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Balanced imitation sustains song culture in zebra
finches

Ofer Tchernichovski® 2* Sophie Eisenberg-Edidin'3 & Erich D. Jarvis@® 34>

Songbirds acquire songs by imitation, as humans do speech. Although imitation should drive
convergence within a group and divergence through drift between groups, zebra finch songs
sustain high diversity within a colony, but mild variation across colonies. We investigated this
phenomenon by analyzing vocal learning statistics in 160 tutor-pupil pairs from a large
breeding colony. Song imitation is persistently accurate in some families, but poor in others.
This is not attributed to genetic differences, as fostered pupils copied their tutors’ songs as
accurately or poorly as biological pupils. Rather, pupils of tutors with low song diversity make
more improvisations compared to pupils of tutors with high song diversity. We suggest that a
frequency dependent balanced imitation prevents extinction of rare song elements and
overabundance of common ones, promoting repertoire diversity within groups, while con-
straining drift across groups, which together prevents the collapse of vocal culture into either
complete uniformity or chaos.
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not unique to humans!=>. Like humans, songbirds acquire

their vocal repertoire via imitation (i.e., vocal learning)®-?,
a process that can give rise to local dialects that persist over
hundreds of generations!®!l. However, the repertoire of vocal
learning birds also has a strong genetic component!!-13. Across
populations, innate biases in song perception, production, and
learning sustain species-specific song repertoires!3-10. Canaries,
for example, will faithfully imitate songs of abnormal combina-
torial structure, but later, as they reach maturity, alter their songs
to match a species typical song syntax to which they have not
been exposed!”. Similarly, zebra finch males (females do not sing)
that are trained with random combinatorial transitions of syllable
types will generate combinations that are biased toward the
species typical!®1%, Innate biases may unfold at the scale of
generations, too; the descendants of isolated zebra finch tutors,
who produce aberrant songs, produce increasingly species typical
songs>19.

Theoretically, vocal imitation should drive song repertoire
convergence within groups and divergence across groups29-22.
Meanwhile, innate biases in imitation might constrain drift. In
reality, however, zebra finch songs remain highly diverse within
groups and vary only mildly across them?2. We do not know
whether this diversity serves any function in domesticated zebra
finches, but high similarity between songs could potentially
generate impoverished communication systems that convey little
information about individual identity?>?4. In wild songbirds,
across species, and even subspecies, the magnitude of individual
song variability differs strongly, often for no apparent reason. For
example, the songs of the wild Australian zebra finch (Taenio-
pygia guttata castanotis) are much more variable among indivi-
duals than those of the closely related wild Timor zebra finch
(Taeniopygia guttata guttata)?>. This variability persists despite
the fact that they live in similar climates and have similar social
organization.

Here we test how a rich polymorphic repertoire of song syl-
lables is sustained during cultural transmission® in the Aus-
tralian zebra finch. We quantify song polymorphism using novel
measures of vocal states and acoustic diversity, for studying the

Vocal culture is the cornerstone of spoken language, but is

a. song similarities between pupils and tutors

statistics of song imitation in a large colony. We find that the
polymorphic repertoire is sustained by pupils spontaneously
increasing song diversity when tutors have low-diversity songs,
and imitating with greater fidelity when tutors have high-diversity
songs, a process we call balanced imitation.

Results

We recorded the songs of 160 zebra finch tutor-pupil pairs (68
tutors and 160 pupils; 228 birds overall) at the Rockefeller Uni-
versity Field Research Center colony, which consisted of over 800
birds during the 1-year period of recording. Of the 160 pupils,
130 pupils were housed with their biological parents, and 30
pupils with foster parents. We also analyzed song imitation across
three generations including 14 grand-tutors and 35 grand-pupils.
All birds were housed in individual breeding cages with parents
(either biological or foster) and other offspring, and kept visually
isolated from adjacent breeding cages. With this social regimen,
we found no evidence of song imitation across families (Sup-
plementary Fig. 1). From each bird, we recorded undirected songs
(produced in isolation) for over a week to obtain a sample of at
least 1000 song syllables per bird. Directed songs to females were
also recorded, but not analyzed for this study.

Imitation outcome varied across families. We first measured
similarity?” between tutor and pupil songs based on acoustic
features (pitch, frequency modulation, Wiener entropy, and
spectral continuity)?8. We observed considerable variability in the
distribution of song similarities between pupils and their indivi-
dual tutors (mean = 69%; range 20-100%; CV = 0.28, Fig. 1a). To
test for family influence, we identified 24 families that had mul-
tiple clutches with males, calculated the mean song similarity
between pupils and their tutors of each clutch, which allowed us
to normalize out the effect of song convergence between
siblings?0. We then calculated the coefficients of variance across
clutches within families and compared it to the coefficient of
variance across families (Fig. 1b). We found that imitation
similarity was much more variable across families than within
families (Kruskal-Wallis chi-squared = 44.727, df =23, p-value
=0.006).

