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Abstract: In this study, we proposed a synaptic transistor using an emerging biocompatible organic
material, namely, the casein electrolyte as an electric-double-layer (EDL) in the transistor. The
frequency-dependent capacitance of the indium-tin-oxide (ITO)/casein electrolyte-based EDL/ITO
capacitor was assessed. As a result, the casein electrolyte was identified to exhibit a large capacitance
of ~1.74 µF/cm2 at 10 Hz and operate as an EDL owing to the internal proton charge. Subsequently,
the implementation of synaptic functions was verified by fabricating the synaptic transistors using
biocompatible casein electrolyte-based EDL. The excitatory post-synaptic current, paired-pulse
facilitation, and signal-filtering functions of the transistors demonstrated significant synaptic behavior.
Additionally, the spike-timing-dependent plasticity was emulated by applying the pre- and post-
synaptic spikes to the gate and drain, respectively. Furthermore, the potentiation and depression
characteristics modulating the synaptic weight operated stably in repeated cycle tests. Finally,
the learning simulation was conducted using the Modified National Institute of Standards and
Technology datasets to verify the neuromorphic computing capability; the results indicate a high
recognition rate of 90%. Therefore, our results indicate that the casein electrolyte is a promising new
EDL material that implements artificial synapses for building environmental and biologically friendly
neuromorphic systems.

Keywords: synaptic transistor; casein; biocompatible; organic material; electric-double-layer; artificial
synapses; neuromorphic computing

1. Introduction

Recently, with increasing unstructured data including videos and images, the im-
portance of information processing ability has risen in big data and artificial intelligence
fields [1–3]. However, traditional computing systems, such as the von Neumann archi-
tecture, faced high power consumption and low-speed processing challenges due to a
bottleneck caused by the physical separation of memory and computation parts when
processing large amounts of data [4,5]. Accordingly, a computing system that is more
efficient than conventional computing systems in terms of power and processing speed
is urgently required. The human brain can simultaneously perform complex computa-
tions and memories at low power (~20 W) with a highly parallel and fault-tolerant neural
network involving approximately 1011 and 1015 neurons and synapses, respectively [6,7].
Therefore, studies on neuromorphic systems, which are brain-like computing structures,
are receiving a lot of attention [8,9]. Biological synapses, nanogaps connecting two neurons
in the brain nervous system, are a core part of signal transmission and functional connec-
tions. Synaptic plasticity is a major biological function that contributes to multidimensional
information learning, memory, and processing in the brain, and it is caused by the changes
in synaptic weight, which can be modulated by the flow of ions through the synapse [10,11].
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Therefore, electronic devices that can mimic biological synaptic behavior are important for
implementing neuromorphic systems [12,13]. In the past few years, various types of two-
and three-terminal artificial synaptic devices have been proposed to implement synaptic
functions with low energy consumption, including memristors, phase change memory,
ferroelectric devices, and field-effect transistors (FETs) [14–17]. Particularly, the electrolyte
gate transistor successfully emulates synaptic functions by the electric-double-layer (EDL)
formed at the gate electrode/electrolyte and electrolyte/channel layer interfaces; this is
also referred to as an EDL transistor. The internal migration of ions within electrolytes in
response to the bias on gate electrodes contributes to the modulation of channel conduc-
tance, which is considered the synaptic weight. The EDL transistor has a large capacitance
(>1 µF/cm2) due to the EDL effect based on mobile ions, resulting in low power consump-
tion, as a large amount of charge is induced in a channel with a low driving voltage [18,19].
Meanwhile, the increased interest in eco-friendly and bio-non-hazardous electronic devices
has resulted in the active research of bio-materials these days. Consequently, several EDL
synaptic transistors developed using various natural organic materials, such as chitosan,
cellulose, starch, and albumin, as electrolytes have been reported [20–23]. These organic ma-
terials are suitable for biocompatible synaptic transistor applications as they are abundant,
biodegradable, non-toxic, and capable of low-cost solution processing [24].

