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Introduction: Epidermal growth factor receptor (EGFR) inhibition is an imperative ther-
apeutic approach targeting various types of cancer including colorectal, lung, breast, and 
pancreatic cancer types. Moreover, cyclooxygenase-2 (COX-2) is frequently overexpressed 
in different types of cancers and has a role in the promotion of malignancy, apoptosis 
inhibition, and metastasis of tumor cells. Combination therapy has been emerged to improve 
the therapeutic benefit against cancer and curb intrinsic and acquired resistance.
Methods: Three semi-synthetic series of compounds (C1-4, P1-4, and G1-4) were prepared 
and evaluated biologically as potential dual epidermal growth factor receptor (EGFR) and 
COX-2 inhibitors. The main phenolic constituents of Amaranthus spinosus L. (p-coumaric, 
caffeic and gallic) acids have been isolated and subsequently subjected to diazo coupling 
with various amines to get novel three chemical scaffolds with potential anticancer activities.
Results: Compounds C4 and G4 showed superior inhibitory activity against EGFR (IC50: 
0.9 and 0.5 µM, respectively) and displayed good COX-2 inhibition (IC50: 4.35 and 2.47 µM, 
respectively). Moreover, the final compounds were further evaluated for their cytotoxic 
activity against human colon cancer (HT-29), pancreatic cancer (PaCa-2), human malignant 
melanoma (A375), lung cancer (H-460), and pancreatic ductal cancer (Panc-1) cell lines. 
Interestingly, compounds C4 and G4 exhibited the highest cytotoxic activity with average 
IC50 values of 1.5 µM and 2.8 µM against H-460 and Panc-1, respectively. The virtual 
docking study was conducted to gain proper understandings of the plausible-binding modes 
of target compounds within EGFR and COX-2 binding sites.
Discussion: The NMR of prepared compounds showed characteristic peaks that confirmed 
the structure of the target compounds. The synthesized benzoxazolyl scaffold containing 
compounds showed inhibitory activities for both COXs and EGFR which are consistent with 
the virtual docking study.
Keywords: kinase inhibitors, anti-inflammatory, multitarget agents, BRAF, anticancer

Introduction
Phenolic compounds are considered as one of the most ubiquitously distributed 
phytochemicals; they are abundantly found in most vegetables and fruits and utilized 
as food supplement.1,2 Most of them possess various pharmacological activities and 
can be therapeutically indicated as antioxidants,3,4 anti-inflammatory,5,6 antimicrobial,7 

antifungal,8 antidiabetic,9 and anticancer agents.10 They can be classified chemically 
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into curcuminoids (curcumin, tetrahydrocurcumin), stilbenes 
(resveratrol, pterostilbene), quinones (naphthoquinones, 
anthraquinones), lignans (sesamin, enterolactone), coumar-
ins (umbelliferone, aesculetin), tannins (ellagitannins), flavo-
noids (silymarin, genistein, diosmin, quercetin) and simple 
phenolics (phenolic acids as caffeic and gallic acids).11

Cancer is considered one of the most dreadful diseases 
that lead to fatality; it is the second key reason for mor-
tality after cardiovascular diseases.12,13 The discovery of 
new and multitarget drugs for the treatment of cancer is of 
great importance due to the severity of the disease and the 
produced side effects of the already approved drugs. As 
oncogenic kinases play an important role in cell prolifera-
tion, inhibition or blocking of their actions has become an 
important strategy for cessation and termination of human 
malignancies.14,15 Overexpression of COXs enzymes has 
been detected in different types of tumor and implicated in 
cancer progression.16–19 Accordingly, the design and dis-
covery of drugs possessing dual kinases and COXs 
enzymes inhibition are of great interest to prevent 
oncogenesis.20

Epidermal growth factor receptor (EGFR) is a receptor 
tyrosine kinase (RTK). It has crucial role in different cell 
physiological processes including proliferation, differen-
tiation and migration. The extracellular domain of EFGR 
has the binding site for endogenous epidermal growth 
factors (EGF), which consequently induces a conforma-
tional change in the tyrosine kinase domain (TKD) in the 
wild type from an inactive to active state. However, 
EGFRL858R represents one of the most common oncogenic 
point mutation that make EGFR kinase constitutively 
active. EGFR has become a potential drug target for treat-
ment of different human malignancies. Overexpression of 
mutant forms of EGFR was identified in various types of 
human carcinomas. Erlotinib is a competitive EGFR inhi-
bitor. For EGFRL858R, the point mutation does not affect 
negatively the affinity of the inhibitor to the kinase active 
site.21–23

Herein, we amend the naturally occurring active phy-
tochemicals to develop novel chemical entities as a perusal 
of discovering new, multi-targeted drugs through various 
semi-synthetic step reactions.19,24–27 Structural modifica-
tion of plants secondary metabolites can enhance the bio-
logical activity of the parent compounds or augment the 
scope of their pharmacological activities. ÷n continuation 
of our efforts to find potent anti-cancer agents, new hybrid 
molecules were semi synthesized based on benzimidazole/ 
benzoxazole moieties as they incorporated in many 

propitious oncogenic proteins inhibitors.17,23,28–31 

Through azo coupling reaction, benzimidazole and ben-
zoxazole were chemically combined with naturally iso-
lated phenolic compounds in three chemical scaffolds, 
which serve our target core structures (Figure 1). The 
COX-2 and EGFR inhibitory activities for all target com-
pounds will be addressed. Moreover, in silico, study will 
be investigated for those compounds tested against EGFR 
tyrosine kinase using docking to elucidate a postulated 
model for their binding at the molecular level.