b. song similarities within families
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Fig. 1 Distribution of song similarity between pupils and their tutors. a Histogram of song similarities between 160 pupils and their tutors. b Analysis of
variance in song similarity between and within families. Data include 24 families with more than one clutch with males. Similarity scores were averaged
within clutch members and coefficient of variance (CV = 0.14 = 0.02) of similarity scores were calculated across clutches. CV of the same data (averaged
within clutches) across families = 0.24 is presented as a dotted line. Source data for this figure is in Supplementary Data File 1.
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a. Imitation accuracy in families
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Fig. 2 Imitation outcome varies across families. a 24 song tutoring lineages. All tutors had pupils in more than a single clutch. Each node represents one
individual animal. Node shape represents pupils from the same clutch. Tutor nodes are presented on the bottom and pupil nodes on the top. Similarity
scores are presented as quartiles (green for best imitations and red for poorest). Lineages are sorted according to the mean similarity between tutor and
pupils from highest (top) to lowest (bottom). b, € Examples of song imitations from tutor AQ12 with a low similarity family (b) and from tutor DG1 with a
high similarity family (c). Imitation outcomes are presented as percent acoustic similarity estimates on each sonogram. Red bars outline the repeated song
motifs of the tutors. Source data for this figure is in Supplementary Data File 1.
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In certain families, across clutches, song imitation tended to be
almost exclusively accurate (top quartile), in some modest
(middle quartile), and others generally poor (Fig. 2a). To assess
whether this variance in imitation outcome was genetic, we
compared song imitation between biological and foster pupils.
Foster pupils imitated their tutor as well as biological ones
(biological similarity: 68.2 £ 1.7%, n = 130; foster similarity: 70.0
+3.6%, n =30, mean + S.E.M. hereafter). Therefore, the varia-
bility we observed in imitation outcomes across families cannot
be explained by genetic variability. Instead, we noted that
variability in imitation among pupils appeared to be associated
with tutor song structure. For example, tutor Aql12 had a very
simple song with one syllable-type containing two notes and none
of his pupils imitated this syllable or song accurately. Instead,
some pupils introduced apparently novel syllable types not found
in the tutor in developing their own songs (Fig. 2b). In contrast,
tutor DG1 had a more complex song, with five syllable types
containing six notes, and all of his pupils imitated the syllables
and the sequence much more accurately, with little to no
introduction of novel syllables (Fig. 2¢). In both cases, pupils still
produced their syllables in repeated song motifs of 2-6 syllable
types, as is typical of zebra finches (Fig. 2b, ). This suggested to
us that pupils might more accurately imitate tutor songs that are
rich in acoustic structure (ie., acoustically diverse), while
improvising upon impoverished tutor songs.

Syllable-type diversity is not correlated between tutor and
pupil songs. If this impoverished tutor song hypothesis were true,
we would expect to find that as tutor syllable diversity decreases,
pupil’ imitation similarity also decreases; conversely, we would
expect to see biases in the correlation between tutor syllable
diversity and pupil syllable diversity at extreme ranges of tutor
diversity. To test this hypothesis quantitatively, we sought a
measure of syllable acoustic and syntax diversity. We selected a
random group of 80 adult tutor—pupil pairs, and segmented their
songs into syllable units using an amplitude threshold?’. Song
syllables were automatically clustered into types based on their
acoustic features (Fig. 3a, b)?7. We then calculated the relative
frequency (abundance) of each syllable-type and used Shannon
information entropy?’ to measure syllable acoustic diversity
produced by each bird. Specifically, for each bird’s song, we cal-
culated the proportion p; of syllables produced for each syllable-
type i, and computed entropy as —>_p,(log,(p;)). The measure
weighs each vocal element (syllable) by its abundance, and pre-
sents the entropy (diversity) of the distribution in units of bits.
We used the same Shannon information measure to also evaluate
syllable transition diversity (song-syntax entropy2”). The Shan-
non information entropy has limited bearing on capturing
combinatorial complexity>?, but it is a better estimate of diversity
compared to just counting syllable types because it considers the
frequencies (abundances) of each type. The more syllable types
produced, and the more even their abundances are, the higher the
entropy.

The distribution of syllable-type diversity of songs in the
population was asymmetric, with most songs in the range of
2.5-3 bits and a left tail of rare songs with low syllable diversity
(Fig. 3c). Surprisingly, there was no statistically significant
correlation between tutor and pupil syllable diversity (R?=
0.079, NS). Looking separately at pupils who imitated above (and
below) average showed no correlations either (Fig. 3d). Further,
there was no correlation between tutor syllable diversity and
acoustic similarity between tutor and pupil songs (Fig. 3e). To
better estimate how tutor syllable diversity may affect the cultural
transmission, we calculated song acoustic similarity in reverse,
from pupil to tutor. We call this a measure of “influence” because

it tells us how much of the pupil’s song is influenced by the tutor.
However, influence in pupils was not significantly correlated with
tutor song (Fig. 3f). Near zero correlations were also observed for
song-syntax (bigram) transitions between pairs of syllable types
(Supplementary Fig. 1). In sum, our syllable-type diversity
measure failed to capture any aspect of song learning, nullifying
all our attempts to evaluate our impoverished tutor song
hypothesis.

Half of the pupils recombine syllables. Puzzled by the lack of
even a weak correlation between tutor and pupil syllable and
syntax diversity, we examined cases of most accurate imitation.
We found frequent inconsistencies, as is typical of zebra finches
in the boundaries of corresponding syllables in the songs of tutors
and their pupils, even in cases of accurate imitation. This was not
primarily due to measurement (segmentation) errors, but because
pupils often modified or recombined the units they imitated
(Fig. 3g). We assessed a lower bound estimate of similarity in the
syllable boundaries of tutor and pupil songs, restricting the
analysis to those syllables whose acoustic structure was clearly
and fully imitated (either as a single unit or in parts) by the pupil
(examples in Fig. 3g-k). With this strict criterion, analysis of
syllable imitations in 33 randomly selected tutor-pupil pairs
revealed modification of syllable boundaries in 47 cases (22%) of
the copied syllables. Overall, 54% (18/33) of the pupils showed at
least one case of altering syllables units. Interestingly, all 47 cases
were of merging tutor syllables, rather than splitting. However,
splitting might be more difficult to detect, and if so, our analyses
would be an underestimate of the magnitude of syllable recom-
bination (see “Methods” section).

