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Abstract

Adenosine 39, 59-cyclic monophosphate (cAMP) and guanosine 39, 59-cyclic monophosphate (cGMP) are well-studied second
messengers that transmit extracellular signals into mammalian cells, with conserved functions in various other species such
as Caenorhabditis elegans (C. elegans). cAMP is generated by adenylyl cyclases, and cGMP is generated by guanylyl cyclases,
respectively. Studies using C. elegans have revealed additional roles for cGMP signaling in lifespan extension. For example,
mutants lacking the function of a specific receptor-bound guanylyl cyclase, DAF-11, have an increased life expectancy. While
the daf-11 phenotype has been attributed to reductions in intracellular cGMP concentrations, the actual content of cyclic
nucleotides has not been biochemically determined in this system. Similar assumptions were made in studies using
phosphodiesterase loss-of-function mutants or using adenylyl cyclase overexpressing mutants. In the present study, cyclic
nucleotide regulation in C. elegans was studied by establishing a special nematode protocol for the simultaneous detection
and quantitation of cyclic nucleotides. We also examined the influence of reactive oxygen species (ROS) on cyclic nucleotide
metabolism and lifespan in C. elegans using highly specific HPLC-coupled tandem mass-spectrometry and behavioral assays.
Here, we show that the relation between cGMP and survival is more complex than previously appreciated.
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Introduction

The first description of guanosine 39, 59-cyclic monophosphate

(cGMP) as a biological substance can be dated back to 1963 [1].

cGMP is now a well-established second messenger, like the earlier

identified adenosine 39, 59-cyclic monophosphate (cAMP) [2,3].

These cyclic nucleotides (cNMPs) are generated by the ATP- and

GTP-converting adenylyl- and guanylyl cyclase, respectively

[1,2,3,4,5]. cAMP and cGMP transmit extracellular signals into

mammalian cells, with conserved functions in various other species

such as Caenorhabditis elegans. In mammals, two classes of cGMP-

forming enzymes have been identified: the soluble, nitric oxide

(NO)-dependent guanylyl cyclase (sGC) and the particulate

(membrane-bound) guanylyl cyclases (pGC) that are activated by

natriuretic peptides [4,5,6,7,8] (reviewed in [8]). cGMP has an

impact on various physiological processes such as smooth muscle

relaxation, platelet aggregation and phototransduction. Not

surprisingly, the cGMP signaling cascade has become an

important pharmacological target, with successful regimens

developed for the therapy of heart failure, (pulmonary) arterial

hypertension and erectile dysfunction [9,10].

C. elegans was first established as laboratory model organism by

Sydney Brenner in 1974 [11]. It has become a favored model

organism in genetic studies due, in part, to the completion of its

genome sequence in 1998. Forty-two percent of the approximately

20,000 predicted C. elegans genes have homology to human genes

[12], including those encoding guanylyl cyclases. The genome of

C. elegans harbors 32 genes with similarity to guanylyl cyclases.

These include 25 membrane-bound, receptor-like guanylyl

cyclases and 7 cytosolic guanylyl cyclases (gcy-31–gcy-37) [13].

Two of the receptor-bound guanylyl cyclase genes, daf-11 and odr-

1, are expressed in olfactory and pheromone-sensing neurons and

act downstream of G-protein-coupled receptors. daf-11 is ex-

pressed in the ciliated ASI, ASJ, AWC, AWB, ASK neurons where

it is involved in olfactory and pheromone sensing and behavior

[14,15]. daf-11 plays a non-autonomous role in chemotaxis in

ciliated ASE neurons [14], and daf-11 regulates dauer-formation

and recovery.

Recent studies have revealed roles for daf-11 in C. elegans aging

and oxidative stress response pathways, leading to the conclusion

that cGMP signaling in C. elegans is interconnected with the

insulin/IGF-1/DAF-16 signaling pathway implicated in longevity

and stress resistance [16,17]. daf-11 mutants display enhanced

longevity that is dependent upon DAF-16/FOXO, a phenotype

that is similar to that observed in gpa-3 mutants with defects in G-

protein signaling in sensory neurons [16]. Several lines of evidence
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implicate altered cGMP pools in these GPA-3-related biological

functions: a) Constitutively activated gpa-3 mutants display an

increased tolerance to oxidants and an increased lifespan. b) daf-11

mutants defective in guanylyl cyclase display similar phenotypes

[16]. c) activation of the G-protein GPA-3 leads to an increase in

pde-1 and pde-5 mRNA levels [16]. As these genes encode

phosphodiesterase enzymes that degrade cNMPs, the cGMP pool

can be predicted to decrease as a result [16]. d) pde-1 and pde-

5 mRNA levels also increase when animals are exposed to cGMP;

similarly, transcriptional upregulation for these pde genes is also

observed when daf-11 mutants are exposed to cGMP [16]. e) daf-11

mutants exposed to dauer-inducing environmental conditions

display suppressed DAF-28/insulin levels, a finding which

provides an interesting link between cGMP production and the

insulin-related longevity and stress-response pathway [17].

Until now, it has not been shown biochemically that the daf-11

loss of function mutant indeed contains less cGMP than wild-type

animals. Moreover, C. elegans studies using phosphodiesterase loss-

of-function mutants in phototransduction experiments [18] or

adenylyl cyclase-overexpressing mutants in axon regeneration

experiments [19] also assumed higher levels of cNMPs. While it

may seem logical to assume that removal of one of the thirty-two

guanylyl cyclase enzymes from C. elegans might result in lower

intracellular levels of cGMP, studies from mammalian cardiac

tissue highlight the complexity of cNMP metabolism. The

intracellular concentrations of a given cNMP is a reflection of

the balance between its synthesis its degradation, coordinated

cross-talk between the cAMP and cGMP metabolic pathways [20],

and of allosteric regulation of enzyme function [21]. From the

studies in mammalian cells, we can anticipate that the six different

cAMP and cGMP phosphodiesterases in C. elegans are likely to be

allosterically regulated by cGMP and cAMP, respectively, and

subject to competitive inhibition as well. Thus, removal of the

catalytic enzyme may produce unanticipated outcomes in cNMP

concentrations. For example, it is feasible that a reduced level of

cGMP synthesis might lead to an increase in intracellular cAMP,

due to lack of allosteric inhibition by the corresponding

phosphodiesterase. In such a situation, cAMP might unexpectedly

be the effector molecule mediating biological functions. The

relatively simpler C. elegans genetics system affords particular

advantages for the analysis of such a complicated array of

regulatory connections. However, even though C. elegans has fewer

tissues and fewer gene splice variants than mammalian systems,

there are inherent complexities in an organism with thirty-two

guanylyl cyclases, four adenylyl cyclases, and six phosphodiester-

ase genes that are incompletely characterized biochemically. In the

present study, we established a highly specific HPLC-coupled

tandem mass-spectrometry method for the simultaneous detection

and quantitation of cAMP and cGMP in C. elegans. We used the

nematode as a model organism to examine the influence of

reactive oxygen species (ROS) on cNMP metabolism and lifespan.

The assays were directed towards a better understanding of the

roles of the guanylyl cyclase daf-11, cGMP phosphodiesterase, and

cGMP-dependent protein kinase within the oxidative stress

response of the nematode.

Materials and Methods

Materials
cGMP and cAMP were supplied by Biolog (Bremen, Germany)

in a purity of .99%. 29-Deoxy-5-fluorouridine (FUDR), forskolin

(FSK) and peptone were purchased from Sigma-Aldrich (Seelze,

Germany). Ammonium acetate was purchased from Fluka (Buchs,

Switzerland). Magnesium sulfate, di-potassium hydrogen phos-

phate, potassium di-hydrogen phosphate, di-sodium hydrogen

phosphate, sodium di-hydrogen phosphate, calcium chloride,

sodium chloride, sodium ammonium mono hydrogen phosphate,

H2O2 30% (v/v) and cholesterol were obtained from Merck

(Darmstadt, Germany). Sodium hypochlorite (NaOCl) 12% (v/v)

was purchased from Hedinger (Stuttgart, Germany). HPLC grade

acetonitrile, methanol and water were supplied by Baker

(Deventer, The Netherlands) and acetic acid was purchased from

Riedel de Häen (Seelze, Germany). RotiH Quant Bradford protein

quantitation reagent, ethanol and sodium hydroxide were supplied

by Roth (Karlsruhe, Germany). Taq Man probes and Taq Man

Gene Expression Mastermix were purchased from Applied

Biosystems (Carlsbad, CA, USA). 5x Real Time buffer was

purchased from Fermentas (St. Leon-Rot, Germany). Bactoagar

and LB Medium DifcoTM Luria Bertani Broth Miller were

supplied by Beckton Dickinson (Franklin Lakes, NJ, USA).