Materials and Methods
All cell lines used in this study, were purchased commer-
cially, from the ECACC collection through local suppliers 
of Merck and Sigma-Aldrich and Cells were grown 
according to ECACC recommendations.

Extraction and Isolation
Five kilograms of the aerial parts of Amaranthus spinosus 
L. (Amaranthaceae) were thoroughly washed, shade dried, 
ground, defatted with n-hexane and extracted with ethyl 
ethanoate. The ethyl ethanoate extract (24 g) was divided 
on vacuum liquid chromatography (VLC) to afford five 
fractions (I–V). Based on the analytical high-performance 
liquid chromatography (HPLC) and liquid chromatogra-
phy-mass spectroscopy (LC-MS) chromatograms, frac-
tions II and V were selected for isolation and purification 
of their phenolic constituents.12 After a series of chroma-
tographic development for fractions II and V, the sub- 
fractions IIb and Vd were separately subjected to further 
isolation and purification on normal silica gel and 
Sephadex LH-20, followed by injection on preparative 
HPLC to obtain the target phenolic acids.32 The HPLC 
was operating with a one-hour program, starting at 10% 
methanol in water for 5 min. For 45 min, a gradual 
increase of methanol concentration from 10% to 100%. 
The flow rate will then be maintained at 20 mL/min for 10 
min with 10% MeOH. The retention times (tR) were 16.13, 
15.47, 14.58 min for p-coumaric acid (45 mg), caffeic acid 
(36 mg) and gallic acid (24 mg), respectively. Several runs 
have been performed per sample to obtain the required 
amounts for semi-synthesis of the target compounds.

Synthesis of Azo-Acid Derivatives (II)
To the mixture of aniline derivatives (0.01 mol) and HCl 
(conc, 5mL) in an ice bath, sodium nitrite solution (0.01 
mol, 5mL distilled water) was added dropwise and stirred 
for 2h. The diazonium mixture was added to the phenolic 
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solution (0.01 mol) in NaOH (30% 10mL). The mixture 
was then neutralized using CH3COONa (10%, H2O). The 
separated dye was collected, filtered, and dried. The 
obtained dye was chromatographed on normal column 
silica gel using a mixture of DCM:CH3OH solvent system. 
The prepared compounds were characterized as (C1-4, P1- 
4 and, G1-4).

E-3-(2-(E) 4-Acetylphenyl)Diazenyl)-3,4- 
Dihydroxyphenyl)Acrylic Acid (C1)
mp: >300 oC; yield: 75%; yellow powder (MeOH); 
1HNMR: δ 7.94 (2H, d, J=8.4 Hz, acetophenone H-3`, 
5`), 7.69 (2H, d, J=8.0 Hz, acetophenone H-2`, 6`), 7.29 
(1H, d, J=16.4 Hz, CH=CHCOOH), 7.04 (1H, d, J=16.4 
Hz, CH=CHCOOH), 6.95 (1H, d, J=8.0 Hz, caffeic H-5), 
6.78 (1H, d, J=8.0 Hz, caffeic H-6), 2.51 (3H, s, CH3); 
13CNMR: δ 197.62 (C=O, acetyl), 171.23 (COOH), 
146.76, 145.97, 142.83, 135.39, 132.24, 129.2, 128.67, 
126.52, 124.29, 119.70, 116.23, 114.15, 27.26 (CH3); 
EIMS: m/z (%): 326 (19.16) [M]+. Anal. Calcd. for 
C17H14N2O5: C, 62.57; H, 4.32; N, 8.59. Found: C, 
62.50; H, 4.30; N, 8.50.

(E)-3-(3-((E)-(4-Acetylphenyl)Diazenyl)-4- 
Hydroxyphenyl)Acrylic Acid (P1)
mp: > 300°C; yield: 64%; yellow powder (MeOH); 
1HNMR: δ 8.12 (2H, d, J=8.1 Hz, acetophenone H-3`, 
5`), 7.97 (2H, d, J=8.0 Hz, acetophenone H-2`, 6`), 7.65 
(1H, brs, p-coumaric H-2), 7.45 (1H, dd, J=8.0, 1.5 Hz, 
p-coumaric H-6), 7.35 (1H, d, J=16.0 Hz, 
CH=CHCOOH), 6.85 (1H, d, J=8.1 Hz, p-coumaric 
H-5), 6.45 (1H, d, J=16.1 Hz, CH=CHCOOH), 2.52 (3H, 
s, CH3); 13CNMR: δ 198.03 (C=O, acetyl), 168.31 
(COOH), 160.64, 152.51, 145.47, 139.07, 138.34, 
130.57, 130.34, 126.92, 125.56, 122.03, 120.35, 117.48, 
27.43 (CH3); EIMS: m/z (%): 310 (28.78) [M]+. Anal. 
Calcd. for C17H14N2O4: C, 65.80; H, 4.55; N, 9.3. 
Found: C, 65.70; H, 4.60; N, 9.00