Vocal state measures capture balanced imitation. Given the
extent of syllable recombination, we next sought an alternative
quantitative measure that captures acoustic diversity at the sub-
syllabic level, which would be, by design, insensitive to syllable
recombination. For each of the 160 tutor—pupil pairs, we calcu-
lated continuously (in 10 ms FFT windows excluding silences, but
without segmentation) three acoustic feature vectors: pitch,
Wiener entropy (width of power spectrum), and frequency
modulation?8. Histograms of these features for all birdsongs in
our sample reveal several concentrations, and we used the con-
tours of these concentrations to partition the entire acoustic space
of the songs into 10 regions. To visualize these concentrations, we
present 2D slices of the feature space according to four peaks in
the distribution of pitch (Fig. 4a), which we labeled very low, low,
medium, and high. These four slices show distinct concentrations
of the 10 regions, that we will call vocal states (Fig. 4b). The two
concentrations in the highest and lowest pitch regions consisted
of down-modulated and up-modulated sounds, respectively
(vocal states 1 and 2, for lowest pitch, and 9 and 10 for highest
pitch). The two central pitch regions (low and medium) consisted
of similar types of vocal states, and two additional states (4 and 7)
centered at zero frequency modulation represent non-modulated
harmonic sounds. With the vocal states of the population cate-
gorized, we can consider each song as a long sequence of vocal
states, calculated in small (10 ms) time windows. We next ana-
lyzed the distribution of vocal states, by calculating the relative
abundances of sounds within each vocal state for each bird.
Similar to syllable acoustic and syntax diversity, for each bird’s
song, we calculated acoustic diversity over the 10 vocal states
using Shannon information entropy?’, —>_p,(log,(p;)), but here p,
is the proportion of sounds within each vocal state i. Hereafter we
will refer to this measure as “song diversity”. The highest
theoretically possible diversity, with a uniform distribution of the
10 vocal states, is 10 times —0.1(log,(0.1)) = 3.32 bits. Pooling
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a. Syllable recombination

b. Syllable clustering
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Fig. 3 Syllable-type diversity. a Example sonograms of a tutor-pupil song pair. Syllable types are color-coded by lines above them. Color lines above each
syllable indicate clusters computed separately for tutor and pupil in b. Note that syllable types are bird specific and color codes have no correspondence
between tutor and pupil, e.g., green, yellow, and black labeled syllable types in tutor song merged into a single type (yellow labeled) in pupil's song. b 2D
scatter plots of syllable acoustic features: duration versus mean pitch, mean frequency modulation (FM), or mean Wiener entropy (a measure of the width
of the power spectrum). The color of each marker indicates its computed syllable-type (type = cluster in feature space). Colors of clusters correspond to
syllable-type colors shown in a. ¢ Histogram of syllable-type diversity, pooled across all birds. d Regression analysis between tutor and pupil syllable-type
diversity, showing no significant correlation for pupils with high or low imitation similarity of their tutors. e, f Tutor syllable diversity is not correlated with
pupil song imitation similarity (e), or influence of tutors on pupils (f). g-k Examples of five tutor-pupil pairs with syllable recombination, namely merging in

pupil songs. Source data for this figure is in Supplementary Data File 1.

vocal states across all 228 birds recorded gives a diversity of 3.24
bits. This could mean that either song diversity tends to be high
within-subjects, or alternatively, that different song “morphs” are
evenly distributed. In the latter case, song diversity would be low
within-subjects and high when pooled together. Interestingly, the
median song diversity of individual birds in our population was
3.14 bits, fairly close to the pooled diversity and to the upper
theoretical limit, suggesting a trend to develop acoustically

“balanced” songs with respect to the 10 vocal states. The
distribution of song diversity was asymmetric with a longer left
tail (Fig. 4c) going down to about 2.3 bits, which would be
equivalent to a song containing only 5 vocal states. This
distribution of song diversity was stable during the lifetime of
the colony (Supplementary Fig. 2).

Unlike the syllable diversity measures, tutor and pupil song
diversity estimates based on vocal states were positively and
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Fig. 4 Vocal states and diversity in zebra finch songs. a Histogram of pitch, calculated in 10 ms windows and pooled for all songs3'. Shadings show
partitioning into four regions according to contours of the pitch distribution. b Two-dimensional heatmaps of frequency modulation and Wiener entropy for
each of the four-pitch regions. Red circles outline 10 clusters around which vocal states are defined. ¢ Histogram of song diversity for all male birds
recorded. d Song diversity in tutor songs versus pupil songs. Colors show R? separately for high and low similarity birds. e Tutor song diversities vs.
similarity with pupil songs (R2 = 0.08, t =1.9, Linear mixed-effects model NS). f Tutor song diversities vs. the influence of tutor song on pupils (R2 = 0.25,
Linear mixed-effects model t = 4.8, p = 4.2e—6). Vertically aligned markers are often birds from the same lineage. The trend remains significant after
removing the lowest diversity families (<2.7, p = 0.003). g Pupil song diversity vs. pupil song similarity to tutors. h Song diversity in families, comparing the
songs of tutors versus the mean diversity across all of their pupils' songs. The upper dotted line represents the upper theoretical bound where all vocal
states are equally abundant. The lower dotted line indicates the median. Blue lines show decreases, and red shows increases in pupil song diversity. Source
data for this figure is in Supplementary Data File 1.
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significantly correlated (Fig. 4d, R>=0.21, linear mixed-effect
model: n = 160 pairs, estimate = 0.40, ¢t = 5.59, df = 159, p = 9.5¢
—8). As expected, the correlation with tutor’ song diversity
explained only a fraction (21%) of the variance observed in pupil
song diversity. In cases of poor imitation (below median, red
markers), the correlation was driven primarily by tutors of low
song diversity. However, all belonged to a single branch in our
colony family tree. This may call into question the validity of the
correlation observed in lower quartiles of pupil imitation
similarity. However, in the top two quartiles of pupil imitation
similarity the coefficient of determination is similarly robust (R?
=0.23, Fig. 4d) with no apparent interaction with specific family
branches.

