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Abstract: Elevated air pollution, along with rapid urbanization, have imposed higher health risks and
a higher disease burden on urban residents. To accurately assess the increasing exposure risk and the
spatial association between PM2.5 and lung cancer incidence, this study integrated PM2.5 data from
the National Air Quality Monitoring Platform and location-based service (LBS) data to introduce an
improved PM2.5 exposure model for high-precision spatial assessment of Guangzhou, China. In this
context, the spatial autocorrelation method was used to evaluate the spatial correlation between lung
cancer incidence and PM2.5. The results showed that people in densely populated areas suffered from
higher exposure risk, and the spatial distribution of population exposure risk was highly consistent
with the dynamic distribution of the population. In addition, areas with PM2.5 roughly overlapped
with areas with high lung cancer incidence, and the lung cancer incidence in different locations
was not randomly distributed, confirming that lung cancer incidence was significantly associated
with PM2.5 exposure. Therefore, dynamic population distribution has a great impact on the accurate
assessment of environmental exposure and health burden, and it is necessary to use LBS data to
improve the exposure assessment model. More mitigation controls are needed in highly populated
and highly polluted areas.

Keywords: ordinary kriging interpolation model; spatial correlation analysis; PM2.5 pollution exposure;
health risk

1. Introduction

Air pollution is a key factor threatening human health. The Global Burden of Disease
Study in 2020 shows that in 2019, the death toll of females and males attributable to air
pollution ranked third among all factors. It reached 2.92 million and 3.75 million, which
accounted for 11.3% and 12.2% of the total deaths, respectively [1]. China’s death rate due
to particulate pollution in 2019 was 125.61 per 100,000 people. Long-term exposure to high
concentrations of PM2.5 will increase the morbidity and mortality attributable to respiratory
and cardiovascular diseases and lung cancer. Although smoking is the largest contributor
to lung cancer, environmental pollutant exposures has also been identified as a key risk
factor for lung cancer [2,3]. Compared with other air pollutants such as sulfur dioxide
and nitrogen oxides, PM2.5 has been regarded as an important carcinogen. The WHO
has classified smog as a first-degree carcinogen, which is equivalent to determining that
there is sufficient evidence at present showing that air pollution and cancer (lung cancer)
have a direct causal relationship. The relative risks of lung cancer incidence and mortality
following exposure to PM2.5 were 1.08 (95% CI: 1.03, 1.12) and 1.11 (95% CI: 1.05, 1.18),
respectively [4–7]. A follow-up survey of 313,000 people in nine European countries shows
that chronic low-level exposure (limited to annual concentration < 10 µg/m3 or daily con-
centration <30 µg/m3 and (365 day moving average) <10 µg/m3) increases the risk of lung
cancer [8,9]. The nervous system and cognitive ability are also negatively affected [10–13].
These findings are particularly worrying in China. Currently, urban air pollution in China
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has become a serious problem. As a representative megacity, Guangzhou’s cancer incidence
in 2015 (299.10/100,000) was much higher than the world average (198.40/100,000), and
the number one lung cancer incidence in the city was lung cancer. Closely connected with
air pollutants. In 2015, the annual average concentration of PM2.5 exceeded 40 µg/m3 [14],
approximately four times higher than the WHO recommended air quality standard. There-
fore, an accurate assessment of the current PM2.5 exposure of Guangzhou residents is the
key to formulating corresponding countermeasures.

Accurate estimation of PM2.5 concentrations is a prerequisite for PM2.5 exposure as-
sessment and epidemiological correlation analysis. Routine monitoring of PM2.5 started
in China in 2013. This helps residents preliminarily understand the real-time air pollu-
tion quality level. However, it cannot effectively estimate the huge spatial variability of
pollutant concentrations. Air pollution modeling can be an effective approach with two
commonly used methods for capturing ambient air pollution gradients being spatial inter-
polation and land-use regression (LUR), which are widely used to predict the relationship
between PM2.5 exposure and health effects. Spatial interpolation uses monitoring data
from the limited number of stations to predict large-scale spatial pollutant concentration
changes. Compared with spatial interpolation, the LUR model can integrate potential
geographic predictive variables into the development of multiple linear regression models
in geographic information systems (GIS), but land-use regression has limited ability to
capture temporal changes. The commonly used variables include land-use type, population
size, traffic conditions, meteorological conditions, and pollution source locations [15–18].
POI (point of interest) data from recent studies can also be used as predictors [19,20].

