
microorganisms

Article

Gene Analysis, Cloning, and Heterologous Expression of
Protease from a Micromycete Aspergillus ochraceus Capable of
Activating Protein C of Blood Plasma

Sergei K. Komarevtsev 1,2,* , Peter V. Evseev 3 , Mikhail M. Shneider 3, Elizaveta A. Popova 1 ,
Alexey E. Tupikin 4, Vasiliy N. Stepanenko 3, Marsel R. Kabilov 4 , Sergei V. Shabunin 2,
Alexander A. Osmolovskiy 1,2 and Konstantin A. Miroshnikov 2,3

����������
�������

Citation: Komarevtsev, S.K.; Evseev,

P.V.; Shneider, M.M.; Popova, E.A.;

Tupikin, A.E.; Stepanenko, V.N.;

Kabilov, M.R.; Shabunin, S.V.;

Osmolovskiy, A.A.; Miroshnikov, K.A.

Gene Analysis, Cloning, and

Heterologous Expression of Protease

from a Micromycete Aspergillus

ochraceus Capable of Activating

Protein C of Blood Plasma.

Microorganisms 2021, 9, 1936.

https://doi.org/10.3390/

microorganisms9091936

Academic Editors: Dietmar Haltrich

and Daniel Kracher

Received: 6 August 2021

Accepted: 8 September 2021

Published: 11 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biology Department, Lomonosov Moscow State University, 119234 Moscow, Russia;
veliania@gmail.com (E.A.P.); aosmol@mail.ru (A.A.O.)

2 All-Russian Scientific Research Veterinary Institute of Pathology, Pharmacology and Therapy,
394087 Voronezh, Russia; svshabunin@rambler.ru (S.V.S.); kmi@bk.ru (K.A.M.)

3 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences,
117997 Moscow, Russia; petevseev@gmail.com (P.V.E.); mm_shn@mail.ru (M.M.S.); svn@mx.ibch.ru (V.N.S.)

4 Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of
Sciences, 630090 Novosibirsk, Russia; niboch@niboch.nsc.ru (A.E.T.); kabilov@niboch.nsc.ru (M.R.K.)

* Correspondence: skomarevtsev@yandex.ru

Abstract: Micromycetes are known to secrete numerous enzymes of biotechnological and medical
potential. Fibrinolytic protease-activator of protein C (PAPC) of blood plasma from micromycete
Aspergillus ochraceus VKM-F4104D was obtained in recombinant form utilising the bacterial expression
system. This enzyme, which belongs to the proteinase-K-like proteases, is similar to the proteases
encoded in the genomes of Aspergillus fumigatus ATCC MYA-4609, A. oryzae ATCC 42149 and A. flavus
28. Mature PAPC-4104 is 282 amino acids long, preceded by the 101-amino acid propeptide necessary
for proper folding and maturation. The recombinant protease was identical to the native enzyme
from micromycete in terms of its biological properties, including an ability to hydrolyse substrates
of activated protein C (pGlu-Pro-Arg-pNA) and factor Xa (Z-D-Arg-Gly-Arg-pNA) in conjugant
reactions with human blood plasma. Therefore, recombinant PAPC-4104 can potentially be used in
medicine, veterinary science, diagnostics, and other applications.

Keywords: fibrinolytic protease; activator of protein C; micromycete; gene analysis; recombinant
synthesis

1. Introduction

Fibrinolytic proteases that can dissolve thrombi have attracted considerable attention
because of their potential therapeutic application. These enzymes have been found in
various sources, including bacteria, fungi, snake venoms, earthworms, marine creatures,
and others. Since such proteases have performed well as candidates for the treatment of
cardiovascular diseases, currently, new enzymes are being actively sought to satisfy the
needs of the pharmaceutical industry [1–3].