Previously, we demonstrated the neuromorphic behavior of synaptic transistors using
commercial bovine milk as EDL [25]. In this study, we propose an EDL synaptic transistor
using casein electrolyte as a biocompatible organic material with a high potential for
artificial synapses. Casein, a protein component that accounts for a large portion of milk, is
a naturally sufficient biocompatible organic material. It is widely used in diverse fields,
such as food, industry, and medical care [26–29]. We verified the EDL effect by protons in
casein electrolytes, which play an important role in the synaptic operation, by evaluating
frequency-dependent capacitance. Subsequently, the synaptic transistors were fabricated
using an indium-tin-oxide (ITO) bottom gate, casein electrolyte-based EDL gate insulator,
and indium-gallium-zinc oxide (IGZO) channels as the pre-synapse, neurotransmitter, and
post-synapse, respectively. The transfer and output characteristics of the fabricated synaptic
transistor were evaluated. Additionally, the migration of mobile protons inside the casein
electrolyte was confirmed through the change in hysteresis according to the gate voltage
range. Furthermore, major properties related to the synaptic plasticity, such as single-
spike excitatory post-synapse current (EPSC), paired-pulse facilitation (PPF), frequency-
dependent EPSC, potentiation/depression, and spike-timing-dependent plasticity (STDP),
were successfully demonstrated. Finally, a handwritten Modified National Institute of
Standards and Technology (MNIST) pattern recognition was simulated based on a three-
layer artificial neural network (ANN) to confirm the potential application of the proposed
transistor in neuromorphic systems.

2. Materials and Methods
2.1. Materials

Corning 7509 glass substrate (Corning Inc., Corning, NY, USA), casein powder derived
from bovine milk (technical grade, Sigma-Aldrich, Seoul, Korea), an acetic acid solution
(purity > 99%, Sigma-Aldrich), IGZO sputter target (In2O3:Ga2O3:ZnO = 4:2:4.1 mol%,
THIFINE Co., Ltd., Incheon, Korea), and ITO sputter target (In2O3:SnO2 = 9:1 mol%,
THIFINE Co., Ltd., Korea) were the materials used in this study.

2.2. Preparation of Casein Solution

A biocompatible casein solution was prepared by dissolving a mixture of casein
powder and acetic acid solution. Herein, 3 wt% casein powder derived from bovine
milk (technical grade, Sigma-Aldrich) was added to a 3 wt% acetic acid solution with
purity > 99% (Sigma-Aldrich) and diluted with deionized water. The solution was then
constantly mixed and completely dissolved using a magnetic stirrer with 800 rpm for 6 h at
130 ◦C. Finally, the solution was filtered through a polytetrafluoroethylene syringe filter
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with a 5 µm pore size (Whatman International Ltd., Maidstone, UK) to eliminate impurities.
Figure 1a depicts the prepared casein solution.

Figure 1. (a) Schematic of casein solution preparation. (b) Fabrication details and (c) schematics of
casein electrolyte-based electric-double-layer (EDL) synaptic transistors on glass substrates.

2.3. Fabrication of Casein Electrolyte-Based EDL Synaptic Transistors

Figure 1b illustrates the fabrication of the casein electrolyte-based EDL synaptic tran-
sistors. After cleaning the surfaces of the transparent Corning 7509 glass substrates with
dimensions of 1 × 1 cm2 as a starting material, a bottom gate electrode was formed by
depositing a 300 nm-thick ITO film using radio frequency (RF) magnetron sputtering. The
ITO sputtering process was performed at a working pressure of 3 mTorr, an RF power of
100 W, and an Ar flow rate of 20 sccm. The casein solution, which plays a key role as EDL in
synaptic transistors, was then spin-coated at 3000 rpm for 30 s and dried in air conditioning
at room temperature (25 ◦C) for 24 h. Subsequently, a 50 nm-thick IGZO channel layer
was deposited using a shadow mask via RF magnetron sputtering. The working pressure,
RF power, and an Ar flow rate of the IGZO sputtering process were 6 mTorr, 100 W, and
30 sccm, respectively. Finally, a 150 nm-thick ITO film was deposited for source/drain (S/D)
electrodes using the shadow mask via RF magnetron sputtering. In fabricated synaptic
transistors, the channel and S/D width (W) × length (L) were 1000 µm × 80 µm and
1000 µm × 200 µm, respectively. Figure 1c shows the schematic of the fabricated casein
electrolyte-based EDL synaptic transistor.