In addition, there is a mismatch between the spatial distribution of PM2.5 concentration
and the population density. Prediction of reliable exposure levels is needed to take the
population distribution into consideration. The current demographic data based on the
census provide reliable population distribution information that has been verified by multi-
ple studies [20–22]. These data are commonly used to calculate the population-weighted
exposure level of the age, education level, and income level subgroups [23–26], which
makes it possible to assess and visualize the risk of residential exposure. To more accurately
understand the exposure situation during population movement, researchers also collect
LBS data of population movement information to verify the corresponding results.

Currently, the study of the impact of the PM2.5 concentration on disease and health
focuses on the calculation of the population-weighted concentration for subgroups of dif-
ferent ages and education levels. The population distribution of different subgroups, the
dose-response relationship of human health, and the PM2.5 concentrations were combined
and then toxicologically analyzed to obtain the actual exposure risk. Another focus limits
the analysis to cohort studies. By analyzing the temporal statistical relationship between
historical PM2.5 monitoring data and the incidence of cardiopulmonary disease, the re-
lationship between the two can be derived. However, from the urban perspective, the
overall extent of the spatial correlation between PM2.5 and lung cancer incidence is limited.
Therefore, the objectives of this study are to (1) select a proper model for studying urban-
scale spatial pollution levels with limited pollutant monitoring data to achieve spatial
visualization and use portable monitoring equipment to verify the reliability of the model
used in monitoring data; (2) study the risks of static and dynamic population exposure to
PM2.5 and obtain the difference between urban centers and surrounding areas. (3) Based
on the available lung cancer incidence data and the ground PM2.5 air concentration for
spatial statistical analysis, this study’s aim was to explore the spatial correlation between
PM2.5 and the high incidence of lung cancer and to assess the health risks of residents in
different areas of the city exposed to pollutants. This would advance China’s environmental
and epidemiological research and contribute to the development of effective measures to
alleviate the current exposure risks.
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2. Materials and Methods
2.1. Study Area

The Pearl River Delta, where Guangzhou is located, is one of the most urbanized and
industrialized regions in the world. As the core city of the Pearl River Delta, Guangzhou,
a megacity with a population of more than 12.7 million [27], consists of 11 district-level
administrative regions and 171 townships and blocks (In the schematic diagram of this
research, DISTRICT refers to the district-level administrative district of Guangzhou, and
BLOCK BORDER refers to the block-level administrative district of Guangzhou), which
covers an area of approximately 7434.4 km2. It is one of China’s main economic and manu-
facturing core areas; its main industries are chemical products, biotechnology, electronic
and communication equipment manufacturing, as well as food, motor, automobile, and
metal manufacturing [28]. The rapid development of industrialization activities has led to a
sharp deterioration in the air quality in Guangzhou. Vehicle emissions, secondary aerosols,
biomass combustion emissions, sea salt and coal combustion are all important factors that
affect Guangzhou’s atmospheric PM2.5 [29]. Therefore, it is necessary to carry out PM2.5
spatial exposure research in Guangzhou. Figure 1 shows the location of Guangzhou city
and its 28 major air quality monitoring stations in 2015.
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Figure 1. Spatial distribution mapping of air monitoring stations in Guangzhou.

2.2. Data Source for Model Development

As the dependent variable for the study, the dataset of the daily hourly PM2.5 concen-
tration measurement values of the 28 monitoring stations in Guangzhou in 2015 and 2021
were collected from the National Urban Air Quality Real-Time Publishing Platform and
the Guangzhou Ecological Environment Bureau. Maofengshan Forest Park Station served
as a background station. The daily measurement values were summarized and converted
into the annual average and seasonal average of the development model. To verify the
spatial distribution results of the model, the researchers went to Guangzhou Yuexiu District,
Tianhe District, Panyu District, Huangpu District, Conghua District, and Zengcheng District
and selected typical blocks to monitor the concentration of fine particles on the spot from
23–29 September 2021. The concentration data were 9000 pieces, and the weather data were
approximately 18,000 pieces. At the same time, we collected Weibo sign-in data in Septem-
ber 2015 and 2021 through Python on the Weibo API (http://open.weibo.com). A total of
approximately 270,000 pieces of information were obtained from the LBS data, including
user ID (anonymous), release time and location, and these data were used to draw a popu-

http://open.weibo.com
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lation dynamics distribution map to compare and analyze the difference and connection
between the population dynamics distribution on working days and non-working days.