Tenofovir was obtained from National Institute of Health AIDS

Research and Reference Program, Division AIDS (Bethesda, MD,

USA).

Strains
The C. elegans strains used in this study were N2 Bristol (wild-

type), KG522 (acy-1 (md1756)III), KG744 (pde-4(ce268)II), DR47

(daf-11(m47)V), MT1074(egl-4/pkg-1(n479)IV) and TQ1828

(pde-1(nj57), pde-5(nj49) I, pde-3(nj59) II, pde-2(tm3098)III)

(Table S1) and were, as well as the food strain E. coli OP50,

provided by the Caenorhabditis elegans Genetics Center which is

funded by NIH Office of Research Infrastructure Programs (P40

OD010440) (University of Minnesota, MN, USA www.cbs.umn.

edu). For Table S1 we provide a supplementary reference list for

characterization of C. elegans strains. Maintenance of C. elegans

was performed as described [22].

Lifespan Analysis
Lifespan assays were performed at 22uC on normal growth

medium plates supplemented with 0.05 mg/ml FUDR (5-

fluorodeoxyuracil). FUDR prevented progeny overgrowth and

thus mixed generations. Synchronized populations were obtained

by picking L1 larvae and transferred to the FUDR plates on their

first day of adulthood (30–40 per plate, 3 plates each assay). The

number of worms was counted every 1–2 days until death. Worms

were counted dead when they did not respond to gentle prodding

at head and tail and no pharyngeal pumping could be observed.

Animals that crawled off the plate were excluded at the time of the

event, which allowed those worms to be incorporated in the data

set until the censor date and no loss of data occurred. Lifespan

counting was performed with a Nikon SMZ745T binocular

microscope (Nikon Europe, Düsseldorf, Germany).

Stress Response Assay in the Presence of 10 mM H2O2

Stress resistance assays were performed at 22uC in a 96-well

plate using each time freshly prepared 10 mM H2O2 as oxidative

agent, as established by Wang et al. 2006 [23]. Additional dose-

finding assays with C. elegans wild-type were performed (Figure S5)

in order to identify the suitable concentration for a time-

dependent stress assay setting. Synchronized populations were

obtained by picking L1 larvae and transfer to a 1.5 ml Eppendorf

tube containing 300 ml of M9 buffer. For one assay, about 30–40

worms were carefully distributed into the wells of the 96-well plate

(6–10 worms/well) containing 50 ml of 10 mM H2O2. Animals

were tapped every 15–30 min and scored as dead when they did

not respond to the prodding with a platinum pick. Animals whose

cuticle bursted directly after placing them in 10 mM H202 due to

physical stress of moving them, were excluded from the analysis by

Cyclic GMP in C. elegans
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the Kaplan-Meier-methodology. There was no evidence for strain-

specific cuticle disruptions induced by H2O2. Lifespan counting

was performed under a Nikon SMZ745T binocular microscope

(Nikon Europe, Düsseldorf, Germany).

Forskolin Incubation
Five hundred to 1000 synchronized adult (72 h old) wild-type

hermaphrodites were washed with 1 ml M9 buffer into a 1.5 ml

Eppendorf tube. When the animals were settled down in the tube,

the buffer was aspirated and a mixture of E. coli OP50 in M9 buffer

and forskolin, a direct activator of adenlylyl cyclases [24], with a

final concentration of 50 mM was added [19]. Higher concentra-

tions of forskolin had no effect on cNMP concentrations of C.

elegans. The cause may have been the precipitation of forskolin in

higer concentrations due to the poor solubility in water/DMSO

(solubility of forskolin 5 mg/ml 100% DMSO). The bacteria were

needed for a better ingestion of forskolin. After 1 h, 2 h and 4 h

the animals were processed for cNMP extraction and analysis.

Extraction of cNMPs in C. elegans
Per sample 500–1000 synchronized 72 h old adult hermaphro-

dites were washed with 1 ml M9 buffer into a 1.5 ml safe-lock

Eppendorf tube. The animals were washed six times with 1 ml M9

buffer on ice in order to remove residual E. coli OP50. After the last

washing step the worms were incubated in M9 buffer for 20 min to

allow for digestion of the remaining bacteria in their gut followed

by a last washing step with 1 ml M9 buffer. The supernatant was

carefully removed and 300 ml of ice-cold extraction medium

(acetonitrile/methanol/water, 2/2/1 v/v/v) with 25 ng/ml teno-

fovir (TNF) as internal standard was added. Immediately, the

sample was frozen in liquid nitrogen for 30 s in order to stop

cNMP metabolism in the animals, followed by 60 s of incubation

in a 37uC water bath. This freeze-thaw cycle was repeated 6 times.

Subsequently, the sample was heated to 98uC for 20 min, cooled

down on ice and centrifuged at 20,0006g, and 4uC for 10 min.

The supernatant fluid was transferred into a new 2 ml Eppendorf

tube. The pellet of dead animals was extracted two more times

with 400 ml extraction medium for 15 min on ice and the

supernatants were combined. The fluid was evaporated under a

gentle nitrogen stream at 40uC. The residue was dissolved in water

and analyzed. For determination of the protein content, the cell

pellet was completely dried and resolved in 0.1 M NaOH at 95uC
for 10 min. One hundred ml of the solution was used in a Bradford

protein assay. For cNMP assessments of animals exposed to H2O2,

per sample 500–1000 synchronized 72 h old adult hermaphrodites

were washed with 1 ml M9 buffer into a 1.5 ml safe-lock

Eppendorf tube. When the animals were settled, the M9 buffer

was carefully removed and 200 ml of 10 mM H2O2 solution

added. The worms were incubated at 22uC for indicated time

points: 15 min, 30 min, 60 min, 90 min and 120 min. After the

incubation time the H2O2 solution was removed and the animals

washed with M9 buffer. Subsequently, the samples were treated as

above.

Quantitation of cNMPs by HPLC-MS/MS
The analysis of cNMP concentrations was performed via HPLC-

MS/MS. HPLC separation was performed on an Agilent 1100

series (Waldbronn, Germany) equipped with a binary pump

system. A Zorbax Eclipse XDB-C18 column (5064.6 mm, 1.8 mm

particle size, Agilent Technologies, CA, USA) was used as

stationary phase for analyte separation. The binary pump system

supplied two eluents for chromatographic analysis, eluent A (3/97

(v/v) methanol/H2O +50 mM NH4Oac +0.1% (v/v) acetic acid)

and eluent B (97/3 (v/v) methanol/H2O +50 mM NH4Oac

+0.1% (v/v) acetic acid). Parameters of the flow rates are

documented in Table 1. Analyte detection was conducted on the

sensitive Qtrap 5500 triple quadrupole mass spectrometer

(ABSCIEX, Foster City, CA, USA) using selected reaction

monitoring (SRM) analysis in positive ionization mode. Nitrogen

was used as collision gas for this purpose. The parameters of the

HPLC-MS/MS fragmentation and retention times are specified in

Table 2. The mass spectrometer parameters were as follows: ion

source voltage of 5,500 V; ion source temperature of 600uC;

curtain gas of 30 psi and collision gas of 9 psi. cNMP concentra-

tion in samples was quantified using the calibration curve obtained

by analysis of known amounts of pure cNMPs. Chromatographic

data was collected and analyzed using Analyst 1.5.1. TF software.

Validation of cNMP Quantitation by HPLC-MS/MS
A control set of cNMP samples (cAMP, cCMP, cGMP and

cUMP) was prepared in order to validate the cNMP quantitation.

One control set was prepared on five different days, of which five

technical replicates were measured. The mean of the daily

concentrations was taken resulting in the calculation of the mean

of five days which is presented in Table 3 (interday precision). The

intraday precision was calculated by measuring one set of controls

per day with five technical replicates. The mean is depicted in

Table 3. Additionally, the operator precision was determined. For

this purpose, on one day, five control sets were prepared and

measured one time. The mean is specified in Table 3. This

validation resulted in a linear range of 0.04–160 pmol/sample for

cAMP and 0.07–250 pmol/sample cCMP, cGMP and cUMP

(table 4). The lower limits of quantitation (LLOQ, accuracy,20%)

and the limits of detection (LOD, signal-to-noise.5) are depicted

in Table 4 for each cyclic nucleotide.