As with syllable-type diversity, pupil imitation similarity was
not significantly affected by tutor’ vocal state song diversity
(Fig. 4e, R2=0.08, NS). However, tutor song diversity was
strongly and significantly correlated with influence (Fig. 4f, R? =
0.25, linear mixed-effect model: n = 160 pairs, estimate = 50.5, ¢
=4.76, p=4.2e—6). Note that influence tells us how much of a
pupil’s song is influenced by his tutor. For example, an imitation
ABC->ABCDEF will give us 100% imitation similarity because all
of the tutor’s sounds are present in pupil’s song, but only 50%
influence because half of the pupil’s song is improvised. Indeed,
for tutors with high song diversity, the diversity of pupil’ songs is
centered on the diagonal (identity) line (Fig. 4d). However, for
tutors with low song diversity, pupil song diversity, in most cases,
above the diagonal (Fig. 4d). For example, out of 34 tutor songs
with diversity below 3, only 5 pupil songs are below the diagonal.
That is, pupils of tutors with low song diversity often imitated
them, but were less influenced by them: they often made
additions that increase song diversity. These “low influence”
songs did not resemble neighboring birds’ songs (Supplementary
Note 1). We, therefore, suspect that these additions are
improvisations, namely they are likely to be either modified
versions of tutor song elements, or innate syllable types.

Assuming a natural trend to develop high-diversity songs
either via imitation or improvisation, we wondered why songs of
low diversity were not rarer in our colony. We tested which
factors may sustain songs of low diversity across generations and
found that pupils that imitated poorly, regardless of tutor song
diversity, tended to have low-diversity songs (Fig. 4g, R? = 0.20,
t=5.7, p=6.2e—8). To directly test for interaction between
imitation accuracy and song diversity, we ran a linear mixed-
effect model to explain pupil song diversity with two fixed effects:
the diversity of the tutor song, and the acoustic similarity to the
tutor song (how much of it was copied). Results confirmed that
both factors contribute about equally to pupil song diversity
(imitation similarity: t = 5.0, p = 1.4e—6; tutor song diversity: t =
4.6, p="7.9e—6).

In sum, although our syllable diversity measure failed to
capture any relationship with song imitation, bypassing syllable
recombination by measuring song diversity based on vocal states
(without segmentation) revealed two effects: First, low diversity in
a tutor’s song was not associated with lower imitation similarity
in the pupil but with lower influence on the pupil, indicating a
tendency in pupils to increase song diversity, which we call
“balanced imitation”. Second, low diversity in a pupil’s song (but
not in tutor song) is associated with poor imitation similarity in
the pupil. Together these effects can explain the stable
polymorphism in song diversity across generations: on the one
hand, pupils tend to increase song diversity when tutored by a
low-diversity song model, but on the other hand, poor imitation
is associated with a decrease of song diversity in pupils’ songs.
Consistent with this interpretation, when we plotted song
diversity of each tutor against the mean song diversity of all of
his pupils, the mean song diversity in pupils of low-diversity

(below median) tutors was often higher than that of their tutors,
and vice versa (Fig. 4h). That is, despite the overall positive
correlation between tutor and pupil song diversity, we see
frequent reversals such that a large proportion (42%) of pupils
with low song diversity had tutors with high (above median) song
diversity, and vice versa.

Balanced imitation across multiple generations. We further
explored reversals across multiple generations, and analyzed 14
family branches, where we had song imitation data across two
generations of pupils. We found that in the families where the
first-generation pupils imitated poorly, there was often some
recovery in imitation accuracy in the second-generation, the
grand-pupils (Fig. 5a). For example, in the two lineages (HP10
and DG4) with the greatest number of first-generation pupils that
imitated poorly, all of the second-generation (grand) pupils
imitated the song of their tutor more accurately than the tutor’s
imitation of the grand tutor. Sonograms revealed that, in both
lineages, the grand-tutor songs were unbalanced: Tutor HP10 had
a very high-pitched song (Fig. 5b), whereas tutor DG4’s song
included numerous harmonic stacks (Fig. 5¢). In both cases, their
pupils developed songs that appear to be more acoustically
“balanced,” and ones that the grand-pupils imitated accurately
(Fig. 5b, ¢). In other cases, however, low similarity was simply due
to partial imitation, e.g., in the lineage (LB12), where the song
imitation became worse because a grand-pupil dropped a syllable
during imitation (Fig. 5d). These findings suggest that grand-
pupils of impoverished-song grand tutors imitate some elements
from the deficient songs of their tutors, but they also further
“balance” them, thus increasing the diversity of their songs.

Balanced imitation of vocal state abundances. Our measures up
to now summarize the distribution of vocal states within a song.
We next looked at each vocal state separately and measured how
frequencies (abundances) of vocal states are imitated. In prior
studies, we noted that vocal imitation in zebra finches is inversely
related to model abundance. That is, too much exposure to a
tutored song could inhibit learning?!. Here we test if this is the
case also for abundances of vocal states within a song.

We partitioned the vocal state data into quartiles based on the
overall acoustic similarity between tutor and pupil songs. For
each tutor-pupil pair, in each quartile, we then plotted the
relative abundances of all 10 corresponding vocal states in the
tutor’s song versus his pupil’s song (Fig. 6a-d). We found that
relative abundances of all 10 states were correlated, for each
quartile. As expected, tutor—pupil vocal state abundances were
more strongly associated when imitations were accurate; for
example, the residual coefficient of determination was much
higher in the top similarity quartile, explaining about 35% of the
variance in cases of highest song similarity (Fig. 6a), and only
about 9% of the variance in the bottom quartile (Fig. 6d). We
noted that in all quartiles, the slope of the correlation was less
than one (Fig. 6a-d), meaning that when tutor’s vocal state was
low in abundance, pupil’s vocal states tended to be higher (above
the diagonal) and vice versa.