Soil micromycete Aspergillus ochraceus VKM-F4104D produces an extracellular fib-
rinolytic protease capable of activating protein C of blood plasma [4,5]. This important
anticoagulant factor, which inhibits the formation of thrombin, stimulates fibrinolysis, and
acts as a cytoprotective signal molecule, is produced in the liver as non-active zymogen [6].
The activation of protein C is required for the diagnostics and therapy of cardiovascular
diseases [7]. Physiologically, it is a complex thrombin-catalysed process, which occurs on
the surface of endothelial cells and involves two membrane receptors, thrombomodulin
and endothelial protein C receptor [8]. Activators from snake venoms, especially from
the Agkistrodon contortrix contortrix snake, which directly converts protein C into active
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form, are widely used in diagnostics and medicine, especially, in chromogenic and clotting
protein C assays [9,10]. PAPC from A. ochraceus VKM-F4104D (PAPC-4104) has been shown
to possess a similar ability to activate protein C, so potentially, it can be applied in practice
as an easily available, less expensive alternative to activators from snake venoms [11,12].
However, despite the affordability of micromycete cultivation, the yield of the secreted
target protein is low [4,5], and the purification of native PAPC is a complicated multi-step
procedure. The production of recombinant PAPC-4104 may be a valuable solution promot-
ing the application of this enzyme. To complete this task, it is necessary to overcome the
fragmentary knowledge on transcription, folding, and secretion of this protein in the host
micromycete. In this paper, we report the analysis of A. ochraceus VKM-F4104D gene en-
coding PAPC-4104 and the phylogenetic and evolutionary characterisation of the enzyme,
followed by cloning and expression of the functional PAPC-4104 in an E. coli system.

2. Materials and Methods
2.1. Microorganism and Growth Conditions

Aspergillus ochraceus VKM-F4104D was isolated from a soil sample collected from the
Krasnodar region, Russia, and routinely grown on wort–agar slants (4% wort, 1.8% agar)
at 28 ◦C. Spores from seven-day old micromycete were washed from the culture surface
to obtain seed material. Spore suspension was inoculated into the growth medium (6.7%
wort, 1% glucose, 0.1% peptone, pH 5.5–6.0) and cultivated for two days. Subsequently,
part of the biomass was transferred into the fermentation medium (3.5% glucose, 1% fish
meal hydrolysate, 0.2% NaCl, 0.125% starch, 0.1% peptone, 0.05% KH2PO4, 0.05% MgSO4,
pH 5.5–6.0) and grown for three days. Cultivation was performed using 750 mL Erlenmeyer
flasks containing 100 mL of a nutrient medium on a rotary shaker at 200 rpm at 28 ◦C.

2.2. cDNA Sequencing and Cloning of PAPC-4104

Mycelial biomass after a first stage of cultivation (100 mg) was frozen in liquid nitro-
gen, and total RNA was isolated using a PureLink RNA Mini Kit (Thermo Fisher Scientific,
Waltham, MA, USA) and an On-Column DNase I Digestion Set (Merck, Darmstadt, Germany)
according to the manufacturer’s instructions. To obtain mRNA of A. ochraceus, a poly(A)+
RNA was isolated from total RNA using a NebNext Poly(A) mRNA Magnetic Isolation Mod-
ule, following library preparation with NEBNext Ultra Directional RNA Library Prep Kit for
Illumina (New England Biolabs, Ipswich, MA, USA). Library sequencing was performed on
a Miseq genome sequencer (2 × 300 cycles, Illumina) in the SB RAS Genomics Core Facility
(ICBFM SB RAS, Novosibirsk, Russia). After the trimming of adapters and quality filtering
of reads by Trim Galore v0.4.2 (https://github.com/FelixKrueger/TrimGalore accessed on
30 May 2021), the transcriptome was assembled using rnaSPAdes v3.9.0 (Center for Algo-
rithmic Biotechnology, St.-Petersburg, Russia) [13]. Using a BLAST search with the MEROPS
database [14], a contig of 1686 nt in length was identified.