2-{(4-Acetylphenyl)Diazenyl}-3,4,5- 
Trihydroxybenzoic Acid (G1)
mp: > 300°C; yield: 71%; Yellow powder (MeOH); 
1HNMR: δ 8.15 (2H, d, J=8.3 Hz, acetophenone H-3`, 
5`), 7.85 (2H, d, J=8.1 Hz, acetophenone H-2`, 6`), 7.32 
(1H, s, gallic H-6), 2.52 (3H, s, CH3); 13CNMR: δ 198.06 
(C=O, acetyl), 169.63 (COOH), 151.70, 146.24, 141.12, 
139.28, 138.19, 134.31, 130.12, 124.25, 118.61, 111.72, 
27.26 (CH3); EIMS: m/z (%): 316 (48.6) [M]+. Anal. 

Calcd. for C15H12N2O6 (316): C, 56.96; H, 3.82; N, 8.86. 
Found: C, 56.90; H, 3.80; N, 8.90

E-3-(2-(E) 3-Acetylphenyl)Diazenyl)-3,4- 
Dihydroxyphenyl)Acrylic Acid (C2)
mp: > 300°C; yield: 60%; Yellow powder (MeOH); 
1HNMR: δ 8.11–8.07 (1H, m, acetophenone H-2`), 7.97– 
7.89 (1H, m, acetophenone H-4`), 7.92–7.87 (1H, m, acet-
ophenone H-6`), 7.79–7.73 (1H, m, acetophenone H-5`), 
7.24 (1H, d, J=16.4 Hz, CH=CHCOOH), 7.04 (1H, d, 
J=16.4 Hz, CH=CHCOOH), 6.79 (1H, d, J=8.2 Hz, caffeic 
H-5), 6.77 (1H, d, J=8.2 Hz, caffeic H-6), 2.52 (3H, s, 
CH3); 13CNMR: δ 198.61 (C=O, acetyl), 171.65 (COOH), 
146.37, 145.92, 141.70, 134.52, 130.84, 129.49, 128.87, 
127.33, 124.54, 119.34, 116.19, 115.36, 27.34 (CH3); 
EIMS: m/z (%): 326 (66.69) [M]+. Anal. Calcd. for 
C17H14N2O5: C, 62.75; H, 4.32; N, 8.59. Found: C, 
62.60; H, 4.20; N, 8.70

(E)-3-(3-((E)-(3-Acetylphenyl)Diazenyl)-4- 
Hydroxyphenyl)Acrylic Acid (P2)
mp: >300°C; yield: 73%; yellow powder (MeOH); 
1HNMR: δ 8.11 (1H, m, acetophenone H-2`), 7.97–7.93 
(2H, m, acetophenone H-4`,6`), 7.79–7.70 (1H, m, aceto-
phenone H-5`), 7.50 (1H, dd, J=8.0, 1.5 Hz, p-coumaric 
H-6), 7.35 (1H, brs, p-coumaric H-2), 7.18 (1H, d, J=16.2 
Hz, CH=CHCOOH), 6.79 (1H, d, J=8.1 Hz, p-coumaric 
H-5), 6.57 (1H, d, J=16.1 Hz, CH=CHCOOH), 2.54 (3H, 
s, CH3); 13CNMR: δ 197.95 (C=O, acetyl), 171.23 
(COOH), 158.37, 157.57, 142.82, 139.25, 135.44, 
131.83, 130.93, 129.22, 128.88, 126.50, 124.42, 123.41, 
122.55, 118.19, 116.59, 116.13, 115.79, 27.10 (CH3); 
EIMS: m/z (%): 310 (28.71) [M]+. Anal. Calcd. for 
C17H14N2O4: C, 65.80; H, 4.55; N, 9.3. Found: C, 65.80; 
H, 4.50; N, 9.10

2-{(3-Acetylphenyl)Diazenyl}-3,4,5- 
Trihydroxybenzoic Acid (G2)
mp: > 300°C; yield =74%; yellow powder (MeOH); 
1HNMR: δ 8.18–8.16 (2H, m, acetophenone H-2`, 4`), 
8.05–8.02 (1H, m, acetophenone H-6`), 7.72–7.70 (1H, 
m, acetophenone H-5`), 7.12 (1H, s, gallic H-6), 2.51 
(3H, s, CH3); 13CNMR: δ 197.80 (C=O, acetyl), 168.83 
(COOH), 152.11, 147.15, 142.12, 139.55, 136.42, 133.28, 
130.98, 127.91, 126.82, 123.43, 116.24, 110.15, 26.86 
(CH3); EIMS: m/z (%): 316 (72.7) [M]+. Anal. Calcd. 
for C15H12N2O6: C, 56.96; H, 3.82; N, 8.86. Found: C, 
57.00; H, 3.70; N, 8.89
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E-3-(2-(E)-3-(1H Benzo[D]Imidazo-2-Yl)Phenyl) 
Diazenyl)-3,4-Dihydroxyphenyl)Acrylic Acid (C3)