2.4. Characterizations

The frequency-dependent capacitance of the ITO/casein electrolyte-based EDL/ITO
capacitors was characterized using an Agilent 4284A Precision LCR meter (Agilent Tech-
nologies, Santa Clara, CA, USA). The electrical characteristic and synaptic functions of the
fabricated casein electrolyte-based EDL transistors were analyzed using an Agilent 4156B
Precision Semiconductor Parameter Analyzer (Agilent Technologies). To verify synaptic
functions, electrical pre- and post-synaptic spikes were applied using an Agilent 8110A
Pulse Generator (Agilent Technologies). All electrical evaluations were performed on a
probe station in a dark box to prevent the effect of external light and electrical noise.
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3. Results
3.1. Verification of Casein Electrolyte Properties for EDL

The various properties of casein electrolyte must be verified before applying it to
synaptic transistors. Fourier transform infrared spectroscopy (FT-IR) was performed to
identify the composition of the casein electrolyte membrane that was sufficiently dried
in an air environment. Figure 2a indicates the FT-IR spectrum of the casein electrolyte
film in the range of 4000 to 900 cm−1, wherein the broad peaks at approximately 3387 and
2924 cm−1 are caused by the O-H and C-H stretching, respectively. The region between
1700 and 1600 cm−1 is associated with the amide I region, and the peak near 1622 cm−1 is
attributed to the C=O stretching. Additionally, the area from 1600 to 1500 cm−1 is related
to the amide II region, and the corresponding peak near 1524 cm−1 is attributed to the N-H
bending and C-N stretching. Moreover, the peak at around 1106 cm−1 is due to the C-O
stretching [30–34]. In general, the peaks associated with the amide and -OH group are
primarily observed in the FT-IR spectrum of the casein electrolyte film. Amide groups are
a major component of proteins and are detected as casein peaks that are included in the
preparation of electrolytes. Casein accounts for approximately 80% of milk protein and
is reported to be rich in mobile protons [25]. Furthermore, the presence of -OH groups
contributes to the facilitation of proton conduction [22,23]. Therefore, the mobile protons
can cause ion conduction in the casein electrolyte, resulting in the formation of EDLs at the
casein electrolyte interface.

Figure 2. (a) Fourier transform infrared spectroscopy (FT-IR) spectrum of the casein electrolyte
film. (b) Capacitance-frequency (C-f ) curve of the metal-insulator-metal (MIM) structured capacitors
(indium-tin-oxide (ITO)/casein electrolyte-based EDL/ITO).

The EDL with a large capacitance exhibits a strong coupling effect of the gate to the
channel. It aids in constructing energy-efficient artificial synapses by adjusting the ions
and conductivities even at small voltages [35,36]. Therefore, to evaluate the EDL effect of
the casein electrolyte, we measured the frequency-dependent capacitance characteristics
of casein electrolytic capacitors with the metal-insulator-metal (ITO/casein electrolyte-
based EDL/ITO) configuration. Figure 2b depicts the capacitance measured over a wide
frequency range of 10 Hz to 1 MHz. The capacitance increased as the frequency decreased
from 1 MHz, resulting in a large capacitance of ~1.74 µF/cm2 at 10 Hz. This change in
capacitance is related to the frequency-dependent response of internal mobile protons. At
high frequencies, the insufficient response time for protons to reach the interface results in
low capacitance. Conversely, the sufficient response time at low frequencies facilitates the
accumulation of protons at both interfaces. Consequently, an EDL that can be considered a
nanometer-thick capacitor is formed, generating a high parallel plate capacitance [18,37].
Therefore, the frequency-dependent capacitance characteristics verify the EDL effect of
casein electrolyte and suggest the possibility of application to EDL-based synaptic devices.
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3.2. Electrical Characteristics of Casein Electrolyte-Based EDL Synaptic Transistors