Total cDNA of putative PAPC-4104 was amplified from poly(A)+ RNA using the Verso
1-Step RT-PCR Hot-Start Kit (Thermo Fisher Scientific, Waltham, MA, USA) with primers
flanking the protein coding sequence Asp-21F (5′-TCTCATCATCACACAGCTTCTG-3′)
and Asp-1348R (5′-TGTCGTCCCAAGTAACTCTAGC-3′). The same primers were used
to amplify the PAPC-4104 gene from genomic DNA to reveal the possible splicing sites.
PCR products were separated by electrophoresis in 1.0% agarose gel, and the target band
was cut and isolated from the gel slice using a Monarch DNA Gel Extraction Kit (New
England Biolabs, Ipswich, MA, USA). Sanger sequencing of PCR products was performed
on an ABI 3130xl Genetic Analyser with a BigDye Terminator Cycle Sequencing Kit v3.1
(Thermo Fisher Scientific, Waltham, MA, USA). Amplified cDNA PCR product was used
in subsequent subcloning to the expression vector.

2.3. In Silico Protein Analysis

The amino acid sequence of PAPC-4104 was obtained from cDNA using EMBOSS
Translation Tools (https://www.ebi.ac.uk/Tools/st/emboss_transeq/ accessed on 30 May
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2021) and analysed with NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi accessed
on 15 May 2021). A protein domain search was conducted with an InterPro server (http:
//www.ebi.ac.uk/interpro) employing PHOBIUS (http://phobius.sbc.su.se accessed on
20 May 2021), Pfam (https://pfam.xfam.org accessed on 20 May 2021), and PRINTS protein
fingerprints databases. Secondary structure prediction was carried out by garnier (http://
www.bioinformatics.nl/cgi-bin/emboss/garnier accessed on 20 May 2021). The presence
of a signal peptide was determined with the SignalP 5.0 server (www.cbs.dtu.dk/services/
SignalP accessed on 25 May 2021) and PHOBIUS transmembrane topology and signal
peptide predictor (http://phobius.sbc.su.se accessed on 20 May 2021). Protein remote
homology detection was performed on the HHpred server (https://toolkit.tuebingen.
mpg.de accessed on 25 May 2021) [15]. The tertiary structure prediction was made with
AlphaFold 2.0 [16] with default settings and visualised with PyMOL v.2 [17]. The model
quality assessment was performed with ProQ3D server (https://proq3.bioinfo.se/pred/
accessed on 20 May 2021) [18] and ModFOLD8 server (https://www.reading.ac.uk/bioinf/
ModFOLD/ModFOLD8_form.html accessed on 25 May 2021) [19]. The predicted structure
was superimposed with the HHpred highest-score fungal protease from Lecanicillium
psalliotae sequence (PDB ID: 3F7M) using the functionality of PyMOL.

2.4. Alignments and Phylogeny

Gene sequences were downloaded from the NCBI GenBank (ftp://ftp.ncbi.nlm.nih.gov/
genbank accessed on 15 May 2021) to the Geneious 2020 (Biomatters Ltd., Auckland, New
Zealand) working environment (http://www.geneious.com accessed on 16 May 2021) [20].
The search for homologs was conducted by BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi
accessed on 15 May 2021) using NCBI online and custom-made databases. Coding sequences
found were translated and searched against protein databases to ensure the presence of
a subtilisin-like (peptidase S8) domain, using an InterPro server (https://www.ebi.ac.uk/
interpro/ accessed on 20 May 2021). Amino acid sequences were aligned with Clustal
Omega [21] with auto settings and trimmed using trimAL (http://trimal.cgenomics.org/trimal
accessed on 25 May 2021) with the “automated1” parameter optimised for maximum likelihood
phylogenetic tree reconstruction. Phylogenetic trees were constructed using the maximum
likelihood (ML) method with an RAxML program [22] with a GAMMA I BLOSUM62 protein
model, and the robustness of the trees was assessed by bootstrapping (1000). The alignments
and trees were visualised with assistance of Geneious 2020.