mp: > 300°C; yield = 50%; yellow powder (MeOH); 
1HNMR: δ 8.32–8.26 (2H, m, phenyl H-2`, 4`), 7.99 
(1H, d, J=16.1 Hz, CH=CHCOOH), 7.82–7.77 (2H, m, 
phenyl H-5`-6`), 7.60–7.25 (4H, m, Benzoimidazol), 6.93 
(1H, d, J=8.1 Hz, caffeic H-5), 6.82 (1H, d, J=8.1 Hz, 
caffeic H-6), 6.71 (1H, d, J=16.1 Hz, CH=CHCOOH); 
13CNMR: δ 172.64 (COOH), 153.82, 152.74, 148.37, 

146.43, 141.64, 138.82, 138.56, 129.96, 129.71, 129.58, 
123.01, 122.98, 121.88, 120.67, 120.42, 119.37, 116.45, 
115.13; EIMS: m/z (%): 400 (60.30) [M]+. Anal. Calcd. 
for C22H16N4O4: C, 66.00; H, 4.03; N, 13.99. Found: C, 
66.1; H, 4.00; N, 14.00

E-3-(3-(E) 3-(1H Benzo[D]Imidazol-2-Yl)Phenyl) 
Diazenyl)-4-Hydroxyphenyl)Acrylic Acid (P3)
mp: > 300°C; yield: 62%; yellow powder (MeOH); 
1HNMR: δ 8.35–8.30 (2H, m, phenyl H-2`, 4`), δ 8.03– 

Figure 1 Scaffold of the target compounds.
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7.98 (2H, m, phenyl H-5`, 6`), 7.75 (1H, d, J=16.0 Hz, 
CH=CHCOOH), 7.65–7.27 (4H, m, Benzo-imidazlolyl), 
7.63 (1H, d, J=8.0 Hz, p-coumaric H-5), 7.41 (1H, dd, 
J=8.0, 1.6 Hz, p-coumaric H-6), 6.88 (1H, d, J= 1.6 Hz, 
p-coumaric H-2), 6.65 (1H, d, J=16.0 Hz, 
CH=CHCOOH); 13CNMR: δ 171.51 (COOH), 153.22, 
152.84, 150.76, 147.31, 141.61, 132.80, 125.43, 130.64, 
129.94, 129.70, 129.52, 123.06, 122.95, 121.87, 120.61, 
120.01, 116.51, 115.22; EIMS: m/z (%): 384 (37.19) [M]+. 
Anal. Calcd. for C22H16N4O3: C, 68.74; H, 4.20; N, 14.58. 
Found: C, 68.70; H, 4.30; N, 14.50

E)-2-{3-(1H-Benzo[B]Imidazole-2-Yl)Phenyl) 
Diazenyl)-3,4,5-Trihydroxybenzoic Acid (G3)
mp: > 300°C; yield: 45%: yellow powder (MeOH); 
1HNMR: δ 8.37–8.30 (2H, m, phenyl H-2`4`), δ 8.01– 
7.97 (2H, m, phenyl H-5`6`), 7.70–7.25 (4H, m, 
Benzoimidazol), 7.22 (1H, s, gallic H-6); 13CNMR: δ 
168.67 (COOH), 152.65, 152.84, 149.87, 141.70, 141.11, 
140.43, 134.61, 130.91, 129.62, 129.45, 122.81, 122.67, 
121.73, 114.95, 113.24, 109.65; EIMS: m/z (%): 390 
(68.04) [M]+. Anal. Calcd. for C20H14N4O5: C, 61.54; H, 
3.62; N, 14.35. Found: C, 61.60; H, 3.60; N, 14.40

E-3-(2-(E) 3-(Benzo[D]Oxazol-2-Yl)Phenyl) 
Diazenyl)-3,4-Dihydroxyphenyl)Acrylic Acid (C4)
mp: > 300°C; yield: 55%; yellow powder (MeOH); 
1HNMR: δ 8.27–8.20 (1H, m, phenyl H-2`), δ 8.15–8.11 
(1H, m, phenyl H-4`), 8.01–7.97 (1H, m, phenyl H-6`), 
7.89 (1H, d, J=16.1 Hz, CH=CHCOOH), δ 7.84–7.78 (1H, 
m, phenyl H-5`), 7.75–7.36 (4H, m, Benzo-oxazolyl), 7.02 
(1H, d, J=8.2 Hz, caffeic H-5), 6.91 (1H, d, J=8.2 Hz, 
caffeic H-6), 6.24 (1H, d, J=16.1 Hz, CH=CHCOOH); 
13CNMR: δ 172.15 (COOH), 162.71, 153.22, 150.01, 
148.92, 146.76, 141.51, 138.79, 138.61, 129.76, 129.56, 
126.51, 124.88, 123.81, 123.05, 121.95, 120.67, 120.40, 
119.48, 116.52, 119.13, 111.43; EIMS: m/z (%): 401 
(25.33) [M]+. Anal. Calcd. for C22H15N3O5: C, 65.83; H, 
3.77; N, 10.47. Found: C, 65.70; H, 3.80; N, 10.50