2.3. Spatial Analysis Methods

LUR and ordinary kriging are often used to visualize the spatial distribution of PM2.5
concentrations. Both methods are based on ArcGIS (Manufactured by Environmental
Systems Research Institute, Redlands, CA, USA) to predict and analyze high-resolution
aerosol pollutant levels. Due to the limited monitoring data in the study area, this study
used both methods to estimate the spatial distribution of the PM2.5 concentrations in the
entire urban area and compared their accuracy.

LUR is a multivariate simulation method optimized by the least square method to
predict the pollution concentration at any point in the space. The model can integrate
various factors that have potential effects on the PM2.5 concentration. This study used the
annual average PM2.5 concentration of 28 air quality monitoring stations in Guangzhou
in 2015 as the dependent variable. The independent variables were the area of land use,
the length of the road network, and the population density in the study area, as well as
the annual average temperature, wind speed, elevation, and population density. Multiple
regression analysis was performed. All the data were preprocessed by ArcGIS into vector
files that could be spatially analyzed. The Supplementary Material explains the specific
process of the LUR derivation.

Kriging estimates the level of pollutants based on environmental monitoring infor-
mation. In this study, ordinary kriging was used to spatially interpolate the PM2.5 data
collected from 28 major sites in 11 districts of Guangzhou, and a spherical spatial model
with the weighted least squares method was used to generate the spatial distribution of the
PM2.5 concentration (1 km × 1 km).

Based on R2, the relative error (RE), and root mean square error (RMSE), the model
performances of the two methods were compared. At the same time, cross-validation was
performed for external verification. Model training data were used from 27 monitoring
stations, and the remaining dataset was used as a testing dataset, with 28 iterations per-
formed. The error between the measured value and the estimated value was estimated to
confirm the model robustness.

2.4. PM2.5 Exposure and Health Risk Assessment

Previous studies have shown that there is a regional deviation between the population
distribution of the city and the distribution of the PM2.5 concentration [30]. The same
concentration of PM2.5 pollution can result in far more serious health hazards in densely
populated areas than sparsely populated areas.

To compare the results of the static and dynamic population models and understand
the exposure during population movement, the researchers collected census data and
dynamic population information LBS data, aggregated all the geotag records of each grid,
redistributed the population data of Guangzhou, and used the population under multiple
time scales as weights. The corresponding PM2.5 trend surface and the number of people
in the grid were superimposed in ArcMap, the PM2.5 concentration in the center of the
grid and the number of people in the grid were extracted. Finally, the population exposure
risk assessment model [29] was used to calculate the Guangzhou area at the 2015 PM2.5
pollution exposure level, draw the PM2.5 exposure risk distribution map to estimate the
static and dynamic exposure of the population to PM2.5, make the time resolution consistent
with the population map based on the LBS [30], and measure the actual exposure level of
the population. The model is as follows:

Ei = Pi × Ci

where, Ei is the population weighted exposure level of the i-th pixel, Ci is the PM2.5
concentration of the i-th pixel, Pi is the estimated population in the i-th pixel, and n is the
total number of pixels.
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2.5. The Spatial Relationship between PM2.5 and the Incidence of Cardiopulmonary Diseases

Spatial autocorrelation analysis was used to evaluate the spatial relationship between
the incidence of lung cancer (the number of new malignant tumor cases per 100,000 people
registered in a place in a certain year) and PM2.5 in Guangzhou from 2013 to 2015 and to
explore the synchronous and lagged association between the two by the correlation analysis
method. This study collected data on the incidence of lung cancer (1/100,000) in 11 districts
of Guangzhou from 2012 to 2015. These data are mainly derived from the “Guangzhou
Cancer Registration Annual Report” compiled by 120 online hospitals with tumor diagnosis
and treatment capabilities, and the follow-up summary of 210 community health service
agencies in the city and use Percentage of microscopic verification, Percentage of death
certificates and Mortality to incidence ratio quality indicators. Spatial interpolation was
used to obtain the incidence data for an average of 15 blocks in each district. ArcGIS
was used to assign these data to the centroid of the district and then perform ordinary
kriging interpolation [31], with the lung cancer incidence distribution data of the entire city
(resolution: 1 km × 1 km) being obtained thereafter. Moran’s I index and standardized
statistic Z were then calculated for the incidence of lung cancer in the study area, both of
which were used to estimate the spatial clustering of the entire area and test the spatial
autocorrelation between PM2.5 and the incidence of lung cancer. Global Moran’s I is used as
a spatial autocorrelation measurement, calculated as follows. If the data are nonrandomly
distributed, it means that the spatial location has an impact on the incidence of lung cancer.