RNA Isolation
For RNA isolation of C. elegans, 500–1000 animals were pelleted

in a 1.5 ml safe-seal Eppendorf tube and washed 6 times with M9

buffer. The buffer was completely removed and the animals were

frozen immediately in liquid nitrogen. Subsequently, room-

temperature RA1/b-mercaptoethanol solution (350 ml/3.5 ml) of

the Nucleo Spin II-RNA Kit (Macherey & Nagel, Düren,

Germany) was added to the pellet and frozen down at 280uC
until use. The RNA extraction was performed with the Nucleo

Spin II-RNA Kit (Macherey & Nagel, Düren, Germany),

following the manufacturer’s instructions. The RNA concentra-

tions were determined by NanoDrop (Thermo Scientific, Wil-

mington, DE, USA). Total RNA (1 mg per sample) was taken for

first strand cDNA synthesis with MLVRT (Life Technologies,

Darmstadt, Germany). cDNA content was assessed by NanoDrop

(Thermo Scientific, Wilmington, DE, USA).

Table 1. Parameters of flow rates and gradients.

Total time Flow rate A [%] B [%]

0 min 0.4 ml/min 100 0

5 min 0.4 ml/min 50 50

5.1 min 0.4 ml/min 100 0

8 min 0.4 ml/min 100 0

doi:10.1371/journal.pone.0072569.t001
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Quantitative RT-PCR
A quantitative RT-PCR using Taqman probes was performed

in order to quantify the expression of distinct genes. First, RNA

isolation was performed followed by a reverse transcriptase

reaction. In order to conduct the PCR 2 ml of cDNA were

pipetted into the well of a 96-well plate and the following Taqman

probes were added: Ce02425242_m1 (pde-1), Ce02450556_m1

(pde-2), Ce02421830_m1 (pde-3), Ce02421841_m1 (pde-4),

Ce2417438_g1 (pde-5), Ce02413958_m1 (pde-6),

Ce2481960_m1 (daf-11), Ce02407231_m1 (pkg-1). RT-PCR

reactions were heat-started with 10 min at 95uC followed by 40

amplification cycles of 15 s at 95uC and 60 s at 60uC using

TaqMan Universal Master Mix (Life Technologies) and a Step

One Plus thermocycler (Applied Biosystems, Darmstadt, Ger-

many). The data were quantified using the comparative Ct (DDCt)

method, taken into account the different amplification efficiencies

for the different genes in the formula of DCt [25]. Data were

normalized to the geometric mean of two housekeeping genes. As

reference genes pmp-3 (putative ABC transporter) and Y45F10D.4

(putative iron-sulfur cluster enzyme) were used according to

[26,27], whose expression levels were stable during the assays.

Statistics
Data are presented as means 6 SEM or SD and are based on

3–12 independent experiments. GraphPad Prism software version

5.01 (San Diego, CA, USA) was used for calculation of means,

SEM and SD. Lifespan analysis was analyzed via the Meier-

Kaplan survival estimator and survival distributions were com-

pared by Log-rank test (Mantel-Cox test). P-values were calculated

by means of ANOVA Bonferroni’s multiple comparison test

with ***: p-value#0.001, **: p-value#0.01, and *: p-value#0.05.

P-values#0.05 were considered significant.

Results

An HPLC-MS/MS Assay for cAMP and cGMP in C. elegans
Wild-type animals were synchronized by bleaching and 72 h old

adult hermaphrodites were freeze-cracked to break their cuticle in

order to prepare the extracts. As proof-of-principle for these

applications in C. elegans, we first quantified cAMP and cGMP

levels in wild-type and mutant C. elegans strains. We compared the

cNMP levels in wild-type adults (N2), pde-4(ce268) II, a semi-

dominant, loss of function mutant, and a pde-1(nj57) pde-5(nj49) I;

pde-3(nj59) II; pde-2(tm3098) III quadruple loss of function mutant

(pde-1,2,3,5). PDE-4 is suggested to be a cAMP-degrading

phosphodiesterase in C. elegans and PDE-1 and PDE-5 are

postulated to degrade cNMPs, with a preference for cGMP [28].

Compared to wild-type animals, the pde-4 mutants showed

significantly higher concentrations of cAMP, a 2-fold increase, but

the cGMP level remained similar to wild-type levels (Figure 1 A,

B). In contrast, no change in cAMP levels were observed in the pde-

1,2,3,5 quadruple mutant compared to wild-type, while the

animals displayed a strong increase in cGMP concentration

(Figure 1 C, D). From these results we can infer that these two

mutants indeed are defective in degradation of cAMP or cGMP,

respectively, and that the differences in overall cNMP concentra-

tions in whole animals can be measured. The cAMP concentra-

tions of an adenylyl cyclase gain-of-function mutant (acy-1-gf) were

not significantly changed in comparison to wild-type animals

(Figure S1). We further tested our ability to quantify cAMP and

cGMP in the nematode by analyzing forskolin-treated animals.

Wild-type animals were incubated in a mixture of E. coli OP50

Table 2. Detection and quantitation parameters of the
quantification of cNMPs and IS TNF by HPLC-MS/MS.

cAMP cCMP cGMP cUMP tenofovir

[M+H]+ [m/z] 330.0 306.0 346.0 307.0 288.0

Quantifier [m/z] 135.9 112.0 151.9 96.9 176.0

Qualifier [m/z] 312.0 95.1 135.0 112.9 270.0

Ratio quantifier/
qualifier

1:5.2 1:4.0 1:2.5 1:1.9 1:2.2

Retention time 6.0 4.0 5.5 5.0 5.8

[M+H]+: protonated molecule mass, [m/z]: mass per charge, IS: internal
standard, TNF: tenofovir, HPLC-MS/MS: high performance liquid
chromatography coupled tandem mass spectrometry.
doi:10.1371/journal.pone.0072569.t002

Table 3. Validation of cNMP HPLC-MS/MS methodology.

cAMP cCMP cGMP cUMP

[pmol/sample] CV [%] [pmol/sample] CV [%] [pmol/sample] CV [%] [pmol/sample] CV [%]

Interday precision

QC low 0.10560.004 4.1 0.15460.01 8.4 0.17860.01 6.3 1.5960.05 3.1

QC medium 3.1360.14 4.5 5.1760.16 3.2 4.9860.18 3.6 19.1660.84 4.4

QC high 98.761.87 1.9 199.866.1 3.1 20466.1 3.0 216.162.17 1.0

Intraday precision

QC low 0.10460.01 8.6 0.15360.01 4.1 0.16760.01 6.9 1.5560.051 3.3

QC medium 2.9560.06 1.9 4.9260.07 1.5 4.7860.13 2.8 18.0862.58 2.6

QC high 97.462.35 2.41 202.469.23 4.6 206.4616.5 8.0 21567.6 3.5

Operator precision

QC low 0.09460.007 7.8 0.15360.01 5.0 0.17560.01 1.8 1.2860.041 3.3

QC medium 3.1260.18 5.8 5.160.39 7.6 4.8660.26 6.5 18.261.3 7.4

QC high 98.763.7 3.8 191.265.5 2.9 206.667.9 4.6 177.268.2 4.7

CV: coefficient of variation, HPLC-MS/MS: high performance liquid chromatography coupled tandem mass spectrometry, QC: quality control.
doi:10.1371/journal.pone.0072569.t003
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food and forskolin, a direct activator of adenylyl cyclases [19], with

a final concentration of 50 mM for 1 h, 2 h or 4 h. Only after 2 h,

a 3.5-fold increase of cAMP was detected whereas the cGMP

concentration was not affected by the addition of forskolin

(Figure 2). Forskolin needed to be ingested by the animals which

could explain the increase of cAMP not until 2 h. Rapid metabolic

inactivation of forskolin by the animals may explain the only

transient cAMP increase, i.e. after 4 h, the forskolin effect was only

minimal. The forskolin results support the findings in Figure 1 and

help to validate our methodology to detect and measure cAMP

and cGMP in C. elegans in addition to the validation methodology

described in Materials in Methods (Table 3). We could define a

linear range of 0.04–160 pmol/sample for cAMP and 0.07–

250 pmol/sample for cCMP, cGMP and cUMP (Table 4). The

lower limit of detection was found to be 0.02 pmol/sample for

cAMP, 0.013 pmol/sample for cCMP, 0.03 pmol/sample for

cGMP and 0.16 pmol/sample for cUMP (Table 4). Cyclic

pyrimidine nucleotides such as cCMP or cUMP could not be

detected in C. elegans (data not shown).