E-3-(3-(E) 3-(Benzo[D]Oxazol-2-Yl)Phenyl) 
Diazenyl)-4-Hydroxyphenyl)Acrylic Acid (P4)
mp: > 300°C; yield: 65%; yellow powder (MeOH); 
1HNMR: δ 8.27–8.22 (1H, m, phenyl H-2`), δ 8.15–8.10 
(1H, m, phenyl H-4`), 8.01–7.95 (1H, m, phenyl H-6`), 
7.89 (1H, d, J=16.1 Hz, CH=CHCOOH), 7.84–7.80 (1H, 
m, phenyl H-5`), 7.75–7.36 (4H, m, Benzo-oxazolyl), 7.61 
(1H, d, J=8.1 Hz, p-coumaric H-5), 7.38 (1H, dd, J=8.1, 
1.6 Hz, p-coumaric H-6), 6.92 (1H, d, J= 1.6 Hz, 

p-coumaric H-2), 6.18 (1H, d, J=16.1 Hz, 
CH=CHCOOH); 13CNMR: δ 172.45 (COOH), 162.82, 
152.91, 150.12, 148.55, 146.61, 141.34, 132.02, 129.76, 
129.70, 129.56, 126.51, 125.61, 124.88, 123.81, 123.05, 
121.85, 120.50, 119.27, 116.39, 118.92, 111.24; EIMS: m/ 
z (%): 385 (18.07) [M]+. Anal. Calcd. for C22H15N3O4: C, 
68.57; H, 3.92; N, 10.9. Found: C, 68.50; H, 4.00; N, 10.8

(E)-2-{3-(1H-Benzo[B]Oxazol-2-Yl)Phenyl)Diazenyl)- 
3,4,5-Trihydroxybenzoic Acid (G4)
mp: > 300°C; yield =54%; Yellow powder (MeOH); 
1HNMR: δ 8.26–8.23 (2H, m, phenyl H-2`4`), δ 7.87– 
7.83 (2H, m, phenyl H-5`H-6`), 7.74–7.35 (4H, m, 
Benzo-oxazolyl), 7.15 (1H, s, gallic H-6); 13CNMR: δ 
167.85 (COOH), 162.51, 152.73, 149.87, 147.46, 140.96, 
139.12, 133.75, 129.34, 129.12, 126.02, 124.25, 123.34, 
122.82, 121.30, 118.85, 113.40, 119.76, 108.85; EIMS: m/ 
z (%): 391 (29.47) [M]+. Anal. Calcd. for C20H13N3O6: C, 
61.38; H, 3.35; N, 10.74. Found: C, 61.40; H, 3.30; N, 
10.70

Cytotoxicity Assay
Determination of the cytotoxic effect of the target com-
pounds was performed to assess their ability to kill the 
tumor cells, which reflects the anticancer activity of the 
tested compounds.33,34 A known cytotoxic agent 
(Erlotinib) was selected as a reference standard. Various 
cell lines were applied in this test, as mentioned in the 
Supplementary Data.

EGFR and BRAF Inhibitory Activities
To assess the mechanism of action for the tested com-
pounds as potential EGFR and BRAF inhibitors, all target 
compounds and Erlotinib were subjected experimentally to 
the kinase screening protocol according to the previously 
reported procedure (Table 1).335,36 3 More details are 
available in the Supplementary Data.

Assay of Secretory PLA2-V Activity
Ellman’s photometric assay was followed to assess secre-
tory PLA2 activity.37 (See Supplementary Data)

Cyclooxygenase Assay
A commercially available kit was used for the determina-
tion of azo-compounds activities on COX-1 and COX-2, 
which assessed the quantity of prostaglandin E2 (PGE2). 
The obtained data were shown in contrast to the control 
(solvent-treated sample). The test was performed in 
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triplicate, and the findings generally agreed within 10%. 
The assay was done according to reported methods 
(Table 2).38–40 (See Supplementary Data)

Cell Treatment and ELISA Assay for IL-6 
and TNF-α
The assay methods for IL-6 and TNF-α were adapted 
according to reported methods (Table 3).41 (See 
Supplementary Data)

Statistical Analysis
ANOVA (One-way analysis of variance) was performed to 
investigate all the statistics. P < 0.05 was considered 
statistically significant.