2.5. Construction of the Expression Plasmid

The cDNA fragment encoding the propeptide and mature protein of PAPC-4104 (pro-
PAPC: Ala21 to Ala404) was PCR-amplified using primers 5′-TAAGAAGGAGATATACCATGG
CTCCCGTCGAGAACACC and 5′-TGGTGGTGGTGCTCGAGAGCAGCGCCGTTGTAGGCA.
The amplified DNA fragment was digested with NcoI and XhoI and ligated into the correspond-
ing restriction sites of pET23d (+) vector (Novagen Calbiochem, Madison, WI, USA) in order to
construct the plasmid for expression of the pro-PAPC-4104 with C-terminal hexahistidine tag.

2.6. Expression and Purification of Recombinant PAPC-4104

A clone of E. coli BL21 (DE3) with pET23d-pro-PAPC-4104 plasmid was incubated at
37 ◦C in a Lysogeny Broth (LB) medium, supplemented with 100 µg/mL until OD600–0.6.
Then, isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final concentration of
0.5 mM, with further incubation for 16 h at 16 ◦C. The cells were harvested by centrifugation
at 4000× g at 4 ◦C for 15 min, resuspended in 20 mM Tris-HCl buffer pH 8.0, 200 mM NaCl,
and 1 mM CaCl2 and disrupted by sonication (Branson, Brookfield, CT, USA). The crude
lysate was centrifuged at 10,000× g at 4 ◦C for 15 min, filtered through the 0.45 µm filter
(Merck, Darmstadt, Germany), and applied to the 10 mL (1.6 × 6 cm) column with Ni-NTA
Superflow (GE Healthcare, Chicago, IL, USA). Proteins were eluted from the column by
stepwise gradient of imidazole (0-20-60-200 mM) in 20 mM Tris-HCl, 200 mM NaCl, 1 mM
CaCl2, pH 8.0 buffer. Protein content in the flow was monitored by absorbance at 280 nm.
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2.7. Purification of Native PAPC-4104

To compare the properties of recombinant and native PAPC-4104, the enzyme was
isolated and purified from A. ochraceus VKM-F4104D fermentation medium, as described
previously [23]. Briefly, the 500 mL of medium after cultivation of micromycete was filtered
through the filter paper for the purpose of removing biomass, and ammonium sulfate was
added to the filtrate to 70% saturation. The precipitate was separated by centrifugation
at 15,000× g at 4 ◦C for 20 min, dissolved in 50 mM Tris-HCl buffer pH 8.0, 1 mM CaCl2,
containing ammonium sulfate at 35% saturation, re-centrifuged to remove insoluble debris,
and loaded into a 5 mL (1.6 × 3 cm) phenyl-sepharose column (GE Healthcare, Chicago, IL,
USA). PAPC-4104 was eluted with a 35 to 0% ammonium sulfate saturation descending
gradient, pumped through a 5 mL (1.6 × 3 cm) DEAE-sepharose column (Pharmacia,
Uppsala, Sweden) previously equilibrated with 50 mM Tris-HCl buffer pH 8.0, 1 mM
CaCl2, concentrated using a Centricon-10 centrifugal concentrator (Merck, Darmstadt,
Germany), and further purified by gel filtration on a Sephadex G50 (Pharmacia, Uppsala,
Sweden). Protein content in the flow was monitored by absorbance at 280 nm.

2.8. Enzyme Activity Assays

The activity was qualitatively assayed by the droplet method using chromogenic peptide
substrates for activated protein C (pGlu-Pro-Arg-pNA), factor Xa (Z-D-Arg-Gly-Arg-pNA),
plasmin (H-D-Val-Leu-Lys-pNA), thrombin (Tos-Gly-Pro-Arg-pNA, H-D-Phe-Pip-Arg-pNA),
and kallikrein (H-D-Pro-Phe-Arg-pNA) (Sigma-Aldrich, Burlington, MA, USA) after prelimi-
nary incubation with and without human blood plasma, as described previously [4,11]. For
the analysis, 20 µL of PAPC-4104 sample was mixed with 5 µL of human plasma diluted twice
or 50 mM Tris-HCl buffer, 1 mM CaCl2, pH 8.0. The resulting mixture was incubated at room
temperature. After that, 10 µL of 0.05% solution of a chromogenic substrate in 50 mM Tris-HCl
buffer, 1 mM CaCl2, pH 8.0 was added and incubated for 5 min under the same conditions.
The results of reactions were manifested by a yellow colouration and confirmed by measuring
of optical density at 405 nm using NanoDrop One spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). If measured values exceeded 0.1, the substrate specificity of enzyme
estimated as positive (“+”); if not, it was negative (“−”).