We next tested for statistical significance of this bias across the
entire data set. Our null hypothesis is that when the abundance of
a vocal state in the tutor’s song is high, his pupil is not more likely
than chance to deviate from the model in a manner that
“balances” his song. In other words, if deviations (imitation
“errors”) are random, then the likelihood of deviations (errors) to
increase or decrease song diversity should be determined by the
overall distribution of errors in our sample. In a previous study?,
some of us presented evidence that imitation of isolated tutors is
biased: syllables with high abundance in abnormal isolate tutor
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song (>20%) were often less abundant is pupil’s songs. Using the
same 20% threshold we found that the distribution of tutor vs.
pupil vocal state abundances is asymmetric (Fig. 6e): when tutor’s
vocal state abundance is above 20%, about 14% of corresponding
pupil’s states are above the diagonal (hence 86% of the errors
increase song diversity). But looking in reverse, we found that
when a pupil’s vocal state is above 20%, a higher proportion of
corresponding tutor’s states (23%) are to the right of the diagonal.
To overcome dependencies between vocal states, we treated each
tutor—pupil pair as a statistic. We randomly shuffled the direction
tutor->pupil vs. pupil->tutor (without breaking the pairs) to
obtain a random distribution of biases. We found that the
observed bias to increase song diversity (namely in the direction
that decreases the abundance of vocal states that are already of

high abundance) is higher than expected by chance (bootstrap
direct p-value = 0.032).

We wondered if this bias is stronger in cases of poor imitation,
due to the inclusion of non-tutor syllables (via improvisation or
innate vocalization). To evaluate if this was the case, we divided
the tutors’ vocal states into 0.1 abundance bins, then calculated
the median abundance of pupil vocal states for each bin. For each
bin, we calculated the abundance ratio for that median. For
example, if at the window centered at 0.1 tutor abundance, the
median pupil vocal state abundance was 0.2, then the gain ratio
would be 2. A gain value of 1 (y axis in Fig. 6f) represents the
identical abundance of all 10 vocal states in pupil and tutor. A
gain value of 2 indicates a doubling of abundances in the pupil
(amplification), and a value of 0.5 halving (attenuation).
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Interestingly, the gain-loss curves

magnitude across all four quartile groups (Fig. 6f). In all cases,
a gain of 1 (where abundance tends to be identical across pupils
and their tutors), was at 11-12% abundance, which is fairly close
to the center of the distribution (=10%, since we have 10 vocal

have similar shapes and

states). These findings suggest that the regression we noted is not
an entirely random effect. For example, in Q1, where the mean
similarity is 93%, we see that when tutor state abundance is above
0.2, the corresponding pupil abundance is lower in 10 out of 11
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were imitated, but produced either less often, or with biased
features, by the pupil.

To visually compare vocal state abundances in tutor vs pupil
songs, we reduced the ten vocal states into four color codes, and
graphed them along with the sonograms of each bird (Fig. 6g-i).
In cases where the tutors’ songs included many high-pitched
vocalizations (vocal states 9 and 10), their pupils imitated, but
lowered the pitch, thereby decreasing the abundance of those
states (Fig. 6g, h). In another example, where the tutor’s song had
a high abundance of harmonic stacks (states 4 and 7), their pupil
imitated only a subset of these sounds (Fig. 6i). In turn, in the
following generation, the pupil’s pupil further differentiated his
song to include more balanced vocal states (Fig. 6i). Taken
together, song imitation appears to be highly sensitive to the
relative abundances of vocal states, suggesting a balancing
mechanism that prevents song diversity from becoming too
low, perhaps independently of imitation.

Finally, we asked whether fostered pupils imitate their tutor’s
song vocal states as accurately as biological pupils. Analysis at the
level of vocal states allowed us to compare how abundances of
vocal states are influenced by foster vs. biological fathers. For
reference, imitation of vocal state abundances between the 130
biological pupils and their fathers had a residual RZ=0.16
(Fig. 6j; t=5.9, p=13.9e—09). The 30 foster pupils relative to
their foster fathers had a similar R =0.19 (Fig. 6k; t =2.5, p=
0.01). This is supported by a near-zero correlation between
fostered pupils and their biological fathers (Fig. 61, residual R? =
0.01, t=0.46, NS). Therefore, the similarities we observed in
vocal state abundances between tutors and their pupils reflect
learning with no detectable genetic effect at this level of analysis.

How balanced imitation constrains distributions of song fea-
tures. We first tested if abundances of specific vocal states are
similar across low-diversity and high-diversity tutor songs. We
pooled together songs from tutors that had the lowest diversity
(bottom quartile) and calculated the diversity of their “pooled
song”. We found that the diversity increased from a mean of 2.99
bits to 3.17 bits, which is similar to the mean diversity in the top
quartile (mean = 3.16 bits) but lower than the pooled diversity of
the top quartile (=3.27 bits). This outcome indicates that the
distribution of vocal states pooled across low-diversity songs is
fairly broad, but not as broad as that across songs of high
diversity. The distribution of abundances of pooled vocal states
(Fig. 7a) explained this difference: As opposed to the nearly flat
distribution of vocal state abundances in the high-diversity songs,
low-diversity songs tend to have a higher proportion of states 9
and 10, which correspond to high pitch sounds. This is interesting
because, in this respect, the low-diversity songs are structurally
similar to isolate songs, which are often of higher pitch32. As
expected, comparing top and bottom quartiles of influence on the
pupil show a similar outcome (Fig. 7b). This outcome suggests
that mean song features of low and high influence songs should
differ. Further, the variance should also differ: High-diversity
songs by definition cannot be extreme in their mean feature
values. Low-diversity songs can, in principle, have average fea-
tures that are close to the population mean, but are more likely to
have extreme mean feature values. For example, a song con-
taining mostly high-pitched sounds is both low diversity and
extreme in its mean pitch (see for example tutor HP10 in Fig. 5b).

We asked whether we can predict imitation outcomes based on
the mean features of a tutor song. If songs of low diversity were
culturally transmitted less than high-diversity songs, then songs
with extreme mean features—which are typically of low diversity
—should be transmitted less. To evaluate this, we plotted the
mean pitch of tutor songs against the pitch of their pupil’s songs.

Indeed, the distribution of mean song pitch was tighter for the top
quartile of tutor-pupil song imitation (Fig. 7c). For example, all
tutor songs with a mean pitch above 2000 Hz were of low
influence (Fig. 7c, histogram red symbols); these extreme songs
were also of low diversity. A similar effect can be seen in Wiener
entropy (Fig. 7d) and frequency modulation (Fig. 7e): in both
cases the distributions were broader for low-diversity songs.
Further, for mean pitch, top influence (green line) is equal or
higher than low influence (red line) between 795 Hz and 1885Hz
(Fig. 7¢c). Bottom influence is higher between 1885 and 3000 Hz
(red line above green line, Fig. 7c).