Virtual Docking Study
The crystal structures of the COX-2 isoform and EGFR 
were obtained from the PDB (COX-2 ID: 1CX2 and 
EGFR ID: 5UGB). Identification of key amino acids 
required for inhibitory activity of enzymes’ ligands were 
identified. Molecular Operating Environment (MOE, 

Version 2010) was applied for protein preparation and 
docking procedure of test compounds (Table 4). All energy 
minimizations were carried out with MOE until an RMSD 
gradient of 0.05 kcal∙mol−1Å−1 with MMFF94x force field 
and the partial charges were automatically calculated. For 
docking preparation, the water molecules in the proteins’ 
crystal structures were removed and followed by the pro-
tonation using Protonate 3D protocol in MOE using the 
Triangle Matcher placement method and London dG scor-
ing function. The co-crystallized ligands were used to 
define the binding site for docking and the essential bind-
ing modes.35,42,43

Docking Validation
Docking protocols were validated for both receptors 
through re-docking of the co-crystallized ligands and 
reproducing all original binding modes between the co- 
crystallized ligands and the two receptors’ pockets in the 
vicinity of the binding sites. For COX-2, a docking pose 
with an energy score (S) = −11.99 kcal/mol and an RMSD 
of 0.574 Å from the co-crystallized ligand pose. For 

Table 1 Effects of Compounds on BRAFV600E and EGFR

Compound BRAF Inhibition IC50 ± SEM (µM) EGFR Inhibition IC50 ± SEM (µM)

C4 5.8±1.3 0.9±0.3
G4 5.4±0.6 0.5±0.2

Erlotinib 0.07±0.02 0.05±0.02

Table 2 Inhibition of Secretory PLA2-V, COX-1, COX-2

Compound sPLA2-V IC50 (µM) COX-1 IC50 (µM) COX-2 IC50 (µM) Selectivity Index (SI)

C1 19.47±1.94 55.04±1.29 12.29±1.28 4.47
C2 19.35±1.76 53.12±2.14 12.25±1.05 4.33

C3 23.27±1.80 16.19±1.80 4.95±1.30 3.27

C4 22.57±1.69 16.55±1.82 4.35±1.87 3.80
P1 42.51±2.65 ND >100 –

P2 43.91±2.80 ND >100 –

P3 17.45±1.79 65.21±3.51 >100 –
P4 17.50±1.80 67.34±2.26 >100 –

G1 7.15±2.59 3.13±0.65 6.11±1.14 0.51

G2 8.47±1.25 2.19±0.97 5.51±1.27 0.39
G3 6.52±1.05 8.69±1.47 4.19±1.76 2.07

G4 5.68±0.54 9.87±1.54 2.47±1.97 3.99

Caffeic acid 26.84±1.09 22.86±1.29 8.58±1.18 2.66
p-coumaric acid 55.12±1.33 >100 >100 —

Gallic acid 9.79±1.54 46.08±1.06 8.14±1.37 5.66

Dexamethasone 0.57±0.06 - - —-
Indomethacin* - 0.27±0.04 3.29±0.5 0.08

Notes: *30 µM concentration, values are the mean ± SD; n = 3.
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EGFR, a docking pose with an energy score (S)= −13.874 
kcal/mol and an RMSD of 0.774 Å from the co-crystal-
lized ligand pose were observed.

Results and Discussion
Chemistry
The first set of target compounds (C1-2, G1-2 and P1-2) 
were synthesized starting from 3 (and 4)-aminoacetophe-
nones which are commercially available (Scheme 1). 
However, the second set of target compounds (C3-4, G3- 
4 and P3-4) were synthesized from amino-imidazole (B1) 
and amino-oxazole (B2) which were prepared via conden-
sation reaction of o-phenylene diamine (and 2-aminophe-
nol) with 3-aminobenzoic acid using polyphosphoric acid 
as dehydrating agent (Scheme 2). All target compounds 
were finally prepared through diazotization and coupling 
reaction using sodium nitrite in presence of HCl to afford 
diazonium salts, which simultaneously added to a basic 
solution of phenolic acids to produce the target compounds 
C, P and G. The structure elucidation of newly synthe-
sized compounds P1-4, C1-4, G1-4 was done using 
nuclear magnetic resonance (NMR) and mass spectro-
scopy (MS) in addition to the elemental analysis. 
1HNMR peaks of compounds P1-2, C1-2, G1-2 showed 
aliphatic peaks at δ range of 2.51–2.54 indicating the 
presence of acetyl groups. The number of aromatic 

protons’ peaks was increased equivalent to the newly 
added phenyl ring. Also, doublet peaks equivalent to 
alkene groups of azo-caffeic derivatives (C1-4) appeared 
at 7.04–7.99 ppm with J coupling constant range as 16.1– 
16.4 Hz and azo-coumaric derivatives (P1-4) appeared at δ 
6.45 −7.89 ppm with J coupling of 16–16.2 Hz. These J 
coupling data confirmed the E configuration of the pre-
pared compound. 13CNMR of new synthetic compounds 
showed characteristic peaks of carbonyl groups at δ 197.35 
to 198.61 (for the acetyl group) and at 167.85 to 172.64 
(for the carboxylic group).

Cytotoxic Activity
MTT cytotoxic assay was conducted on tested compounds 
for human colon cancer (HT-29), pancreatic cancer (PaCa- 
2), Human malignant melanoma (A375), Lung cancer (H- 
460), and Pancreatic ductal cancer (Panc-1) cell lines. The 
IC50 for all compounds was expressed in µM (Table 5). 
Compounds C1-3, G1-3 displayed moderate activity on all 
tested cell lines, while C4 and G4 exhibited a potent effect 
on all tested cell lines, particularly H-460 (1.7 and 2.7 µM, 
respectively) and Panc-1 (1.3 and 3 µM, respectively) 
(Table 5). The potent cytotoxic activity derived because 
of diazo coupling between benzimidazole and/or benzox-
azole with caffeic and/or gallic acids which are new scaf-
folds amended in this experiment.