Figure 3a shows the double-sweep transfer curves (ID–VG) of the fabricated casein
EDL synaptic transistors, where the maximum gate voltage (VG) was increased from 0 to
5 V in steps of 0.5 V at a constant drain voltage (VD) of 1 V. The transfer curve exhibits
counter-clockwise hysteresis as the VG switches to the backward sweep (2) after the forward
sweep (1). Additionally, the larger the maximum VG, the larger the hysteresis window.
This hysteresis characteristic is attributed to the slow polarization caused by the migration
of mobile protons in the casein electrolyte-based EDL. The larger the maximum VG in the
forward sweep, the higher the number of mobile protons that accumulate at the interface
of the IGZO channel/casein electrolyte-based EDL, which in turn induces more charge
carriers in the channel layer. Subsequently, the protons gradually diffuse back in the
opposite direction in the backward sweep, increasing the counter-clockwise hysteresis
window. Figure 3b depicts the hysteresis window and threshold voltage (Vth) extracted
from the double-sweep transfer curve corresponding to the maximum VG. As a result
of increasing the maximum VG from 0 to 5 V, Vth remained nearly constant at −0.95 V.
Meanwhile, the hysteresis window increased from 0.64 to 1.76 V with a slope of 0.22 v/v
and linearity (R2) of 99.31. Figure 3c shows the output curve (ID–VD) measured in steps of
0.4 V as a function of VG–Vth from 0 to 4 V. The drain current (ID) increases linearly with
the increase in VD; ID gradually saturates, exhibiting typical pinch-off characteristics.

Figure 3. (a) Double-sweep transfer curves versus maximum gate voltage (0 to 5 V in steps of 0.5 V) at a
constant VD = 1 V. (b) Hysteresis window and threshold voltage with each double-sweep transfer curve.
(c) Output curves as a function of gate voltage–threshold voltage (VG–Vth = 0−4 V in 0.4 V steps).

3.3. Synaptic Properties of Casein Electrolyte-Based EDL Synaptic Transistors

Figure 4a is a schematic illustration of a biological synapse in the brain. Synapses
are nano clefts between pre- and post-synaptic neurons that are crucial in signal transduc-
tion [38]. The pre-synaptic neuron input is transmitted to post-synaptic neurons through
the diffusion of intrasynaptic neurotransmitters, generating transient currents, EPSCs.
EPSC is the basic representation of synaptic weight, which can be modulated by adjusting
the ion flux [39]. To implement synaptic transistors, it is essential to imitate the mecha-
nisms and structures of biological synapses. The fabricated casein electrolyte-based EDL
synaptic transistor considered the ITO bottom gate, IGZO channel, and mobile protons in
the casein-based EDL as the pre-synapse, post-synapse, and neurotransmitter, respectively.
Moreover, the channel current generated by the electrical stimulation of the pre-synapse
gate is regarded as EPSC, and the S/D ITO electrode is used to read the EPSC. Figure 4b
shows the single-spike EPSC characteristic curves with a pre-synaptic spike amplitude
of 1 V for various durations from 10 to 1000 ms with a constant VD = 1 V. The longer the
pre-synaptic spike duration, the higher the maximum EPSC value at the end of the spike
stimulus, and the longer the EPSC retention time after the spike stimulus. This is because
the channel conductivity and concentration gradient increase as more mobile protons of the
casein electrolyte migrate to the casein electrolyte/channel interface during longer spike
durations. These results indicate that the modulation of synaptic plasticity can be imple-
mented by changes in the channel conductance of the proposed casein electrolyte-based
EDL synaptic transistors.
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Figure 4. (a) Schematic of a biological synapse. (b) Excitatory post-synaptic current (EPSC) generated
by a single pre-synaptic spike fixed amplitude (1 V) over various durations (10 to 1000 ms). (c) Paired
pulse facilitated EPSC by a paired pre-synaptic spike (1 V, 100 ms) at ∆tinterval = 50 ms. (d) Paired
pulse facilitation (PPF) index (A2/A1) plotted against various spike time intervals (∆tinterval) from 50
to 1500 ms.