Kinetic parameters were determined by addition of 100 µL of chromogenic peptide
substrate Tos-Gly-Pro-Arg-pNA in increasing concentrations (0.065, 0.125, 0.25, 0.5, 1,
2 mg/mL) to a reaction cuvette containing 100 µL of enzyme (2 µg/mL) and 150 µL of
50 mM Tris-HCl buffer pH 8.0, 1 mM CaCl2. The experiments were performed at 25 ◦C, and
absorbance at 405 nm was monitored using a BioSpectrometer kinetic spectrophotometer
(Eppendorf, Hamburg, Germany). The Michaelis constant (Km), catalytic constant (kcat),
and the maximum rate of the reaction (Vmax) catalysed by enzymes were calculated
through a double reciprocal (Lineweaver–Burk) plot using Microsoft Excel.

2.9. General Analytical Methods

The protein concentration of obtained fractions was determined by measuring optical
density at 280 nm using NanoDrop One spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). The analysis of protein components of fractions was performed using
12.5% SDS-PAGE with Coomassie Blue R250 staining.

3. Results
3.1. Gene Organization and Protein Sequence

Extracellular alkaline proteases secreted by micromycetes of the Aspergillus genus
show a high degree of homology to subtilisin-like serine proteases [24,25]. In the MEROPS
database, subtilases are classified as members of the S8A subfamily within the serine
peptidases family S8 and belong to the SB clan [26]. Extracellular subtilisins are initially
expressed with an N-terminal signal sequence with an adjacent auto-inhibitory domain,
named the inhibitor I9 domain or prodomain, required for correct folding of the mature
enzyme, and peptidase S8 domain [27,28].
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The gene sequence for PAPC-4104 (NCBI GenBank accession # MW183406) is shown
in Figure 1A. The gene involves three non-coding regions and four translated exons. The
complete translated 404 amino acid-long sequence for PAPC-4104 is shown in Figure 1B.
Bioinformatic analysis demonstrated the presence of a 21 amino acid secretory signal
sequence Met1-Ala21 (likelihood 0.9917) and a cleavage site between position 21 and
22 (likelihood 0.9287). Signal peptide provides the secretion of a native protein across
the endoplasmic reticulum lumen and is further removed by a signal peptidase during
translocation. The hydrophobic core of signal peptide was predicted to comprise nine
amino acid residues. Even though signal peptides are extremely heterogeneous [29], a
BLAST search showed the presence of homologous sequences among other Aspergillus
genomes and protease coding sequences. The database search confirmed the presence
of I9 inhibitor and S8 peptidase domains (Figure 1B). The I9 domain (the middle part
of the precursor, Pro22-Asp122) also acts as an intramolecular chaperon essential for the
correct folding of the polypeptide chain. It is autocleaved and degraded during maturation.
Protease domain Ala123-Ala404 provides the catalytic activity of the mature enzyme. Such a
domain structure is common for subtilisin-like proteases.
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3.2. Tertiary Structure and Active Site Residue