We superimposed these empirically determined pitch intervals
(for top and bottom influence) on ranges of mean song pitches
obtained in a database of four zebra finch colonies including the
current one, and shaded the intervals values green (presumably
top influence) and red (presumably low influence; Fig. 7f). We
then did the same for frequency modulation (Fig. 7g), and Weiner
entropy (Fig. 7h). Across the colonies, the distribution of mean
song features was to a large extent confined within the range of
high influence in our colony. Therefore, the range of mean feature
values of highest imitation influences in our colony, but not of
lowest influences, seems consistent across zebra finch colonies.
This range, in turn, can be explained by balanced imitation as
high influences are associated with high tutor song diversity. In
sum, this outcome is consistent with the notion that over
generations, songs of high feature diversity are more influential,
and therefore shape the overall distribution of mean song features
in a similar manner across colonies.

Discussion
We analyzed song learning statistics in a large zebra finch colony.
We observed high variability in song imitation outcomes across
families. It did not stem from genetic variability, but rather was
explained by an environmental effect: the acoustic structure of the
tutor’s song. Tutors who produced songs of high acoustic diver-
sity had greater influence over the songs of their pupils. In order
to more thoroughly study this relationship, it was necessary to
develop a measure of song diversity at the sub-syllabic level,
where we detected 10 vocal states common across zebra finch
songs. We found that pupils copy the abundances of vocal states
in their songs from the songs of their tutors, but that they do so in
a balanced manner, such that highly abundant vocal states in a
tutor’s song become less abundant in their pupil’s song and vice
versa. We discovered that extreme mean song features, which are
associated with low song diversity, are also associated with poor
imitation. The converse is associated with good imitation. Similar
moderate mean song features were more highly present in three
independent colonies of zebra finches, suggesting a species-
specific mechanism that can be explained by an innate bias to
produce acoustically balanced songs. Our findings suggest that
this bias is highly sensitive to even mild fluctuations in vocal state
abundance in the tutor’s song and is independent of imitation
outcomes. We call the process “balanced imitation”. We suggest
that balanced imitation prevents vocal cultural learning from
converging too much into complete uniformity or diverging too
much into chaos?3. In such extreme cases, the communication
system might become deficient: high song uniformity could
reduce individual identity signal, whereas a chaotic song culture
might weaken group identity. Whether balanced imitation is
ecologically adaptive in zebra finches remains an open question.
Given that the mean song diversity of birdsongs in our colony
was close to the upper theoretical limit of diversity, one might
wonder why tutors with low-diversity songs are not rarer in our
colony. We observed that low-diversity songs are often corrected
toward high-diversity songs in the grand-pupils of low-diversity
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Fig. 7 Song diversity versus imitation. a \Vocal state abundances in pupils pooled over birds with lowest (bottom quartile) song diversity (dotted line) vs.
top quartile (solid line). b Same as a for the bottom (red) and top (green) quartiles of tutor song influence. c-e Mean tutor's song features versus pupil's
song features for pitch (¢), frequency modulation (d), and Wiener entropy (e) for the top influences (green dots, top quartile) and for bottom influences
(red dots, bottom quartile). Plotted at the bottom are histogram lines of tutor features for top and bottom quartiles. f-h Box plot distribution of mean song
features in four colonies for pitch (f), frequency modulation (g), and Wiener entropy (h). Each marker represents the mean value for one bird. Green
shaded areas correspond to top influence feature ranges in colony RU 2019 (this study), whereas red shaded areas correspond to bottom influence feature
ranges in colony RU 2019 (n =149 birds). In the box plots themselves, the red line is the median; Orange fill are the upper and lower quartiles; Blue fill is
the minima and maxima. About 20% of the RU 2019 colony are descendants from the RU 2002 colony (Rockefeller Nottebohm Lab; n = 42 birds). The
remainder of the 2019 colony originated from Duke University. Colony 3 is from the University of Southern California (Bottjer Lab; n = 48) and Colony 4 is
from Cornell University (Regan Lab; n=77). Source data for this figure is in Supplementary Data File 1.

song tutors. This correction via cross-generational dynamics may
sustain homeostasis of high song diversity. But it is not unlikely
that other social forces drive songs toward low diversity. This
study, as well as previous ones, reported strong variability in song
imitation success across birds. For example, we previously

reported social inhibition of song learning in clutches that contain
more than two male siblings®>. Such partial imitation of the
tutor’s song due to social inhibition may lead to impoverished
songs. The current study confirms that a proportion of pupils of
high-diversity tutors acquired very low-diversity songs, perhaps
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due to social inhibition of song imitation, or due to lower genetic
capacity for imitation. Finally, we note anecdotally that some of
these poor song learners were aggressive, dominant birds that
were among the best breeders in our colony, in terms of the
number of offspring sired. This is counterintuitive, given that
zebra finch females are less likely to ovulate in response to males
who imitated poorly33. Further studies should look into the fit-
ness consequences of such phenotypes.

The current study generalizes upon the previous studies
that documented the emergence of song culture from the impo-
verished song of isolated founders>!°. Songs of isolated zebra
finches often contain an abnormally high abundance of some
song elements. Pupils of isolate tutors normalized these high
abundances in their imitations, reducing them to the species
typical range. Our statistical analysis suggests that in those
studies?, song normalization across generations was driven, at
least in part, by the balanced imitation discovered here: song
syllables that were abnormally high in abundance in the isolate
tutors were copied at lower frequencies, and vice versa, syllable
types that were rare in the isolate song were copied at a higher
frequency. Interestingly, evidence suggests that this effect is not
driven by any overall abnormality of the songs. Instead, it occurs
when tutor songs are well within the wild-type species typical
range, at the micro level of balancing vocal state abundances.
Further, biases in the statistical learning of vocal state abundance
can explain variability in imitation outcome across families, and
allow us to distinguish between low song similarity due to
putative imitation failure, as opposed to “corrective” deviations,
leading to a cross-generational homeostasis of songs with high
acoustic diversity.