In the nervous system, PPF represents short-term synaptic plasticity and is important
for decoding biological temporal information, including auditory or visual data [40]. PPF is
a function of the synaptic spike time interval (∆tinterval), where the post-synaptic potential
or current induced by the second pre-synaptic spike is amplified when the second spike
closely follows the first spike [20]. Figure 4c depicts the EPSCs triggered by two identical
pre-synaptic spikes with an amplitude of 1 V and a duration of 100 ms applied at a
spike time interval of 50 ms; here, the second EPSC was increased when compared to the
first. When the spike time interval is shorter than the charge carrier relaxation time, the
incompletely relaxed protons induced by the first spike contribute to the protons induced
by the second spike, increasing the channel current [41]. The PPF index can be calculated
as the ratio of the first EPSC (A1) and second EPSC (A2), as shown in Figure 4d. The PPF
index was given a high value of ~144.98% for short spike time intervals of 50 ms; however,
the value decreased to ~104.02% for long spike time intervals of 1500 ms. The obtained PPF
index was fitted using the following double exponential decay relationship indicated [42]:

PPF index = C1 exp(−∆tinterval/τ1) + C2 exp(−∆tinverval/τ2) + 1 (1)

where C1 and C2 denote the initial facilitation magnitudes, and τ1 and τ2 indicate the charac-
teristic relaxation times. In our transistor, the values of τ1 and τ2 were 70.08 and 941.51 ms,
respectively, which are almost identical to those of typical biological synapses [41,42].

Furthermore, short-term synaptic plasticity may enable the function of a dynamic
filter for information transmission depending on the signal frequency. Short-term synaptic
depression and facilitation contribute to low- and high-pass temporal filtering functions,
respectively [36,43]. Figure 5a shows the EPSC responses to ten sequential pre-synaptic
spikes (1 V amplitude, 100 ms duration) with different frequencies from 1 to 10 Hz. At
a frequency of 1 Hz, the EPSC value triggered by each spike remained almost constant
at ~17 nA, similar to that triggered by the first spike. Conversely, we observed that the
maximum EPSC value increased with the increase in frequency. Figure 5b depicts the
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pre-synaptic spike-frequency-dependent EPSC gain calculated as the ratio of the first EPSC
(A1) to the tenth EPSC (A10). When the frequency increased from 1 to 10 Hz, the EPSC
gain increased from 1 to 1.83, indicating the short-term synaptic facilitation. Therefore, the
proposed synaptic transistor successfully mimics the high-pass time filter function.

Figure 5. (a) EPSC responses generated by sequential pre-synaptic spikes (1 V, 100 ms) with various
frequencies from 1 to 10 Hz. (b) Pre-synaptic spike-frequency-dependent EPSC gains (A10/A1). Inset
denotes the EPSC response to 4 Hz.