Table 3 Inhibition of IL-6 and TNF-α

Compound % Inhibition of IL-6 Relative Amount of LPS % Inhibition of TNF-α Relative Amount of LPS

G2 43 57 48 52
G3 29 71 32 68

G4 56 44 61 39

LPS Control 0 100 0 100

Table 4 Docking Results of C4 with 5UGB and 1CX2

Compound No. Energy Score  
Kcal/mol

Types of Interaction Enzyme (Protein PDB) Amino Acid Residue Functional  
Group

C4 −13.8376 HB EGFR (5UGB) Met793 C=O

8BM (ligand) −11.2500 HB EGFR (5UGB) Met793 N of imidazole

G4 −24.1500 HB COX-2 (1CX2) His90 N of bezoxazole
HB Tyr355 C=O
HB Ser530 3 OH

HB Ser530 4 OH

Arene-cation interaction Arg513 Phenyl ring

Bromocelecoxib −13.8924 HB COX-2 (1CX2) His90 SO2
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Scheme 1 Synthesis of compounds C1-2, G1-2 and P1-2; Conditions and reagents; HCl, and Sodium nitrite, at zero oC, added to phenolic acid in NaOH 10%, stirring for 
48h, ice bath.

Scheme 2 Synthesis of compounds C3-4, G3-4 and P3-4; Conditions and reagents; 1) polyphosphoric acid, stirred for 4h at 220 oC, Na2CO3, crystallization from EtOH. 2) 
HCl, and Sodium nitrite, at zero oC, added to phenolic acid in NaOH 10%, stirring for 48h, ice bath.
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Protein Kinase Inhibition Activity
The targets were evaluated for their kinase inhibitory 
effect on BRAF and EGFR to explore their cytotoxic 
mechanism on the tested cell lines. Compounds C4 and 
G4 exhibited potent kinase inhibitory activity against 
BRAF (5.8±1.3 and 5.4±0.6 µM, respectively) and 
EGFR (0.9±0.3 and 0.5±0.2 µM, respectively), in compar-
ison to the standard Erlotinib drug (IC50 = 0.07 and 0.05 
µM, respectively) (Table 1).

Inhibition of Secretory PLA2-V, COX-1, 
COX-2 by Tested Compounds
Ellman’s method-based assay was applied to assess the 
in vitro inhibitory activity against sPLA2 of the prepara-
tion at doses ranging from 1.25 to 20 µg/mL and the 
results are shown in Table 2. Dexamethasone was a 
positive control, and the inhibitory activities of targets 
azo-compounds against sPLA2-V observed IC50: were in 
the range of 43.91 (P2) to 5.68 uM (G4). The 

Table 5 Effects of Tested Samples on Cell Lines

Code Cell Viability % Antiproliferative Activity IC50 ± SEM (µM)

HT-29 PaCa-2 A375 H-460 Panc-1

C1 97.3±1.4 >50 >50 >50 >50 >50

C2 98.0±1.2 >50 >50 >50 >50 >50
C3 98.1±1.4 9.4±1.2 8.6±1.2 12.1±2.8 8.9±1.2 12.5±1.5

C4 91.4±1.0 2.5±1.1 2.9±0.7 3.0±1.5 1.7±0.5 1.3±0.9

P1 97.9±1.2 >50 >50 >50 >50 >50
P2 97.4±1.8 >50 >50 >50 >50 >50

P3 98.2±1.6 >50 >50 >50 >50 >50

P4 98.1±1.4 >50 >50 >50 >50 >50
G1 85.4±1.6 14.6±2.8 12.0±1.7 12.9±1.2 13.6±1.2 12.7±1.8

G2 91.3±1.6 10.2±1.4 9.6±1.2 11.9±2.7 9.5±1.2 9.2±1.4

G3 85.2±1.5 12.4±1.8 13.4±1.6 14.8±2.4 12.2±1.4 13.8±2.4
G4 92.1±1.2 4.1±1.2 3.7±2.0 3.9±0.5 2.7±0.5 3.0±0.7

Caffeic acid 91.6±1.2 4.3±1.3 5.1±0.9 4.8±1.4 3.9±0.8 4.1±0.6

p-coumaric acid 97.9±1.2 >50 >50 >50 >50 >50
Gallic acid 98.3±1.7 16.3±1.6 17.5±1.3 18.7±2.2 14.9±1.2 17.9±1.4

Erlotinib - 0.07±0.04 0.06±0.04 4.14±1.2 0.04±0.02 0.05±0.02

EGFR COX-2

Figure 2 3D representation of the superimposed co-crystallized conformers (Blue sticks) and docked conformers (green sticks).
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compounds G1–G4 were shown effective as sPLA2-V 
inhibitors, with IC50 values ranging from 5.68 to 
8.47µM. Among all semi-synthesized derivatives, G4 
was the most effective sPLA2-V inhibitor with IC50: 
5.68±0.54 µM. The scaffold containing gallic acid 
showed the strongest activity, especially when combined 
with benzoxazole moiety (G4, IC50; 5.68uM). While the 
in vitro COX inhibitory activity of semi-synthetic deri-
vatives was estimated by using a commercially available 
kit.40 In this assay, the concentration of tested deriva-
tives was 40 μg/mL. The IC50 values are displayed in 