It would be interesting to test if balanced imitation parameters
are different across species. Variation in the intensity of the trend
to sustain high song diversity and that of the trend to imitate
songs accurately could lead to equilibriums that differ according
to species and possibly even the ecological conditions in which a
species lives. Perhaps species with songs that are similar across
individuals engage in weak balanced imitation and vice versa. For
example, to explain why the songs of the Timor zebra finch are
much more similar across individuals compared to the Australian
zebra finch?>, we speculate that perhaps a weaker balanced imi-
tation gain in the Timor zebra finches (compared to Australian
zebra finches) could potentially increase the odds of extinction of
rare song elements, driving the stronger convergence observed in
songs across individuals.

Regardless of possible prevalence across species, accounting for
balanced imitation in zebra finches might be necessary in order to
properly interpret vocal learning outcomes. This is particularly
important because mechanisms of vocal learning are studied
extensively in Estrildid finches, among which song learning out-
comes vary considerably across individuals. In part, this variability
is associated with factors like genetics and with tutoring
mismatches!3°. Our results indicate that, in addition, deviations
from tutor song through reorganization and transformation of
copied vocal sounds may be driven by an inclination to optimize
song diversity. This can be regarded as a discrete form of error
correction during song learning. That is, balanced imitation
involves correcting errors from states of minimal (and perhaps
also maximal®4) diversity. In the framework of error correction®’,
the developmental question is when and how the vocal learning
bird balances between error correction exclusively in reference to
tutor sound to error correction in reference to a state of its own
sound diversity. A better understanding of this balance and pos-
sible transition could reveal the mechanism through which a
species-specific level of cultural song diversity is determined?>.

Another observation that requires further study is the recom-
bination of syllable units. In the cases we observed, pupils

17,34,35

combined tutored syllables into new and more complex units, but
splitting appears to be rare. Splitting could be an artifact due to
limitations of our methods in detecting such recombinations; it
could also suggest a tendency to compress the tutored song. Such
a compression might be useful when several potential tutors are
available. Compressing the imitation from one song could leave
more room to imitate song elements from other tutors. Further,
some improvised syllable types tend to be acoustically simple and
are transformed across generations into complex types2. This line
of thinking suggests that perhaps we should consider not only the
overall acoustic diversity of a tutored song, but also the diversity
per unit time. Here too, variation across species can be potentially
explained: as opposed to zebra finches, in Bengalese finches,
syllable level analysis shows correlation in song and transition
diversity across tutors and pupils®®. We do not know if syllable
recombination is common in Bengalese finches, but they usually
produce less complex syllable types compared to zebra finches,
which could suggest that Bengalese finches are less inclined to
compress their songs.

Previous studies®>3° suggest that high song diversity in a col-
ony of zebra finches could be adaptive. In the zebra finch female,
brain dopamine response to songs is tuned to the song of her
mate®. To the extent that balanced imitation can also sustain the
acoustic diversity of songs within a colony, it might also enable
the females to respond selectively to their mates. Balanced imi-
tation is also of interest in a broader context of vocal and non-
vocal cultures in humans. In general, cultures may vary in their
stability and in their richness (polymorphism), and balanced
imitation could potentially explain how different morphs of
cultures come about. At the population level, balanced imitation
can be thought of as an example of a balancing (negative fre-
quency-dependent) selection of morphs, which can promote
polymorphism by preventing the extinction of rare morphs. At
the individual level, it can be thought of as a mechanism that
promotes diversity in the skills that are acquired. It would be
particularly interesting to test how imitation biases might interact
with the structure (topology) of communication networks, in
determining how cultural behavior spreads and is filtered over
space and time*0. Finally, other possible mechanisms could
potentially explain balanced imitation including perceptual
biases*! and habituation®?.

In conclusion, by recording and analyzing families of vocal
learning birds in a large colony, we have gained a deeper
understanding of mechanisms that constrain the learned vocal
repertoires of a species. This mechanism may regulate the level of
convergence or divergence in long time scales across generations,
while sustaining a certain level of acoustic diversity within a
population. While our study is far from exhaustive, publishing
our song imitation library at the Linguistic Data Consortium
catalog (https://www.ldc.upenn.edu) and in http://ofer.hunter.
cuny.edu/songs should allow others to further test the generality
of our findings using different approaches at different degrees of
granularity.

Methods

Animals. All experiments were approved by the Rockefeller University IACUC.
Each bird was raised by his parents in a flight cage until day ~90. Partitions kept
each family visually isolated from neighboring flight cages. Cages were distributed
across three rooms (~250-500 sq. ft each).

Audio recording. Birds were placed singly in sound attenuation chambers** and
their vocal activity was recorded continuously over one week, in cohorts includes 8
zebra finch males in 8 boxes (Box 1, Box 2,..., Box 8), recorded simultaneously over
a week, using Sound Analysis Pro?8. By definition, these are undirected songs. All
songs analyzed in this study are undirected songs. All song recording data were
generated at the Rockefeller University Field Center Colony between July 2018 and
Aug 2019.
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RU 2019 zebra finch song library. All song recording data were generated at the
Rockefeller University Field Center Colony. The library currently includes
recordings from 280 birds, including 160 tutor-pupil pairs. In addition to
recording undirected songs, most birds were also recorded singing female-directed
and male-directed songs.

Songs libraries from other zebra finch colonies. We used the zebra finch song
data set published at http://people.bu.edu/timothyg/song_website/index.html,
which includes recordings from individual zebra finches from different colonies.
We used data from three colonies: Nottebohm lab (RU 2002; The Rockefeller
University), Bottjer lab (Colony 3; University of Southern California), and Regan
lab (Colony 4: Cornell University). The songs were downloaded, and mean fea-
tures: pitch, frequency modulation, and Wiener entropy were extracted using
Sound Analysis Pro. One of the colonies in the database, RU 2002, is related to our
colony: In 2017 approximately 150 birds that were descendants of the RU 2002
Millbrook colony were mixed with approximately 300 birds brought from Duke
University. Recordings are also 15 years apart, past the lifetime of a zebra finch,
meaning that none of the RU 2002 birds are the same as the RU 2019 birds.