HPLC-MS/MS Quantitation of cAMP and cGMP in cGMP
Signaling Mutants

We next used our HPLC-MS/MS analysis system to measure

cGMP concentrations in C. elegans mutants with altered levels of

tolerance for oxidative (H2O2 -induced) stress. We further

investigated the role of the guanylyl cyclase daf-11 and egl-4/pkg-

1, a gene encoding the cGMP-dependent protein kinase, in H2O2

-induced stress responses. Basal levels of cAMP and cGMP were

determined in adult animals reared under standard C. elegans

culture conditions. No significant change in cAMP concentrations

was observed in any of the mutant strains compared to wild-type

(Figure 3 B). Since the mutated genes affect the cGMP signaling

pathway, this result for cAMP was expected. Interestingly, cGMP

concentrations in the daf-11 mutant also did not significantly differ

from the levels observed in wild-type; however, previous data led

us to expect a decrease in cGMP in daf-11 mutants (Figure 3 A)

[16]. The pde-1,2,3,5 loss of function mutant, of which PDE-1, 3

and 5 are suggested to degrade cGMP, had a 4-fold higher

concentration of cGMP than wild-type animals, confirming the

data of Figure 1. Surprisingly, the egl-4/pkg-1 mutant, having a

mutation that causes complete deletion of the protein kinase G,

showed even higher basal cGMP concentrations than the pde-

1,2,3,5 -quadruple mutant. The quadruple mutant harbored a 3.4-

fold increase in cGMP compared to wild-type levels (Figure 3 A).

In summary, the descending order of basal cGMP levels in all

strains was egl-4/pkg-1..pde-1,2,3,5.. daf-11 = wild-type.

Interestingly, both mutants that showed the highest cGMP

increase under H2O2 conditions also occurred to have the most

severe phenotypes in lifespan decrease (see below, Figure 4, Table

S2).

Stress Tolerance Assays and cAMP and cGMP
Quantitation in cGMP Signaling Mutants

Since daf-11 and cGMP levels have been implicated in longevity

and oxidative stress resistance, we analyzed the cGMP signaling

mutants in the context of stress. Under 10 mM H2O2 conditions

all the mutants displayed differences in tolerance to oxidative stress

in comparison to wild-type animals reared under normal growth

conditions (compare Figure 4 and Figure S2). The egl-4/pkg-1

mutant strain showed the least tolerance to oxidative stress, as

animals quickly died at this concentration of H2O2. After 15 min,

60% of the egl-4/pkg-1 animals were already dead, leading to a

median survival of only 15 min compared to 90 min of wild-type

C. elegans (Figure 4). The pde-1,2,3,5 quadruple mutant strain had

the same median survival as wild-type, 90 min, but after 60 min

almost 50% of the pde-1,2,3,5 mutant animals were dead in

comparison to 17% for wild-type. While the wild-type animals

lived 180 min, the longest lifespan of pde-1,2,3,5 quadruple

mutants was only 120 min (Figure 4). Since the daf-11 mutant

strain had already been reported to have an increased tolerance

for paraquat [16], an oxidative agent and one of the most widely

used herbicides in the world, we also examined the influence of the

stronger oxidative agent H2O2 on daf-11 mutants. The daf-11

mutant animals displayed a significant increase in lifespan in

comparison to wild-type animals when exposed to H2O2. The

mean survival of the daf-11 mutants was 270 min, in contrast to

90 min for the wild-type strain (Figure 4). The oxidative stress

resistance of the strains was as follows: daf-11.. wild-type .pde-

1,2,3,5.. egl-4/pkg-1 (Table S2).

In order to examine the cAMP and cGMP concentrations in

animals exposed to H2O2, the animals were synchronized,

grown to adults and incubated with a final concentration of

10 mM H2O2. After incubation for 15, 30, 60, 90 and 120 min,

the animals were processed for HPLC-MS/MS analysis. The

wild-type strain showed a slow increase in cGMP that peaked

after 90 min (Figure 5 A). Under the H2O2 conditions, the

cGMP concentration of the pkg-1 mutant strain increased in the

first 15 min which was the earliest response of all strains tested

and cGMP remained on a 3-fold higher level than the

untreated control for the duration of the experiment (Figure 5

B). The cGMP level of the pde-1,2,3,5-quadruple mutant

increased continuously throughout the 120 min duration of

the experiment, and the strain accumulated the highest level of

cGMP of all strains studied (Figure 5 C), in terms of the fold-

change as well as the absolute amount (Table 5). Remarkably,

daf-11 mutants exposed to H2O2 did not display a significant

change in cGMP concentration (Figure 5D) leading to the

assumption that daf-11 may be involved in mediating the H2O2-

induced cGMP increase. However, while cGMP was regulated

in different patterns in all mutant and wild-type strains

(Figure 5), the cAMP levels in all strains remained unchanged.

Absolute cGMP values in (pmol/mg protein) of all strains are

listed in Table 5. The descending order of the cGMP level in

Table 4. Linear range, LLOQ and LOD of cNMP methodology.

cAMP [pmol/sample] cCMP [pmol/sample] cGMP [pmol/sample] cUMP [pmol/sample]

Linear Range 0.04–160 0.07–250 0.07–250 0.4–250

LLOQ 0.04 0.07 0.07 0.4

LOD 0.02 0.013 0.03 0.16

LLOQ: lower limit of quantitation, accuracy,20%, LOD: limit of detection, signal-to-noise.5.
doi:10.1371/journal.pone.0072569.t004
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the presence of H2O2 of all strains used in the assay is pde-

1,2,3,5. egl-4/pkg-1.. wild-type.daf-11 (Table 5).

qRT-PCR Analysis of cGMP Signaling Mutants
Biosynthesis and degradation of cNMPs occurs in the context of

a wide network of interconnected cyclases and phosphodiesterases

is subject to allosteric influences and feedback regulation. We

considered that feedback regulation might also include regulation

at the transcriptional or mRNA stability level. We therefore

analyzed the relative mRNA abundance of the pde gene class as

well as mRNA levels of egl-4/pkg-1 and daf-11 in the cGMP

signaling mutants studied above. Wild-type, daf-11, pkg-1 and pde-

1,2,3,5 adult animals were harvested and processed for RNA

preparation. The levels of daf-11, pkg-1, pde-1, pde-2, pde-3, pde-4,

pde-5 and pde-6 gene expression were then quantified by qRT-PCR

for each of the strains. Although the reported mutation of the daf-

11 strain leading to an entire deletion of the cyclase domain of daf-

11 on the protein level, mRNA levels of daf-11 were up-regulated

(about 3.5-fold) [29]. Interestingly, the gene expression levels for

pde-1 and pde-5, encoding enzymes postulated to degrade cGMP

[16,18], were also elevated in daf-11 mutants (2.4-fold and 3.6-

fold, respectively) (Figure 6 A). The egl-4/pkg-1 mutant, harboring

a nonsense mutation, showed a reduction of egl-4/pkg-1 on the

mRNA level (0.47-fold), and a significant elevation of daf-11 gene

expression (11.6-fold), and an increase in pde-1 and pde-5 mRNA

expression as well (Figure 6 B). The mRNA accumulation profiles

for daf-11 and egl-4/pkg-1 mutants are remarkably similar

(Figure 6). By contrast, quantitation of the mRNA levels of the

pde-1,2,3,5-quadruple mutant revealed that daf-11 gene expression

was strongly reduced (0.21-fold) in the pde-1,2,3,5-quadruple

mutant (Figure 6 C). In all mutants tested, the regulation of the

pde-4 gene, which is a phosphodiesterase with a predicted

preference for cAMP degradation, was not significantly affected;

nor were effects noted for the expression of pde-2 or pde-6, whose

cNMP specificities have not been described yet (Figure 6, Table

S3).