In contrast to short-term plasticity, long-term plasticity exhibits long-term changes in
synaptic weights and generates a memory storage model. The synaptic weight is strength-
ened by rapid and repetitive stimulation. The long-lasting increase in synaptic weight is
referred to as the long-term potentiation (LTP), whereas the weakening of the synaptic
weight over a long period is referred to as long-term depression (LTD) [44,45]. For our
device, both LTP and LTD relative spike times were characterized by STDP. STDP is an
improvement of Hebbian learning rules considering the temporal sequence of activities be-
tween pre- and post-synaptic neurons, which regulates the strength of connections between
neurons via temporally correlated neural learning. Moreover, STDP is considered a major
learning and memory mechanism in the brain [46–48]. Figure 6a illustrates the schematics
of pre- and post-synaptic spikes with relative timing differences (∆t = tpost − tpre) applied
to STDP measurements. A pre-synaptic spike (Vpre) and post-synaptic spike (Vpost) of
4 V were applied to the gate and drain, respectively, for 200 ms, and |∆t| was set from
20 to 200 ms. The synaptic weight change (∆W) can be obtained using Equation (2) [48],
as follows:

∆W =
Ipost − Ipre

Ipre
× 100 % (2)

where Ipost and Ipre denote the values of drain current measured using a pre-read pulse
(Vpre-read) and post-read pulse (Vpost-read), respectively, at 1 V for 400 ms on the drain
(Figure 6a). Figure 6b shows the calculated ∆W, which is represented by dots. The result
exhibits asymmetric Hebbian learning STDP characteristics, which is one of the biological
STDP functions [49]. When |∆t| decreased, synaptic weights were strengthened during
the post-synaptic spike process after the pre-synaptic spike (∆t > 0), resulting in LTP. By
contrast, the synaptic weight was weakened during the pre-synaptic spike process after the
post-synaptic spike (∆t < 0), resulting in LTD. The calculated ∆W is well-fitted by the STDP
learning function, as indicated by the solid lines in Figure 6b. The STDP learning function
can be defined as [47]:

∆W =

{
A+e−∆t/τ+ , if ∆t > 0
−A−e∆t/τ− , if ∆t < 0

(3)

where τ± denotes the time constant that determines the range of ∆t over which synaptic
strengthening and weakening occur; A± indicates a scaling factor defining the maximum
amount of synaptic weight modification that occurs when ∆t approaches zero. The obtained
A+, A−, τ+, and τ− are estimated to be 60.06%, 32.07%, 36.92 ms, and 37.50 ms, respectively.
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These results demonstrate that biological STDP behavior can be emulated in the proposed
casein electrolyte-based EDL synaptic transistors.

Figure 6. (a) Schematic of the spike sequence based on the relative timing difference between post- and
pre-synaptic spikes (∆t). (b) Synaptic weight change (∆W) as a function of ∆t, which demonstrates
the biological asymmetric Hebbian learning spike-timing-dependent plasticity (STDP) function.

Figure 7a shows the characteristics of the continuous channel conductance modu-
lation for repetitive pre-synaptic stimuli; the insets illustrate a single cycle of potentia-
tion/depression and read pulses. A single cycle of pre-synaptic stimulation consists of
30 potentiation pulses of 5 V for 100 ms and 30 depression pulses of −2.5 V for 100 ms
applied to the bottom gate electrode. To measure the change in the channel conductance
owing to the pre-synaptic stimulation, a read pulse of 1 V was applied to the drain for
300 ms. The conductance increased and decreased for the potentiation and depression
pulses, modulating from 20.1 to 42.5 nS, and from 41.1 to 18 nS for the potentiation and
depression behaviors, respectively. Figure 7b depicts the endurance characteristics for po-
tentiation and depression over five cycles. It is found that the conductance modulation was
maintained nearly constant. Therefore, the LTP and LTD properties induced by repetitive
stimuli were validated in our synaptic transistors.

Figure 7. (a) Potentiation and depression characteristics of synaptic weights by applying pre-synapse
pulses. (b) Endurance properties for five cycles of potentiation and depression.