I =
∑n

i=1 ∑n
j wij(xi − x)

(
xj − x

)
s2 ∑n

i=1 ∑n
j=1 wij

where xi and xj is the lung cancer incidence or mortality of each area polygon, s2 is the
sample variance, n is the number of area polygons, and wij is the spatial weights matrix,
which defines the local neighborhood around each area polygon, which is created by
autocorrelation measurement.

Previous studies have found that the impact of PM2.5 concentration levels on the
incidence of lung cancer in the population was the result of long-term effects [3,32], and
there may be a lagging effect. However, there is no definite duration of PM2.5 exposure on
the incidence of lung cancer. The incidence of lung cancer in different regions of China has
a delay in response to PM2.5 exposure ranging from 5 to 8 years [33,34]. We obtained the
annual average concentration of PM2.5 near the surface of China’s districts and counties
before 2013 from the dataset website established by the atmospheric composition analysis
group of Dalhousie University in Canada (https://sites.wustl.edu/acag/datasets/surface-
pm2-5/, accessed on 31 December 2021). The correlation between the PM2.5 concentration
levels in the 2005–2015 time series and the incidence of lung cancer (2012–2015) was
investigated. It was hoped that this would derive the duration of PM2.5 exposure in
Guangzhou that can affect the incidence of lung cancer.

3. Results
3.1. The Spatial Distribution Characteristics of PM2.5

The comparison of the two spatial prediction models has been explained in the
Supplementary Material. The prediction value of the ordinary kriging spatial interpo-
lation is similar to that obtained by the LUR model, but it performs better in predicting the
annual and seasonal averages. Therefore, in this section, ordinary kriging interpolation
was used for the daily hourly PM2.5 concentration data in Guangzhou to obtain the spatial
distribution. The average PM2.5 concentration in Guangzhou in 2015 was 35.34 µg/m3. As
shown in Figure 2, the distribution of PM2.5 in Guangzhou presents obvious temporal and
spatial heterogeneity. The PM2.5 concentration in the study area was high in the west and
low in the north and south, which is consistent with the topography of Guangzhou, which is
high in the northeast and gentle in the middle. The Liwan District, Yuexiu District, Haizhu
District, and the northern part of the Panyu District in the urban cores are the centers of

https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
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PM2.5 pollution in Guangzhou, with an average annual concentration of approximately
40 µg/m3. They were followed by Huadu District and the western part of Baiyun District.
The level of PM2.5 pollution in the Conghua District in the north and the Nansha District in
the south was relatively low, with an average annual rate of only 32 µg/m3, which is lower
than the Chinese environmental quality standard of 35 µg/m3 (Level II); this indicates good
air quality. As shown in Figure 3, the PM2.5 concentration from January to December 2015
showed a trend of first declining and then increasing thereafter. The PM2.5 concentration
was highest (>44 µg/m3) in January and February, while was lowest (20 µg/m3) was in
June. Obviously, there is a significant variation in the PM2.5 concentration between months,
and the concentration of PM2.5 in winter (44.10 µg/m3) followed by autumn (40.04 µg/m3)
is significantly higher than in other seasons, while the PM2.5 concentration levels in spring
(32.38 µg/m3) and summer (26.65 µg/m3) were lower, as these are the seasons that have
better air quality. The spatial distribution of the seasonal PM2.5 was obtained after spatial
interpolation (Figure 2). The northwestern part of Guangzhou has high PM2.5 levels in
spring and summer, while the pollution centers in autumn and winter are concentrated in
the urban and industrial areas. In summer, the PM2.5 concentration is generally not high,
and the areas with high concentrations are increasingly prominent.
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As shown in Table 1, the on-site monitoring results of PM2.5 concentrations in six
districts of Guangzhou from 23 to 29 September 2021 showed that the PM2.5 concentration
of Tianhe (41.85 µg/m3) and Yuexiu (41.13 µg/m3) in the core area of the city were the top
two, and the highest value is more than 150 µg/m3, followed by Zengcheng (41.91 µg/m3),
Panyu (41.08 µg/m3) and Huangpu (37.62 µg/m3) are slightly lower than this, and Con-
ghua (33.46 µg/m3) is the lowest, which is lower than the national secondary standard
limit, and the spatial distribution is similar to model prediction, which directly proves the
reliability of the prediction results.

Table 1. Summary statistics for the mobile monitoring sampling data.