Figure 1. cAMP and cGMP concentrations in wild-type vs. pde-4 (A, B) and wild-type vs. pde-1,2,3,5 (C, D). Animals were grown on NGM
plates at 22uC and harvested after they reached adulthood. N2: wild-type; pde-4 mutant: cAMP degrading PDE; pde-1,2,3,5 mutant: mainly cGMP
degrading PDEs. A, C display basal cAMP and B,D basal cGMP concentrations. Values represent means 6 SEM of at least three independent
experiments. P-values were calculated by means of one-way ANOVA with Bonferroni’s multiple comparison test with *: p-value#0.05, ***: p-
value#0.001, n.s.: not significant.
doi:10.1371/journal.pone.0072569.g001
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Discussion

cAMP and cGMP in vivo Analysis of C. elegans via HPLC-
MS/MS

Previous studies using C. elegans phosphodiesterase and adenylyl

or guanylyl cyclase mutants postulated decreased or enhanced

levels of cAMP or cGMP without biochemically analyzing the

actual cAMP or cGMP content of the animals. The assumptions of

cNMP levels were based on the nature of the enzyme activity that

was defective in the corresponding mutant or by exposing animals

to high concentrations of exogenous cNMPs [16,18,19]. These

assumptions may be incorrect, as the pathways that lead to

production and degradation of cAMP and cGMP are intercon-

nected and extensively cross-regulated. A defect in one element of

this network could lead to unexpected consequences with respect

to the balance of cNMPs in the cell.

We developed a HPLC-MS/MS methodology combined with a

particular preparation of C. elegans that is suitable for the specific

and sensitive simultaneous detection of cAMP and cGMP in the

nematode. For validating the HPLC-MS/MS methodology for C.

elegans oxidative stress assays, we examined phosphodiesterase

mutants, we assayed animals defective in particular adenylyl or

guanylyl cyclases, and we used forskolin to activate adenylyl

cyclases in C. elegans. Indeed, for the first time, we report definitive

data that will allow for direct comparisons of cNMP levels in whole

animals. In our initial proof-of-principal experiments, we observed

higher concentrations of cAMP in pde-4 loss-of-function mutants

in comparison to wild-type; whereas cGMP levels were not altered.

Additionally, a mutant containing loss of function mutations in the

four phosphodiesterase genes pde-1, pde-2, pde-3 and pde-5 showed a

significant elevation in cGMP levels (PDE-1 and PDE-5 were

postulated to degrade cGMP [16]) (Figure 1). By analyzing the

influence of forskolin, a direct activator of adenylyl cyclases, we

observed an enhanced accumulation of cAMP in wild-type C.

elegans. These initial results have allowed us to validate our HPLC-

MS/MS methodology in the C. elegans system for direct

comparisons between different cNMP levels.

Our data confirmed previous assumptions that cAMP levels are

upregulated in pde-4 mutants (Figure 1), which are defective for a

phosphodiesterase postulated to degrade cAMP. Both pde-4 loss –

of-function and acy-1(gf) gain-of-function mutants display in-

creased axon-regrowth behavior, and both strains are predicted

to harbor elevated levels of cAMP [19]. By contrast, we detected

no increase of cAMP in the same acy-1(gf) strain (Figure S1). These

unexpectedly contradictory results argue for a more complex role

for cNMPs in this interesting biological process. Similarly, our data

also support other assumptions that cGMP levels are increased in a

pde-1,2,3,5 quadruple mutant that displays enhanced photocurrent

[18] (Figure 1). With our new MS technology experiments

designed to uncover additional roles for cNMPs in axon-

regeneration and phototransduction can be performed with

confidence. We have used similar methodologies in analyses of

cNMP levels in mammalian cell lines, studies which allowed for

the definitive demonstration of the presence of the pyrimidine

nucleotides cCMP and cUMP [30]. cCMP or cUMP could not be

detected in C. elegans, a finding which not only highlights the

specificity of our technology, but also points to an evolutionary

and species-specific pattern of cNMP metabolism.

Analysis of cGMP Signaling Mutants and their Roles in
the H2O2 Stress Response

Correlation of cGMP concentrations and lifespan. C.

elegans is a useful organism for aging and oxidative stress research

[31,32,33,34]. As for mammals, restricted caloric up-take or

moderate oxidative stress can extend the lifespan of C. elegans. By

contrast, high levels of oxidative stress provoke cell death via

protein, lipid or DNA damage in both mammals and C. elegans

[35,36,37]. Long-lived mutants of C. elegans, such as daf-2, age-1,

and sir-2.1, express higher levels of the detoxifying enzymes

catalase and superoxide dismutase, allowing for increased oxida-

tive stress resistance, a phenotype that is correlated with lifespan

extension [16,32,33,38,39]. Mutants, lacking DAF-11, a receptor-

bound guanylyl cyclase, also live about 30% longer than wild-type

animals and are more resistant to paraquat, an oxidative agent

used as herbicide [16]. From these and other data, one might

hypothesize that low cGMP levels provoke lifespan extension and

mediate resistance to oxidative stress. Since we are now able to

quantify cAMP and cGMP in C. elegans via HPLC-MS/MS, we

utilized this new methodology to test this hypothesis by directly

Figure 2. Effect of forskolin (FSK) on cAMP (A) and cGMP (B)
concentrations in C. elegans. 3-day-old, adult animals were
incubated with 50 mM FSK for the indicated times. After 1 h, 2 h or
4 h, the animals were washed with M9 buffer and processed for HPLC-
MS/MS quantitation. Wild-type 0 h represents the untreated control.
Values represent means 6 SEM of three independent experiments in
pmol/mg protein. Please note the different y-axes of panels A and B. P-
values were calculated by means of one-way ANOVA with Bonferroni’s
multiple comparison test with **: p-value#0.005. The cGMP values are
not significant according to the analysis by one-way ANOVA with
Bonferroni’s multiple comparison test, the DMSO values decreased, but
the cGMP values almost remained on untreated wild-type level (B).
doi:10.1371/journal.pone.0072569.g002
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measuring cNMP levels in daf-11 and related mutants after

exposure to 10 mM H2O2.

In order to reveal correlations between cNMP levels and stress

response pathways, we analyzed loss-of-function C. elegans mutants

of the cGMP metabolic pathway. In both wild-type and the

quadruple phosphodiesterase pde-1,2,3,5 mutant, the levels of

cGMP increased progressively in response to the time of exposure

to H2O2, with the highest levels of cGMP accumulating in the

quadruple mutant. The pde-1,2,3,5 mutants also have higher than

normal levels of cGMP when untreated, while daf-11 mutants do

not (Figure 3). In contrast, the pkg-1 strain had the earliest

strongest cGMP increase, already after 15 min H2O2 incubation.

These two described mutant strains also displayed the greatest

sensitivity to oxidative stress (Figures 4 and 5). Surprisingly, basal

cGMP levels in guanylyl cylclase daf-11 mutants were unexpect-

edly unchanged in comparison to wild-type levels (Figure 5). Thus,

while the pde-1,2,3,5 and pkg-1 data support the hypothesis that

cGMP levels are inversely correlated with oxidative stress

resistance, the daf-11 data do not. Remarkably, cAMP concen-

trations were not affected by oxidative stress in any of the strains

we tested, which points to a particular role for cGMP in oxidative

stress mechanisms of C. elegans (Figure 5).

Strikingly, the cGMP levels of the untreated egl-4/pkg-1 mutants

were even higher than those of the pde-1,2,3,5 mutant (Figure 5).

Egl-4/pkg-1 is one of two closely related cGMP-dependent protein

kinase genes in C. elegans. The increased level of cGMP in egl-4/

pkg-1 mutants, coupled with the cell’s inability to transduce signals

through PKG-1, may provide indications of a compensatory feed-

back mechanism in the cGMP signaling pathway. Such compen-

satory mechanisms have been reported for superoxide dismutase

mutations in C. elegans. For example, in sod-2 deletion mutants, sod-

1, sod-3 and sod-4 mRNA levels were significantly elevated [34].

Under normal growth conditions, we did not observe an

extended lifespan for pkg-1 or daf-11 single mutants or the pde-

1,2,3,5 quadruple mutant (Figure S2). These findings are contrary

to lifespan data for pkg-1 and daf-11 mutants published by Hahm

et al. 2009 and Hirose et al. 2003, even though our experimental

approach to measuring lifespan was similar to that of Hahm et al.,

in that we utilized FUDR to prevent the development of progeny.

However, we utilized FUDR at 0.05 mg/ml while Hahm et al.

used a higher concentration (0.1 mg/ml). Differences in lifespan

may also be attributable to the growth temperature; our strains

were reared at 22uC, while the Hahm experiments were

performed at 20uC. Similarly the lifespan measurements per-

formed for egl-4/pkg-1 by Hirose et al. were performed at 20uC;

additionally, Hirose et al. assessed a different set of alleles. (The

pkg-1 mutants did display the typical enlarged body size phenotype

[40,41].).