Subtilisin-like serine proteases are single-domain α/β-proteins. They have different
substrate-binding clefts and only have similarly positioned key amino acid residues of
the catalytic sites. These proteases perform their catalytic role using three key residues—
Ser, His, and Asp—which are commonly referred to as the catalytic triad [30]. Some
subtilases may also contain a conserved catalytic residue of asparagine (Asn) in the catalytic
domain [30,31]. Protein remote homology detection performed on the HHpred server
pointed to Lecanicillium psalliotae protease [32] and to similar highest-score fungal proteases.
The tertiary structure of PAPC-4104 was predicted with AlphaFold 2.0 (Figure 2A). The
model quality assessment with ProQ3D demonstrated the global model quality ProQ3D
score of 0.715. The model quality assessment with ModFOLD8 demonstrated the global
model quality score of 0.603 and a high quality of the prediction of the peptidase domain
structure with a predicted residue error of 1–3 Å (Supplementary Figure S1A,B).
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red. The structure was predicted with AlphaFold 2.0 [16], and the model with the AlphaFold highest confidence was
taken. (B,C) Superimposition of the peptidase domains of the predicted structure of Aspergillus ochraceus VKM-F4104D
protease (yellow) and the experimentally found structure of Lecanicillium psalliotae protease (PDB ID: 3F7M) (orange) using
PyMOL (score 705, RMSD 0.502) [17]. The catalytic residues are coloured hot pink (Aspergillus ochraceus) and purple–blue
(Lecanicillium psalliotae).

The predicted structure of the peptidase domain was superimposed with the experimen-
tally found structure of Lecanicillium psalliotae sequence protease and revealed the catalytic triad
to be composed of Ser-350, His-194, and Asp-41 amino acid residues (Figure 2B,C).

3.3. Phylogeny and Evolution

Subtilisin-like proteases are found in all kingdoms of cellular life, as well as in many
viral genomes [33]. A BLAST search using NCBI databases indicated the presence of sub-
tilisins in bacterial mobilome. Subtilisin-like proteases are ubiquitous in fungal genomes,
suggesting a diverse fungal lifestyle; subtilisin-like peptidase domain (S8) was found in all
21 families of fungi [34]. The phylogenetic tree (Figure 3) demonstrates the closeness of
proteases identified in the genomes of Aspergillus sp. The subtilisin closest evolutionally
appears to be the protease of Aspergillus steynii IBT 23096 (pairwise identity 93.9%, Figure 3).
Among the classic representatives of the subtilase family, PAPC-4104 has noticeable ho-
mology (41%) with proteinase K from Tritirachium album (UniProt P06873) [35] (Figure 1B).
A closer similarity to PAPC-4104 was observed for elastinolytic alkaline protease from
pathogenic Aspergillus fumigatus ATCC MYA-4609, (P28296, 80%) [36], alkaline protease
from industrial Aspergillus oryzae ATCC 42149 (P12547, 77%) [37,38], and elastinolytic
alkaline protease from pathogenic Aspergillus flavus 28 (P35211, 74%) [39] (Figure 1B).

The topology of the fungal part of the subtilisin phylogenetic tree (Figure 3) gen-
erally resembles the topology of the fungi phylogenetic trees obtained by the analysis
of conservative genes [40,41]. The presence of subtilisin genes in bacterial genomes and
plasmids and their phylogenetic placement close to homologous genes from Cryptomycota
and Amoboezoa can testify to the important role of horizontal gene transfer in the early
evolution of serine proteases. The widespread presence of genes for serine proteases in
plasmids can be explained by their significant role as possible factors of virulence. It
has been shown that subtilisin-like proteases contribute to the high virulence of different
pathogens [42–45]. Interestingly, phylogenetic analysis can also indicate the relatedness
of subtilisins belonging to different viral groups. The evolutionary study of viral serine
proteases is beyond the scope of the present research but can be conducted in future work.
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Figure 3. Phylogenetic tree obtained with MrBayes based on alkaline protease protein sequences found with a BLAST search
of NCBI databases. Bayesian posterior probabilities are indicated above their branch. Taxonomic classification is taken from
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substitutions per site and the tree was rooted to Methanolobus profundi; of 2,000,000 generations, every 200 generations were
sampled, with an average standard deviation of split frequencies of 0.0091.
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3.4. Properties of the Recombinant PAPC-4104