Date Tianhe Yuexiu Zengcheng Huangpu Conghua Panyu

23 September 17.74 ± 4.54 14.92 ± 9.18 17.334 ± 3.81 14.793 ± 5.88 12.386 ± 4.29 19.97 ± 7.88
24 September 20.74 ± 9.33 17.98 ± 8.17 17.641 ± 5.73 23.339 ± 7.34 16.519 ± 6.17 40.50 ± 10.36
25 September 19.21 ± 3.88 24.85 ± 8.95 21.285 ± 7.55 25.841 ± 5.71 26.913 ± 7.22 30.22 ± 4.77
26 September 45.72 ± 9.72 39.80 ± 7.93 35.033 ± 9.37 40.394 ± 8.62 34.204 ± 7.06 29.25 ± 7.86
27 September 45.23 ± 5.67 42.22 ± 7.29 82.107 ± 5.06 48.62 ± 6.37 41.298 ± 5.59 49.31 ± 5.70
28 September 86.30 ± 13.56 83.33 ± 11.67 78.059 ± 11.35 72.742 ± 10.47 69.468 ± 9.34 77.23 ± 17.79
29 September 58.01 ± 3.73 64.82 ± 17.48

3.2. Population Distribution and PM2.5 Exposure Level

The administrative map of the towns and blocks in Guangzhou was divided into a
grid of 1 km × 1 km. The population data of 171 blocks in 11 districts of Guangzhou were
obtained from the sixth national census in 2010, and these data were added to the grid to
draw the population distribution map of Guangzhou in 2015 consistent with the PM2.5
spatial interpolation resolution. As shown in Figure 4, Guangzhou’s densely populated
areas are concentrated in the western core of the Liwan District, Haizhu District, and
Yuexiu District, followed by the Tianhe District, Panyu District, and Huangpu District.
The sparsely populated areas are in the south and north. At the same time, we integrate
LBS data and district/county-scale population data to draw the population distribution
of working days and non-working days in 2021 in Guangzhou (Figure 4). The stretched
colors from dark blue to red indicate different population distributions. The results show
that in Guangzhou, the vast majority of the population is concentrated in the urban core
area, and the rest are distributed throughout the entire area. For areas where hotspots
are concentrated, LBS data can provide a clear visualization of population distribution,
showing that non-urban core areas also have hotspot-concentrated areas.
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The distribution of Guangzhou’s population exposure intensity in 2015 is shown in
Figure 5. The areas with high average exposure risk in 2015 were concentrated in the
Liwan District, Yuexiu District, Haizhu District, and Tianhe District of Guangzhou City. In
contrast, the Conghua District and Zengcheng District have lower exposure risks.

With regard to the seasonal exposure risk, the population exposure risk is highest in
winter, followed by autumn. The northern part of the Nansha District Guangzhou City,
the Baiyun District, Panyu District, Huangpu District, and downtown Guangzhou are all
areas with higher population exposure risks in winter. In the northern part of the Nansha
District and Huadu District, where the PM2.5 levels are relatively high in winter, these
areas have a relatively small population, and the exposure risk is lower than that of the
urban-core area. The risk of pollution exposure in autumn is between that of winter and
spring. The exposure risk in spring and summer is low, which are the seasons with the
lowest health risk of the year. The higher-risk areas are also concentrated in the urban core.
In the southern part of the Nansha District, Zengcheng District, and Conghua District, the
exposure risks in the four seasons were relatively lower.

In comparison, the 2015 annual population exposure risk based on LBS data is quite
different from the static population exposure in terms of spatial characteristics. The static
population exposure distribution in Figure 6a cannot accurately depict spatial heterogeneity,
while the hot spots of dynamic population exposure are scattered. In addition to the four
districts in downtown Guangzhou, Baiyun airport, the chime long and university town of
Panyu, business circle and government surrounding of Conghua and Zengcheng are all hot
areas, but the static population exposure does not reflect these hot spots. Comparing the
exposure risks on working days and non-working days, as shown in Figure 7, people on
working days mainly gather in major office areas and business districts, mainly in the four
districts of the city. Although the four districts of the city are still hotspots on non-working
days, the Guangzhou Tower, Tianhe Sports Commercial District, and Huangpu Science City,
where the crowds are relatively concentrated on the working day, are scattered into multiple
hotspots. Due to the diverse locations to travel for non-working days, the distribution in
each district is more scattered.
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The spatial interpolation comparison with the annual average concentration of PM2.5
reveals that the areas with high PM2.5 concentrations are not exactly the same as the areas
with high exposure risks. Compared with the densely populated urban areas, the Panyu
District and the western part of the Baiyun District, which are also areas with high PM2.5
concentrations, have higher exposure risks than those in the city cores, which verifies the
necessity of considering the intensity of the population exposure. When we examine the
population density distribution map, it shows that the exposure risk distribution is very
similar to the population distribution, which indicates that the level of the exposure risk is
closely related to the population density.
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3.3. The Spatial Correlation between the PM2.5 Levels in Guangzhou and the Incidence of
Lung Cancer