Nevertheless, our observation, coupled with the fact that egl-4/

pkg-1 and the pde-1,2,3,5 quadruple mutants have high basal

cGMP contents (Figure 3), support a hypothesis that cGMP is not

the main player in enhanced or decreased lifespan under normal

growth conditions. Thus cGMP has differing influences on C.

Figure 3. HPLC-MS/MS analysis of basal cGMP (A) and cAMP (B) concentrations in C. elegans wild-type (N2) and cGMP signaling
mutants. Animals were grown to adult stage at 22uC on NGM plates and thus processed for HPLC-MS/MS cNMP quantitation. Data shown are the
means 6 SEM of seven independent experiments. P-values were calculated by means of one-way ANOVA with Bonferroni’s multiple comparison test
with ***: p-value#0.001, n.s.: not significant.
doi:10.1371/journal.pone.0072569.g003

Figure 4. C. elegans stress response assay at 226C in the
presence of 10 mM H2O2. Animals were synchronized by picking L1
larvae, grown on NGM plates. At the stage of adulthood the animals
were transferred to a 96-well plate containing 50 ml of 10 mM H2O2.
Values represent means 6 SEM of three independent experiments with
wild-type = 153 animals, pde-1,2,3,5 = 172 animals, pkg-1 = 102 animals
and daf-11 = 117 animals. Survival rates were calculated via the Meier-
Kaplan survival estimator and survival distributions were compared by
Log-rank test. P-values were calculated by Log-rank test with p-
values#0.05 considered as significant. P-values describe the significant
difference between wild-type and mutant strain survival during the
whole time course; p-values for all mutants (pde-1,2,3,5, pkg-1 and daf-
11): p,0.001. Dotted line: mean survival.
doi:10.1371/journal.pone.0072569.g004
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elegans’ lifespan depending on the environmental conditions. It

should be noted that our data obtained with worms cannot

necessarily be transferred to mammals.

The impact of background gene expression on the mutant

cGMP concentrations. As mentioned above, our data provide

evidence for compensatory feedback mechanisms that might

Figure 5. HPLC-MS/MS analysis of cGMP and cAMP of C. elegans mutants in the presence of H2O2. 72 h old, adult animals grown under
normal conditions, were exposed to 10 mM of H2O2 and incubated for defined times at 22uC. After incubation, the animals were washed, extracted
and and processed for HPLC-MS/MS quantification. A wild-type, B pkg-1 loss-of-function mutant, C quadruple pde loss-of-function mutant, D daf-11
(GC) loss-of-function mutant. Values normalized on the untreated control represent means 6 SEM of at least three independent experiments. Please
note the different scales of the y-axes of panel C. P-values were calculated by means of one-way ANOVA with Bonferroni’s multiple comparison test
with ***: p-value#0.001, n.s.: not significant. Please note in panel B and C: all times were tested for significant differences, but only the first incubation
time with significance is highlighted with asterics. For all the following incubation times, the cGMP concentrations were also significantly higher
(***:p-value#0.001) than the untreated control (0 min) determined by one-way ANOVA with Bonferroni’s multiple comparison test. -#-: cAMP, -&- :
cGMP.
doi:10.1371/journal.pone.0072569.g005

Table 5. cGMP concentration of all C. elegans strains in the presence of 10 mM H2O2.

Incubation time 10 mM
H2O2

N2 c[cGMP] (pmol/mg
protein) 6 SEM

daf-11 c[cGMP] (pmol/mg
protein) 6 SEM

pkg-1 c[cGMP] (pmol/mg
protein) 6 SEM

pde-1,2,3,5 c[cGMP] (pmol/
mg protein) 6 SEM

0 min 4.7±0.86 8.3±0.93 34.7±2.5 17.3±2.2

15 min 4.460.49 10.761.7 135±12.8*** 29.363.0

30 min 5.360.58 9.960.90 120613.3*** 45.865.6**

60 min 7.461.01 11.761.2 97.464.9*** 79.268.8***

90 min 13.8±2.9*** 12.361.8 10866.2*** 104614.5***

120 min 6.261.0 13.661.6 98.764.6*** 155±12.0***

Animals were exposed to 10 mM H2O2 and incubated for defined times at 22uC. After defined incubation times animals were processed for HPLC-MS/MS analysis. Data
shown are means 6 SEM of three to four independent experiments in pmol/mg. P-values were calculated by means of one-way ANOVA with Bonferroni’s multiple
comparison test with ***: p-values ,0.001, significance was calculated of values compared to initial untreated values, n.s.: not significant.
doi:10.1371/journal.pone.0072569.t005
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explain the high basal cGMP levels we observed in egl-4/pkg-1

mutants (Figure 3). We investigated effects on mRNA accumula-

tion/transcription using qRT-PCR analysis of untreated mutants

defective in cGMP signaling or metabolic pathways. Indeed, in egl-

4/pkg-1 mutants, the daf-11 guanylyl cyclase mRNA was strongly

up-regulated (11.6-fold) in comparison to the level observed in

wild-type (Figure 6). This may lead to increased DAF-11 enzyme

production, and hence, the high basal cGMP levels (Figure 7). The

immediate and significant increase in cGMP levels observed in egl-

4/pkg-1 mutants in the presence of H2O2 (Figure 5) likely reflects

the overabundance of daf-11 mRNA, underlining the mediator

function of this guanylyl cyclase in the oxidative stress response.

The increase in daf-11 mRNA, and accompanying high cGMP

levels, detected in egl-4/pkg-1 mutants may also be responsible for

the up-regulation of pde-1 and pde-5 gene expression we observed

(Figure 7). Similar regulation of enzymes with opposite activities

with respect to cGMP metabolism would impart an ability of the

cell to maintain cGMP homeostasis; although, in egl-4/pkg-1

mutants, perfect homeostasis is not achieved (Figure 3). If this

model is correct, we can predict that increases in cGMP might

provoke an increase in pde-1 and pde-5 gene expression, and

decreases in cGMP would lead to upregulation of daf-11. Indeed,

we do observe a decrease in daf-11 mRNA levels in the pde-1,2,3,5

quadruple mutant (Figure 7). The pde-1,2,3,5 quadruple phos-

phodiesterase mutant has drastically elevated cGMP levels, and

not surprisingly, the expression level of the daf-11 guanylyl cyclase

is reduced. One might conclude that the reduced level of daf-

11 mRNA in this genetic background is not compromised, as the

cGMP product is more stable (Figure 3). These results confirm the

assumption that cNMP-degrading enzymes have a stronger impact

on intracellular cNMP levels in C. elegans than cNMP-generating

enzymes. Taken together, the collective data highlight the

potential for cross-talk between cGMP generating and degrading

enzymes in C. elegans (Figure 7).

Figure 6. mRNA expression of C. elegans pde genes, daf-
11 gene and pkg-1 gene on the basis of qRT-PCR analysis.
Animals were grown to adult stage (72 h) under normal conditions on
NGM plates at 22uC. 500–1000 worms were harvested and processed for
RNA extraction by freeze-crack and thus qRT-PCR analysis was
conducted in order to determine background gene regulation in the
cGMP-signaling pathway. Gene expression of A the daf-11, B the pkg-1
and C the pde-quadruple mutant background. Data shown are means
6 SEM of 3 to 8 independent experiments normalized on wild-type
level. Data have been normalized to the geometric mean of two
housekeeping genes Y45F10D.4 and pmp3 chosen. P-values were
calculated by means of one-way ANOVA with Bonferroni’s multiple
comparison test with ***: p-value#0.001; *: p-value#0.05. Please note
the different scales of panel A–C. Dashed lines depict 2-fold increase or
decrease in mRNA expression compared to wild-type.
doi:10.1371/journal.pone.0072569.g006

Figure 7. Crosstalk of daf-11/pkg-1/pde signaling in C. elegans
analyzed by qRT-PCR and HPLC-MS/MS analysis of cGMP.
Analysis of normal grown, adult cGMP signaling mutants revealed a
compensatory feedback response in egl-4/pkg-1 deletion mutants
towards daf-11, with enhanced daf-11 gene expression, resulting in
high cGMP concentrations and thus enhanced pde-1 and pde-5 gene
expression. Vice versa, pde- deletion mutants showed reduced pde-1
and pde-5 gene expression connected with decreased daf-11 expres-
sion levels pointing to a direct dependency of daf-11 and pde-1 and
pde-5 gene expression in both directions. Since egl-4/pkg-1 gene
expression was not affected in the daf-11 loss of function or the pde-
deletion background, there is only a feedback regulation based on egl-
4/pkg-1 gene expression. Red arrows stand either for down- (Q) or up-
regulation (q) of genes.
doi:10.1371/journal.pone.0072569.g007
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daf-11 mRNA is down-regulated in the pde-1,2,3,5 quadruple

mutant (Figure 6), yet the cGMP concentration increases in this

mutant in the presence of H2O2 (Figure 5). In contrast to

mammals, whose soluble guanylyl cyclases are activated by NO

[42,43], soluble guanylyl cyclases of C. elegans are activated by

oxygen (O2) (Figure S4) [44]. Therefore, it is possible that in the

presence of H2O2, detoxifying enzymes such as catalases, which

convert H2O2 into H2O and O2, might indirectly activate sGCs

and thus contribute to cGMP formation.