Table 2. Research implicates, some derivatives have a 
selective affinity towards COX-1 while others have 
COX-2 affinity. G1 and G2 demonstrated potent COX- 
1 inhibition with IC50 in the range of 3.13 and 2.19 µM, 
respectively. Nevertheless, derivatives C3, C4, and G3 
showed moderate inhibitory activity against COX-1. In 
contrast, the other derivatives showed weak or without 
inhibitory action towards COX-1. The inhibitory action 
of azo- derivatives against COX-2 demonstrated that G4 
is a potent COX-2 inhibitor (IC50, 2.47 µM, with SI 
3.99), compared to standard indomethacin (IC50: 3.25 

Figure 3 Predicted 3D demonstration of binding modes of C4 inside the active site of EGFR (PDB ID: 5UGB).
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µM with SI of 0.084). The other compounds showed 
moderate to weak activity against COX-2 despite the SI 
of the compounds is being high.17,44

Inhibition of Interleukin 6 (IL-6) and 
Tumor Necrosis Factor- Alpha (TNF-α) 
Release in Lipopolysaccharide (LPS)- 
Stimulated Macrophages
In the current study, the inhibitory activity of G2–G4 
against LPS-triggered TNF-α and IL-6 release was evalu-
ated in mouse macrophages (RAW264.7). To 10 µM of 
compounds G2 to G4, the macrophages were added and 
subjected to incubation for 2h. To each well, LPS (0.5 µg/ 
mL) was added and followed by 22h incubation. The 
amount of TNF-α and IL-6 was estimated by applying an 
enzyme-linked immunosorbent assay (ELISA). Table 2 
shows the results of the anti-inflammatory test and all 
tested compounds were able to inhibit LPS-triggered IL- 
6 and TNF-α expression to various levels, exhibiting the 
maximum inhibition (32–61%) and (29–56) against LPS- 
triggered expression of TNF-α and IL-6, respectively. G4 
displayed the highest inhibition percentage of LPS-stimu-
lated IL-6 and TNF-α (56 and 61%), respectively, as 
compared to LPS control.

Virtual C4 and G4 Docking
Molecular modelling studies were applied to check the 
plausible-binding interactions between the newly synthe-
sized compounds and their potential targets. At first, the 
docking protocols were validated to get more reliable data. 
The validation based on re-docking the co-crystallized 
ligands imitated the same binding modes of the co-crystal-
lized ligands with root-mean-square deviation (RMSD) 
values of 1.2 and 0.58 for EGFR and COX-2 receptors, 
respectively. Figure 2 depicts that much similarity exists 
between the co-crystallized and docked conformer of co- 
crystallized ligand.

The docking results showed that C4 has an energy 
score of −13.8376 Kcal/mol (less than ligand 8BM energy 
score of −11.250 Kcal/mol) and binds with EGFR (5UGB) 
through HB with Met793 amino acid, which is the same 
amino acid binder of the ligand 8BM.45,46 However, the 
docking of G4 with COX-2 protein (1CX2) demonstrated 
five interactions; four of them are HBs and one arene- 
cation interaction. The HBs of G4 with 1CX2 formed 
between amino acid residue His90, Tyr355, Ser530, 
Ser530 and Arg513 with N-imidazole, C=O, 3-OH, and 
4-OH, respectively (Figures 3 and 4).12,19 Compared to the 
ligand bromocelecoxib, G4 formed five interactions; one 
H bond with His90 amino acid (a main amino acid in the 

Figure 4 The Predicted 3D demonstration of binding modes of G4 inside the active site of COX-2 (PDB ID: 1CX2).
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pocket) with an energy score of −24.1500 Kcal/mol, how-
ever, the ligand displays only one HB with an energy score 
of −13.8924 Kcal/mol. The highest COX-2 inhibitory 
activity of the benzoxazole-gallic acid scaffold is attribu-
ted to the benzoxazole moiety’s large hydrophobic volume 
(Table 4).

Conclusions
Most of the target semi-synthetic products showed moder-
ate to potent dual inhibitory activity against EGFR and 
COX-2 inhibitory activities. The coupling between ben-
zoxazole moiety with caffeic acid in one scaffold dis-
played potent cytotoxic and kinase inhibitory activity for 
both EGFR and BRAF, while the scaffold of benzoxazole 
with gallic acid demonstrated COXs inhibitory actions and 
showed anti-inflammatory activity. Docking studies, which 
aligned with the biological evaluations, displayed that the 
energy scores are lower than for both EGFR and COX-2 
enzymes also, the G4 demonstrated more interactions than 
the bromocelecoxib. The Nitrogen of benzoxazole and 
benzimidazole moieties has important role in binding 
with both COX 2 and EGFR enzymes through HB.
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