3.4. MNIST ANN Simulation

Finally, we designed a three-layer perceptron network model, which simulates the
learning of MNIST handwritten digits to confirm the ability of neuromorphic computing in
the proposed synaptic transistor. The developed ANN was composed of the input, hidden,
and output layers, as shown in Figure 8a. The 784 input neurons in the input layer and
10 output neurons in the output layer corresponded to 28 × 28 pixels of binarized MNIST
data and digits from 0 to 9, respectively. Each neuron was connected to another neuron in
the subsequent layer through the synapse, and the strengths of the connection, as the synap-
tic weights, were related to the normalized potentiation and depression conductance of the
casein electrolyte-based EDL synaptic transistor, as shown in Figure 8b. The normalized
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conductance was calculated by dividing each conductance by the maximum conductance
(G/Gmax). In the accuracy of the learning and recognition simulation, the properties of
potentiation and depression, such as the dynamic range (Gmax/Gmin), asymmetric ratio,
and linearity, are important. The dynamic range (Gmax/Gmin) value, which represents the
conductance modulation range, was 2.36. The symmetry of the increase in potentiation and
the decrease in depression is indicated in asymmetric ratio as [50]:

AR =
max

∣∣Gp(n)− Gd(n)
∣∣

Gp(30) − Gd(30)
f or n = 1 to 30 (4)

Figure 8. (a) Schematics of a three-layer fully connected artificial neural network (ANN) comprising
the input, hidden, and output layers for handwritten Modified National Institute of Standards
and Technology (MNIST) recognition. (b) Nonlinearity analysis on normalized potentiation and
depression (G/Gmax). (c) Simulated recognition rate with different numbers of hidden neurons. The
error bar indicates the standard deviation.

The closer the value to the ideal asymmetric ratio of zero, the higher the learning
accuracy. The calculated asymmetric ratio was 0.41 for the proposed synaptic transistor.
In addition, to confirm the linearity of conductance, the nonlinearity factor was extracted
using the following equation [51]:

G =


((

Gα
max − Gα

min
)
× w + Gα

min
)1/α, if α 6= 0

Gmin ×
(

Gmax
Gmin

)w
, if α = 0

(5)

where Gmax and Gmin donate the maximum and minimum conductance, respectively, and
w is an internal variable (from 0 to 1). α represents a nonlinearity factor that controls the
potentiation (αp) or depression (αd), and the ideal value of the nonlinearity factor is one.
The obtained nonlinearity factors for potentiation and depression were 2.81 and −1.57,
respectively, in the developed synaptic transistor. We designed the synaptic weight of the
ANN utilizing the normalized conductance and extracted factors. Then, the ANN was
trained using 60,000 MNIST training datasets, and the recognition test was conducted using
10,000 other test datasets. Figure 8c shows the recognition rate resulting in simulation when
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the number of neurons varies from 10 to 300 in the hidden layer. The recognition rate was
57% in 10 hidden neurons and increased as the neurons increased, achieving a sufficient
recognition rate of 90%.

4. Conclusions

In summary, we used a biocompatible casein electrolyte as an EDL material for the
fabrication of synaptic transistors. The EDL effect of casein electrolyte caused by abundant
mobile protons was verified based on the large capacitance of ~1.74 µF/cm2 at 10 Hz and
increase in capacitance with decreasing frequency through frequency-dependent capac-
itance characteristics. We evaluated the electrical characteristics and various functions
of the biological synapses of casein electrolyte-based EDL synaptic transistors. In the
double-sweep transfer curves, the counter-clockwise hysteresis window caused by the
proton migration increased with the increasing maximum gate voltage. Furthermore, essen-
tial biological synaptic behaviors, including short- and long-term synaptic plasticity and
high-pass time filtering capabilities, were successfully emulated through single-spike EPSC,
PPF, frequency-dependent EPSC, STDP, and potentiation and depression characteristics. In
addition, an excellent recognition rate of 90% was achieved for the handwritten MNIST
learning simulation. Therefore, casein electrolyte, a promising EDL material implement-
ing artificial synapses, is expected to provide potential applications for eco-friendly and
biocompatible neuro-morphic systems.
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