An ability to synthesize cGMP independently of DAF-11 can

explain why daf-11 mutants harbor normal cGMP levels (Figure 3).

This is remarkable when considering that daf-11 mutants also have

moderately increased levels of the phosphodiesterases pde-5 and

pde-1 (Figure 6). These data confirm the results of the egl-4/pkg-1

and pde-1,2,3,5 quadruple mutant indicating a strong correlation

between daf-11 and pde-5 gene expression (Figure 7). When daf-11

is upregulated pde-5 is elevated and when pde-5 is strongly down-

regulated, daf-11 gene expression is also reduced (Figure 6 C).

Limitations of our Study
Compartmentalization and short local increases in cNMPs

could be taken into consideration for explaining the effects of the

mutations in cNMP pathways. For example, aberrant compart-

mentalization in acy-1(gf) mutants may contribute to axon

regeneration and such subtle cellular displacements might be

below our ability to detect in our assays [45]. Also, our MS-based

method cannot analyze cNMP levels in specific cellular compart-

ments. Furthermore, our studies underline that only relying on

mutations is not sufficient for correct interpretation of results, since

the mutations do not necessarily correlate with the situation of

intracellular cNMP concentrations in vivo (Figure S1).

We identified the receptor-bound guanylyl cyclase DAF-11 as

the mediator of H2O2-induced cGMP increase in C. elegans and

found that the cGMP concentration inversely correlates with the

life expectancy of the nematode in the presence of H2O2 while

the cAMP pathway does not seem to be part of the oxidative

stress response. This was not only confirmed by HPLC-MS/MS

quantitation but also by qRT-PCR analysis, which revealed no

regulation of the pde-4 gene, encoding for a cAMP degrading

PDE, in any cGMP signaling mutant (Figure 6). Our data

provides evidence that DAF-11 might not be the only guanylyl

cyclase that generates cGMP in response to H2O2. It is likely

that soluble guanylyl cyclases are also involved in this process.

Our analysis of the gene expression profile in C. elegans

cGMP-signaling mutants via RT-PCR assays showed that it is

important to take into consideration that daf-11/pkg-1/pde

crosstalk occurs. In contrast to C. elegans, oxidative stress

studies with HEK293 cells overexpressing the DAF-11 ortholog

pGC-A [46], showed a simultaneous regulation of cAMP and

cGMP (Figure S3) indicating that cross-talk of cGMP and

cAMP occurs in mammalian cells upon H2O2 exposure. While

these results highlight the differences between the two systems,

C. elegans is a useful model organism for initial exploration

experiments in cNMP signaling upon oxidative stress, because

the reduced level of cross-talk and absence of NO responses

might allow for a more complete elucidation of novel cNMP

pathways [47,48].

The particular interpretation of the C. elegans cGMP regulation

under normal and oxidative stress conditions could only be

realized by profiling the levels of mRNAs of other components in

the cGMP signaling pathway in order to comprehend the impacts

of specific gene function and environmental stressors on the

biochemical results. Thus, it is important not only to analyze C.

elegans mutants by a biochemical or a genetic approach but by the

combination of both.

Future Perspectives
Due to the lack of intense immunochemistry in C. elegans in the

past, the field of protein biochemistry is just evolving providing

reliable antibodies in order to study the effects of H2O2 on the

protein level. Therefore, on the one hand future studies will focus

on elucidating the impact of oxidative stress on the protein level of

daf-11, egl-4/pkg-1 and pdes. On the other hand, the pharmaco-

logical manipulation of C. elegans using guanylyl cyclase activators/

inhibitors, PDE inhibitors or membrane permeable cNMP

analogs, with and without exposition to oxidative stress will

provide further information in how far the members of the cGMP-

signaling pathway are involved in the oxidative stress response.

Supporting Information

Figure S1 HPLC-MS/MS quantitation of cAMP (A) and
cGMP (B) of wild-type (N2) and acy-1 gain-of-function
animals. Nematodes were synchronized and grown under

normal conditions on NGM agar plates to adulthood at 22uC.

No significant difference in A cAMP and B cGMP concentrations

could be detected. Values represent means 6 SEM normalized on

wild-type cNMP concentrations, n.s.: not significant.

(TIF)

Figure S2 Lifespan analysis of C. elegans at 226C under
normal growth conditions. NGM plates were supplemented

with 0.05 mg/ml FUDR in order to inhibit progeny overgrowth.

Data shown are means 6 SEM of three independent experiments

with N2 = 267 animals, A pde-1,2,3,5 = 259 animals, B pkg-1 = 277

animals and C daf-11 = 281 animals. Survival rates were calculated

via the Meier-Kaplan survival estimator and survival distributions

were compared by logrank test. P-values were calculated by Log-

rank test with p-values#0.05 considered as significant. P-values

depicted in panels A–D describe the significant difference between

wild-type and mutant strain survival during the whole time course.

Dotted line: mean survival.

(TIF)

Figure S3 HPLC-MS/MS analysis of Hek293 WT vs.
Hek293 overexpressing pGC-A in the presence of H2O2.
Panels A, C, E, G display cGMP and panels B, D, F, H cAMP

levels normalized on the cNMP values of the untreated control.

Values represent means 6 SEM of three independent experi-

ments. P-values were calculated by means of ANOVA Bonferro-

ni’s multiple comparison test with ***: p-value#0.001, **: p-

value#0.01, *: p-value#0.05, n.s.: not significant. Please note the

different scale of the y-axes of panel A.

(TIF)

Figure S4 C. elegans soluble guanylyl cyclase dependent
cGMP signaling in ciliated neurons. Soluble guanylyl

cyclases (sGC) GCY-35 and GCY-36 of C. elegans are activated

by O2. Subsequently, GTP is converted to cGMP. cGMP effectors

are cGMP-gated channels (TAX-2 and TAX-4), PKG-1 (protein

kinase 1) and most likely PDE 1, 2 and 5 (cGMP degrading

phosphodiesterases). Activation of sGC results in avoidance of

hyperoxia, bordering and aggregation of the animals on a bacterial

lawn [46].

(TIF)

Figure S5 Concentration-response curve of wild-type C.
elegans incubated with H2O2. 72 h old adult animals were

incubated with increasing concentrations of H2O2:2.5 mM,
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5 mM, 7.5 mM, 10 mM and 15 mM. After 2 h, the living animals

were identified by tapping the nematodes with a plantinum wire-

pick. The animals were counted as alive when they responded to

the pick, otherwise they were counted as dead. With a

concentration of 15 mM, almost all animals were dead after 2 h

of incubation. Therefore, a final concentration of 10 mM H2O2

was chosen, in order to conduct a time-dependent H2O2 stress

assay.

(TIF)

Table S1 C. elegans cGMP signaling pathway mutants
used in this study.
(DOCX)

Table S2 C. elegans survival in the presence of 10 mM
H2O2 (up to 270 min).
(DOCX)

Table S3 qRT-PCR analysis of C. elegans wild-type and
mutants.

(DOCX)

Acknowledgements

We thank Juliane von der Ohe and Annette Garbe for expert technical

assistance. Thanks are also due to the Caenorhabditis elegans Genetic Center

(CGC) for providing the C. elegans mutant strains used in this study and

WormBase Version WS235.

Author Contributions

Conceived and designed the experiments: UB WYA LF LT RS. Performed

the experiments: UB WYA LF. Analyzed the data: UB WYA LF VK LT

RS. Contributed reagents/materials/analysis tools: VK LT HB. Wrote the

paper: UB VK LT HB RS.

References

1. Ashman DF, Lipton R, Melicow MM, Price TD (1963) Isolation of adenosine 39,

59-monophosphate and guanosine 39, 59-monophosphate from rat urine.