Since signal peptide is capable of obstructing recombinant gene expression in E. coli [46],
the corresponding fragment of PAPC-4104 was removed in the design of the expression
construct. The gene for recombinant expression under the control of the T7 promoter contains
the propeptide and protease domain (from Ala21 to Ala404) of PAPC-4104 with C-terminal six
histidine residues. The calculated molecular mass of His-tagged non-mature pro-PAPC-4104
is 41.3 kDa, and it is 29.6 kDa for mature PAPC-4104. The size of the native enzyme estimated
from the electrophoretic mobility is 33 kDa [11]. Overnight expression at 16 ◦C for 16 h
yielded an accumulation of protein with the size of 33–34 kDa, predominantly in soluble
form (Figure 4, lanes 2–5). This means that the synthesis and maturation of the target protein
was successful at 16 ◦C. The activity of the resulting protein was indirectly supported by the
proteolytic degradation of domestic E. coli proteins (Figure 4, lane 3). Subsequent purification
with Ni-NTA affinity column chromatography made it possible to obtain PAPC-4104 in
homogeneous form from cell lysate (Figure 4, lane 6). The use of SDS-PAGE to estimate the
size of PAPC-4104 compared to its calculated molecular weight was in agreement with data
obtained for homologous enzymes in other studies [36,37,39]. Both recombinant and native
PAPC demonstrated the same electrophoretic mobility (Figure 4, lanes 6, 7).
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Figure 4. SDS-PAGE analysis of expression, folding and purification of alkaline protease from
A. ochraceus VKM-F4104D (PAPC): 1—protein molecular weight marker, 2—uninduced E. coli BL21
(DE3), 3—induced E. coli BL21 (DE3), 4—supernatant of centrifugation after sonication (soluble
fraction), 5—pellet of centrifugation after sonication (insoluble fraction), 6—soluble fraction of PAPC
after purification with Ni-NTA affinity chromatography, 7—native PAPC after purification.

The recombinant enzyme had properties similar to those of a native protein: it was able
to hydrolyse substrates of activated protein C (pGlu-Pro-Arg-pNA) and factor Xa (Z-D-Arg-
Gly-Arg-pNA) in conjugant reactions with human blood plasma (Table 1). Additionally,
it was capable of cleaving chromogenic peptide substrates of plasmin (H-d-Val-Leu-Lys-
pNA) and thrombin (Tos-Gly-Arg-pNA) in direct reactions, and there was no cleavage
with other studied substrates. This is similar to proteases from snake venoms, with the
ability to activate target proenzymes, protein C, and factor X; alongside the simplicity of
obtaining the recombinant form of PAPC-4104, this makes it a good alternative to snake
venom activators [9–11].

To ensure the enzymatic quality of the recombinant enzyme we have performed the
estimation of basic kinetic parameters of native and recombinant PAPC-4104 using a model
chromogenic substrate Tos-Gly-Pro-Arg-pNA in ambient conditions. The assay yielded
equal Vmax of 34.9 nmol/min for native and 34.4 nmol/min for recombinant PAPC-4104,
and close values for kcat (57 and 56 s−1, correspondingly), while the values for Km were
285 µM for native and 435 µM for recombinant enzyme (Supplementary Figure S2). The
Km value is approximately 10-fold higher than one normally shown for thrombin cleavage
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of this substrate. However, considering Tos-Gly-Pro-Arg-pNA as a valid but non-specific
target for PAPC-4104, we can conclude that the kinetic properties of native and recombinant
enzymes are fairly close.

Table 1. Substrate specificity of recombinant and native PAPC with chromogenic peptide substrates.
If measured values of A405 of a quantitative reaction exceeded 0.1, the substrate specificity of enzyme
is estimated as positive (“+”); if not, as negative (“−”).