Data analysis and statistics. All data were analyzed using MATLAB and R,
including the Sound Analysis Tool package for MATLAB, which was used to
extract song features. We deposited our MATLAB code for computing song
diversity together with the entire song-library raw data at the Linguistic Data
Consortium (URL and access # pending).

Similarity measurement. For each tutor-pupil pair, we calculated similarity
measurements with Sound Analysis Pro 201128 using the default settings. Briefly:
the similarity estimate is based on four-song features: pitch, frequency modulation,
Wiener entropy, and spectral continuity. The similarity matrix is then computed
over 70 ms windows of these feature vectors, followed by detection of continuous
similarity sections. The overall similarity estimate is the proportion of a tutor song
motif that is included within similarity sections with p < 0.05. For each song, we
outlined a motif and calculated %similarity of tutor vs. pupil song (asymmetric
song similarity). We repeated this calculation five times and used the median %
similarity as our estimate for each tutor-pupil pair.

Analysis of syllable-type diversity. For each bird, we sampled song bouts con-
taining at least 1000 syllables per bird, which we then automatically segmented and
clustered using Sound Analysis Pro. After a semi-automatic segmentation to syl-
lables based on amplitude threshed, we calculated mean syllable features: mean
pitch, mean frequency modulation, mean Wiener entropy, and mean Spectral
continuity, to summarize the acoustic structure of each syllable. We then per-
formed a hierarchical nearest neighbor clustering to identify syllable types on the
entire sample. This method identified clusters (syllable types) and automatically
counts how many syllables appear in each cluster. The relative frequencies were
calculated from these counts.

Evaluation of syllable-type recombination. Our measure of syllable-type diver-
sity is based on classifying syllable types within each bird; it does not evaluate or
compare syllable types across birds. For evaluating syllable-type recombination,
however, we need to determine which syllables were copied, either as a unit or in
parts. Using similarity measurement with Sound Analysis Pro, for each syllable in
tutor song we automatically detected sections of similarity in pupil’s song. Evalu-
ating these sections allowed us to determine if the boundaries are consistent across
tutor’s and pupil’s songs. In particular, we could detect splitting (a similarity
section with one interval in tutor song and two disjoint intervals in pupil’s song) or
merging (a similarity section with one interval in pupil song and two disjoint
intervals in tutor’s song). Note, however, that we only included cases where imi-
tation was subjectively apparent, which is easier to determine in cases of merging
compared to splitting. Therefore, our lower bound estimates could be biased
toward the detection of merging.

Classification of vocal states. For each bird, we analyzed singing bouts of 6-8 s
each. We used the Sound Analysis for Matlab tool box (http://soundanalysispro.
com/matlab-sat) to calculate song features using the default settings of FFT window
size = 10 ms in steps of 1 ms. We set a 50 dB threshold (uncalibrated, baseline = 70
dB), below which data were regarded as silences and excluded from further ana-
lysis. For each 1 ms window, we calculated vocal states as follows: We first detected
the pitch category (see boundaries in Fig. 4a). We then identified clusters in each
slice according to the boundaries of the heatmaps outlined in Fig. 4b. We chose to
use this simple method in order to cover the entire vocal space of the bird. That is,
we classified each FFT window as belonging to one of the ten states, without
residuals.

Calculation of song diversity. For each bird’s song (including bouts of 6-8s), we
calculated vocal states as shown above. We then calculated the proportion of vocal
sounds within each vocal state and calculated information entropy?’ over the 10
clusters, —>_p;(log,(p;)), where p = the proportion of sounds within each vocal state i.

Fixed effects statistical models. For statistically independent measures such as
syllable diversity, vocal state (song diversity), similarity and influence, we used the
Matlab fixedEffects(Ime) function. Where Ime is a statistical model such as
“PupilSongDiversity ~ TutorSongDiversity”.

Linear mixed-effect statistical models for vocal state abundance. We used the
Matlab linear mixed-effects model fitlme function for all statistical analysis unless
stated otherwise. All statistical models and results are presented in the supple-
mentary information. For statistically independent measures (one measure per
bird) such as syllable diversity, vocal state (song diversity), similarity and influence,
we still have dependency due to tutors raising several pupils and we, therefore,
consider tutor and pupil identities as random effects. Because abundances of vocal
states are not independent even at the bird level, with some vocal states being more
frequent than others in the population, we first need to account for this global
trend. We refer to R2s as “residual” to indicate the removal of this global trend.
Prior to statistical analysis, we removed the overall trends in vocal state abun-
dances, so as to make each vocal state equally abundant in the population, which
guarantees a zero correlation when tutor and pupil identities are shuffled (which
we confirmed by shuffling). Because of repeated observations (10 states per
tutor—pupil pair), we accounted for random effects of both tutor and pupil iden-
tities using mixed-effect models. See Supplementary Note 2 for a complete
description of the models.

Statistical treatment of multiple tests. p-values that we call “statistically sig-
nificant” are all <0.01 after Bonferroni adjustment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All raw data have been deposited in a Github: https://github.com/oferon/Balanced-
Imitation. Further, our entire zebra finch song library (.wav files), family trees of all
individuals, example sonograms, bird IDs, and more have been deposited in a public
Dropbox folder: https://www.dropbox.com/sh/vvrz302inblynxk/
AAAT60a]_pkrML8ON_kQa-_xa?dl=0. We also created a web portal to the data: http://
ofer.hunter.cuny.edu/songs/the-rockefeller-university-field-research-center-song-
library. Source data are provided with this paper.

Code availability
We deposited all Matlab scripts in a Github: https://github.com/oferon/Balanced-
Imitation.
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