Biochem Biophys Res Commun 11: 330–334.

2. Berthet J, Sutherland EW, Rall TW (1957) The assay of glucagon and

epinephrine with use of liver homogenates. J Biol Chem 229: 351–361.

3. Berthet J, Rall TW, Sutherland EW (1957) The relationship of epinephrine and

glucagon to liver phosphorylase. IV. Effect of epinephrine and glucagon on the

reactivation of phosphorylase in liver homogenates. J Biol Chem 224: 463–475.

4. Hardman JG, Sutherland EW (1969) Guanyl cyclase, an enzyme catalyzing the

formation of guanosine 39,59-monophosphate from guanosine trihosphate. J Biol

Chem 244: 6363–6370.

5. White AA, Aurbach GD (1969) Detection of guanyl cyclase in mammalian

tissues. Biochim Biophys Acta 191: 686–697.

6. Ishikawa E, Ishikawa S, Davis JW, Sutherland EW (1969) Determination of

guanosine 39,59-monophosphate in tissues and of guanyl cyclase in rat intestine.

J Biol Chem 244: 6371–6376.

7. Bohme E, Munske K, Schultz G (1969) Formation of cyclic guanosine-39,59-

monophosphate in various rat tissues. Naunyn-Schmiedebergs Arch Pharmacol

264: 220–221.

8. Schaap P (2005) Guanylyl cyclases across the tree of life. Frontiers Bioscience 10:

1485–1498.

9. Behrends S (2003) Drugs that activate specific nitric oxide sensitive guanylyl

cyclase isoforms independent of nitric oxide release. Cur Med Chem 10: 291–

301.

10. Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, et al. (2006) NO-

independent stimulators and activators of soluble guanylate cyclase: discovery

and therapeutic potential. Nature Rev Drug Discovery 5: 755–768.

11. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.

12. Culetto E, Sattelle DB (2000) A role for Caenorhabditis elegans in understanding

the function and interactions of human disease genes. Hum Mol Genetics 9:

869–877.

13. Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome.

Science 282: 2028–2033.

14. Birnby DA, Link EM, Vowels JJ, Tian H, Colacurcio PL, et al. (2000) A

transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a

common set of chemosensory behaviors in caenorhabditis elegans. Genetics 155:

85–104.

15. Vowels JJ, Thomas JH (1994) Multiple chemosensory defects in daf-11 and daf-

21 mutants of Caenorhabditis elegans. Genetics 138: 303–316.

16. Hahm JH, Kim S, Paik YK (2009) Endogenous cGMP regulates adult longevity

via the insulin signaling pathway in Caenorhabditis elegans. Aging Cell 8: 473–

483.

17. Li W, Kennedy SG, Ruvkun G (2003) daf-28 encodes a C. elegans insulin

superfamily member that is regulated by environmental cues and acts in the

DAF-2 signaling pathway. Genes Development 17: 844–858.

18. Liu J, Ward A, Gao J, Dong Y, Nishio N, et al. (2010) C. elegans

phototransduction requires a G protein-dependent cGMP pathway and a taste

receptor homolog. Nature Neurosci 13: 715–722.

19. Ghosh-Roy A, Wu Z, Goncharov A, Jin Y, Chisholm AD (2010) Calcium and

cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require

DLK-1 kinase. J Neurosci 30: 3175–3183.

20. Zaccolo M, Movsesian MA (2007) cAMP and cGMP signaling cross-talk: role of

phosphodiesterases and implications for cardiac pathophysiology. Circulation

Res 100: 1569–1578.

21. Seifert R, Beste KY (2012) Allosteric regulation of nucleotidyl cyclases: an

emerging pharmacological target. Science signaling 5: pe37.

22. Hope IA (1999) C. elegans: A Practical Approach. Oxford: Oxford University

Press.

23. Wang Y, Tissenbaum HA (2006) Overlapping and distinct functions for a

Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Development

127: 48–56.

24. Seamon KB, Padgett W, Daly JW (1981) Forskolin: unique diterpene activator

of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci USA

78: 3363–3367.

25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2-DDCT method. Methods: 25: 402–408.

26. Hoogewijs D, Houthoofd K, Matthijssens F, Vandesompele J, Vanfleteren JR

(2008) Selection and validation of a set of reliable reference genes for

quantitative sod gene expression analysis in C. elegans. BMC Mol Biol 9: 9.

27. Zhang Y, Chen D, Smith MA, Zhang B, Pan X (2012) Selection of reliable

reference genes in Caenorhabditis elegans for analysis of nanotoxicity. PloS one

7: e31849.

28. Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new

target for the development of specific therapeutic agents. Pharmacol Ther 109:

366–398.

29. Murakami M, Koga M, Oshima Y (2001) DAF-7/TGF-b expression required

for the normal larval development in C. elegans is controlled by a presumed

guanylyl cyclase DAF-11. Mechanisms Development: 109: 27–35.

30. Burhenne H, Beste K, Spangler C, Voigt U, Kaever V, et al. (2011)

Determination of cytidine 39,59-cyclic monophosphate and uridine 39,59-cyclic

monophosphate in mammalian cell systems and in human urine by high

performance liquid chromatography/mass spectrometry. Naunyn-Schmiede-

berg’s Arch Pharmacol 383 (Suppl) P96, 33.

31. Lee SJ, Kenyon C (2009) Regulation of the longevity response to temperature by

thermosensory neurons in Caenorhabditis elegans. Cur Biol 19: 715–722.

32. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead

family member that can function to double the life-span of Caenorhabditis

elegans. Science 278: 1319–1322.

33. Kenyon CJ (2010) The genetics of ageing. Nature 464: 504–512.

34. Van Raamsdonk JM, Hekimi S (2009) Deletion of the mitochondrial superoxide

dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genetics 5:

e1000361.

35. Cheng FC, Jen JF, Tsai TH (2002) Hydroxyl radical in living systems and its

separation methods. J Chromatography B 781: 481–496.

36. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage:

mechanisms, mutation, and disease. FASEB J 17: 1195–1214.

37. Davies MJ (2005) The oxidative environment and protein damage. Biochim

Biophys Acta 1703: 93–109.

38. Vanfleteren JR (1993) Oxidative stress and ageing in Caenorhabditis elegans.

Biochem J 292: 605–608.

39. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, et al. (1997) The Fork head

transcription factor DAF-16 transduces insulin-like metabolic and longevity

signals in C. elegans. Nature 389: 994–999.

40. Hirose T, Nakano Y, Nagamatsu Y, Misumi T, Ohta H, et al. (2003) Cyclic

GMP-dependent protein kinase EGL-4 controls body size and lifespan in C

elegans. Development 130: 1089–1099.

41. Fujiwara M, Sengupta P, McIntire SL (2002) Regulation of body size and

behavioral state of C. elegans by sensory perception and the EGL-4 cGMP-

dependent protein kinase. Neuron 36: 1091–1102.

42. Stone JR, Marletta MA (1994) Soluble guanylate cyclase from bovine lung:

activation with nitric oxide and carbon monoxide and spectral characterization

of the ferrous and ferric states. Biochemistry 33: 5636–5640.

43. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the

biological activity of endothelium-derived relaxing factor. Nature 327: 524–526.

44. Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, et al. (2004) Oxygen

sensation and social feeding mediated by a C. elegans guanylate cyclase

homologue. Nature 430: 317–322.

Cyclic GMP in C. elegans

PLOS ONE | www.plosone.org 12 August 2013 | Volume 8 | Issue 8 | e72569



45. Ghosh SR, Hope IA (2010) Determination of the mobility of novel and

established Caenorhabditis elegans sarcomeric proteins in vivo. Eur J Cell Biol
89: 437–448.

46. Baude EJ, Arora VK, Yu S, Garbers DL, Wedel BJ (1997) The cloning of a

Caenorhabditis elegans guanylyl cyclase and the construction of a ligand-
sensitive mammalian/nematode chimeric receptor. J Biol Chem 272: 16035–

16039.

47. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, et al. (2008)

Caenorhabditis elegans: an emerging model in biomedical and environmental

toxicology. Toxicol Sci 106: 5–28.

48. Cheung BH, Arellano-Carbajal F, Rybicki I, de Bono M (2004) Soluble

guanylate cyclases act in neurons exposed to the body fluid to promote C.

elegans aggregation behavior. Cur Biol 14: 1105–1111.

Cyclic GMP in C. elegans

PLOS ONE | www.plosone.org 13 August 2013 | Volume 8 | Issue 8 | e72569