Substrate Activity of Recombinant
PAPC-4104

Activity of Native
PAPC-4104

Conjugate reactions (with blood plasma)

pGlu-Pro-Arg-pNA + +

Z-D-Arg-Gly-Arg-pNA + +

Direct reactions (without blood plasma)

pGlu-Pro-Arg-pNA − −
Z-D-Arg-Gly-Arg-pNA − −
H-D-Val-Leu-Lys-pNA + +

Tos-Gly-Pro-Arg-pNA + +

H-D-Pro-Phe-Arg-pNA − −
H-D-Phe-Pip-Arg-pNA − −

4. Discussion

Many micromycetes are well known as producers of proteases targeting proteins of
the haemostatic system. So, in addition to the fibrinolytic properties of such proteases,
the ability of some to activate a number of blood coagulation factors, such as plasmino-
gen [47,48], protein C [11], prothrombin [49], prekallikrein [50], and factor X [51], is known.
Proteolytic enzymes of these micromycetes are capable of cleaving a characteristic range of
chromogenic peptide substrates of proteins of the haemostasis system and demonstrate
differences in the activity with respect to globular and fibrillar proteins. They have different
optima of pH and temperature and differ in isoelectric point and molecular weight. Many
of listed proteases are produced by f representatives of the genus Aspergillus. Such enzymes
can find practical application both in the composition of thrombolytic drugs for therapy
and as components of a diagnostic kit for determining the content of these proteins in the
blood. Protease-activators of protein C and factor X, produced by Aspergillus ochraceus, have
shown their effectiveness for the determination of the content of these proenzymes in vitro
in comparison with commercial analog-protease-activators from snake venom [12,51]. It is
assumed that these proteases can become a more affordable alternative for the development
of diagnostic kits for the detection of blood clotting diseases in humans and animals.

Extracellular proteases of filamentous fungi with the indicated types of activity are
subtilisin-like alkaline proteases that could benefit not only diagnostic and medical, but
many veterinary and biotechnological applications. In particular, extracellular protease of
A. ochraceus (PAPC-4104) possesses substrate specificity similar to snake venom protein
C activators. However, the production of this protein through fungal cultivation results
low yields [4,5] and the purification of PAPC-4104 is difficult due to excessive pigment
contamination [23]. Recombinant production of similar fungal alkaline proteases is also
hindered by the multidomain nature and complicated translation, folding, and maturation
of the target protein [35–39]. The phylogenetic and evolutionary relationship of the enzyme
with other subtilisins was of particular interest.

In this research, PAPC of micromycete A. ochraceus VKM-F4104D was obtained in
recombinant form, utilising the bacterial expression system. This enzyme, which belongs
to the proteinase-K-like proteases, is similar (more than 74%) to the proteases encoded in
the genomes of A. fumigatus ATCC MYA-4609, A. oryzae ATCC 42149 and A. flavus 28. We



Microorganisms 2021, 9, 1936 11 of 13

reported the analysis of A. ochraceus VKM-F4104D gene encoding PAPC-4104 and showed
that mature PAPC-4104 is 282 amino acids long, preceded by the 101-amino acid propeptide
necessary for proper folding and maturation.

Additionally, bioinformatic analysis of the gene and mRNA sequences enabled us
to design a strategy to obtain PAPC-4104 in a functional and soluble form in the simple
E. coli expression system. Due to primary biochemical property studies, the recombinant
protease was identical to the native enzyme from A. ochraceus VKM-F4104D in terms of
its biological properties, including an ability to hydrolyse chromogenic peptide substrates
of activated protein C (pGlu-Pro-Arg-pNA) and factor Xa (Z-D-Arg-Gly-Arg-pNA) in
conjugant reactions with human blood plasma. The native and recombinant PAPC had
similar molecular weight and demonstrated similar electrophoretic mobility.

Thus, obtained recombinant PAPC-4104 can potentially be used in medicine, veteri-
nary science, diagnostics, and other applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9091936/s1. Figure S1: (A) ModFOLD8 residue error plot. (B) ModFOLD8
3D view of per-residue accuracy of the Aspergillus ochraceus protease model. The model is coloured
based on a rainbow gradient scheme, where the residues with the lowest predicted residue errors
are coloured blue and the residues with the highest predicted residue errors are coloured red. The
N-terminus of the polypeptide chain is labeled “N” and the C-terminus is labeled “C”. Figure S2:
Lineweaver-Burk plot for native (A) and recombinant (B) form of PAPC-4104. [Tos]—concentration of
chromogenic peptide substrate Tos-Gly-Pro-Arg-pNA. The error bars represent standard deviation.
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