~25 °C).

To capture the dynamic epitope-IgG binding process, 5 µl of digoxin-labeled
DNA origami was incubated on freshly cleaved mica for 5 min. The sample was
mounted on the AFM liquid cell filled with 30 µl 1× TAE-Mg2+ imaging buffer.
After capturing an intact DNA origami, a final diluted ratio 1:10,000 IgG in 1×
TAE buffer was added to the liquid cell by pumping. Images were captured at a
rate of 0.5 s with a scan area of 150 × 150 pixel2. To obtain high-resolution
images of IgG conformation, images were captured at a rate of 0.1 s at a scan area
of 70 × 70 pixel2.

HS-AFM data analysis. The HS-AFM data were analyzed using kodec analysis
software. The HS-AFM movies were drift corrected and contrast adjusted.

PeakForce-AFM imaging. Images were collected in PeakForce tapping mode
(AFM MultimodeVIII, Veeco, Plainview, NY, USA). Cantilevers with nominal
spring constants of 0.12 Nm−1 (Sharp Silicon Nitride Lever (PEAKFORCE-HIRS-
F-B; Bruker, Billerica, MA, USA)) were applied using a typical scanning speed of
1–2 Hz. To capture images of the three types of Ab–Ag complexes formed in
solution, DOEs were mixed with IgGs in 1× TAE buffer (pH 8.0). After 2 h
incubation at 25 °C, a 3 µl drop of the formed Ab–Ag complex solution was
adsorbed on a freshly cleaved mica surface for incubation for 5 min. The resulting

samples were mounted in liquid cell in 1× TAE/Mg2+ buffer for imaging. All
images were flattened and analyzed using NanoScope Analysis software.

smFRET measurement. All smFRET experiments were performed using an ATTO
550-Alexa 647 coupling system in which each DNA origami was modified with one
ATTO 550 molecule near one digoxin molecule using a distance of 10 nm.

smFRET on lipid bilayer. All smFRET experiments were performed on a com-
mercial TIRF microscope (N-storm, Nikon) using a ×100 objective lens (NA 1.49)
and an electron multiplying charge-coupled devices (EMCCD) camera (iXon 3,
Andor). A solid-state laser operating at 561 nm (200 mW) and 640 nm (200 mW)
was used to excite the fluorescence of ATTO 550 and Alexa 647, respectively.
ATTO and Alexa signals were collected separately.

The reaction fluorescence signals were obtained as following: Firstly, we
localized an imaging region (40 × 40 μm2) in which several static bright spots were
observed using 561 nm laser excitation. Then, Alexa-labeled IgGs were immediately
added to the sample chamber, and the fluorescence intensity of ATTO 550 was
recorded with a 40 ms time resolution. The obtained videos were used as for
subsequent signal of smFRET.

smFRET data analysis. Image analysis was carried out using Image J software.
The Bio-Formats plugin was used to extract co-localized ATTO and Alexa spots
to obtain the FRET signal. Individual ATTO–Alexa pairs that dropped in successive
steps revealed changes in fluorescence intensity during IgG binding. These pairs are
described in Supplementary Figs. 18 and 19, which also provide the distribution of
fluorescence intensity of the ATTO 550-DNA-origami after Alexa-IgG binding.

Hidden Markov Model (HMM) is widely used for identifying hidden states from
noisy traces, especially in single-molecule FRET analysis. Which is specified by the
following components: a set of N states (Q= q1 q2… qN), a transition probability
matrix A (A= a11… aij… aNN, each aij representing the probability of moving from
state i to state j), a sequence of observations O, a sequence of emission probabilities B,
an initial probability distribution over states π. State assignment was performed using
open source hmmlearn package (https://pypi.org/project/hmmlearn/) in Python 3.6.
Observed fluorescence intensity sequence was read in as O. Q was initiated with a
sequence of intensity values with equal intervals from minimum to maximum of
observed intensity. Transition matrix A was randomly generated initially. Initial
probability distribution was assumed as a uniform distribution on all states.

Coarse-grain MD simulation. Initial conformation generation: The CG model of
IgGs was converted from full-atom structure (pdb number: 1igt) with parameters
of martini CG version 2.2 (refs. 59,60) and gromacs_2016 (ref. 61). Then, the model
was put into a 40 nm3 water box. After minimization and equation for 10 ns at
300 K using NPT ensemble, we pushed two Fabs together by applying 1 kJ mol−1

force on the binding site of digoxin at a rate of 0.1 nm per 1000 ps. The distance of
the binding site was varied from 14 to 5 nm. Then, 10 ns equation simulation was
carried out to remove unrealistic conflict. The final distance between binding sites
of two Fabs was 5.4 nm. The binding site is constituted by residues: A_Ser34,
A_Gln89, A_Gly91, A_Tyr94, B_Tyr35, B_His95, B_Gly97, B_Tyr100, and cor-
responding residues in chain C, D. The distances between two binding sites was
counted by measuring the mass centers of the two groups. In all simulation, a
position restraint of 1000 kJ mol−1 was applied on backbone beam of Fc part. To
hold the conformation stability of Fabs, elastic network (between beams with
distance in the range of 0.5–2 nm) with a force of 500 kJ mol−1 was applied.
Moreover, to insure the flexibility of linker parts (residue B230–B250, D230–D250)
between Fc and Fabs, no restraint was implemented in linker parts.

Umbrella sampling. Umbrella sampling is a method that calculates free energy
along a reaction coordinate based on MD simulation sampling. We used weighted
histogram analysis method (WHAM) to estimate the PMF of distance changing of
Fabs. Pulling was initialed with the conformations that have a distance of 5.4 nm
from two binding sites. The pulling force was set to 1 kJ mol−1 and pulling rate was
set to 0.01 nm per 100 ps. The distance was altered from 5.4 to 17.3 nm. Snapshot
of every 0.1 nm was fetched to perform 1 ns harmonic constraint MD simulation.
A harmonic potential, f(x)=−kx2 (k= 100 kJ mol−1 nm−2), was applied. The
12.0 nm distance was evenly divided into 120 windows. The conformation sampled
of each window was used for PMF calculations with WHAM. The result was
presented in Fig. 4b.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the main data supporting the findings of this study are available
within the article and Supplementary Information files. Extra data are available from the
corresponding author upon request. The source data underlying Figs. 1e, 2c, 3c, d, and
4a, b and Supplementary Figs. 1d, 3b, 6d, 18b,d, 19a–c, 20a, b, 24b, 28b, and 32b are
provided as a Source Data file. Source data are provided with this paper.
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