This study uses the global Moran’s I index to verify and judge the spatial distribution
status and clustering model of the incidence of lung cancer in the block areas of Guangzhou
from 2014 to 2015 and 2012 to 2013. The statistic, |Z| > 1.96 (or >4), indicates that
the spatial autocorrelation of the data in a region is significant at a confidence level of
p = 0.05 (or p = 0.01). The data exhibit regularity in space and do not follow a random
distribution [31,35]. Figure 8 shows the results of the spatial autocorrelation. The Moran’s
I index and standardized statistics in 2013 and 2015 were 0.5936 and 4.9537 and 0.4843
and 4.0601, respectively. Therefore, the incidence of lung cancer has a significant spatial
autocorrelation with environmental factors, and the incidence of lung cancer in different
locations throughout the region was not randomly distributed. Furthermore, the correlation
between the average PM2.5 concentration of the current year and the previous eight years
and the incidence of lung cancer were determined using SPSS 13.0. After the normality
test by the K-S method, Pearson correlation analysis was performed. The correlation
coefficients were 0.743, 0.757, 0.768, 0.784, 0.717, 0.775, 0.806, 0.741, and 0.774 from 2005 to
2013, respectively. The correlation coefficients in 2015 and the previous 8 years were 0.767,
0.781, 0.748, 0.731, 0.816, 0.717, 0.792, 0.786, and 0.816, respectively. The results suggest that
the incidence of lung cancer was significantly correlated with the PM2.5 concentration level
at the p = 0.01 level in the current year and the previous eight years. Kriging interpolation
with the data of 11 district-level administrative regions from 2014 to 2015 and 2012 to
2013 was used to obtain the spatial distribution of the lung cancer incidence and PM2.5
cumulative concentration (Figures 9 and 10). The locations of high PM2.5 levels and the
high incidence of lung cancer were roughly the same. The overall high PM2.5 concentration
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was in the core of the city, and it was low in the areas far from the urban core, high in the
southern and central parts of the city, and low in the northern part of the city.
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4. Discussion
4.1. Factors Affecting the Spatial Distribution of PM2.5

The concentration of PM2.5 in Guangzhou is significantly lower than that of cities in
northern China (the main reason is the difference in weather conditions) [14,36]. The overall
distribution characteristics are high in the west and low in the north and south. The Liwan
District, Yuexiu District, Haizhu District, and the northern part of the Panyu District in
the core area of the city are PM2.5 pollution centers. This kind of PM2.5 pollution level and
distribution are mainly due to various factors, such as traffic, meteorological conditions,
and the distribution of pollution sources [37]. On the one hand, seasonal climatic conditions
may have contributions. The temperature in autumn is low, and a stable atmosphere is
not conducive to the dilution and diffusion of pollutants. Moreover, the frequency and
intensity of temperature inversions are high, and the duration is long. The winter climate
is dry, with more wind and less rain, which is favorable for dust conditions. Therefore, the
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average concentration of PM2.5 in autumn and winter is high. In addition, spring is the
East Asian rainy season in Guangzhou. The lowest average PM2.5 concentration occurs
in summer as a result of the deposition of rain on pollutants, higher temperatures, and
low atmospheric stability together with the concentrated rainfall events that are conducive
to the diffusion, wet deposition, and dilution of atmospheric pollutants [38]. On the
other hand, Guangzhou’s industrial zones are concentrated in the Huadu, Baiyun, and
Nansha Districts, and major urban polluting companies are concentrated in these areas.
The southwestern part of Guangzhou is close to the traditional heavy industrial cities
of Foshan and Zhongshan. These cities have developed industries, such as building
materials, ceramics, and hardware, with large pollutant emissions. It is easy for the PM2.5
concentration of the surrounding cities to be affected under unfavorable meteorological
conditions and cause the air quality to deteriorate [39,40].

On-site monitoring of PM2.5 concentrations showed that the PM2.5 concentration
distribution trend of Guangzhou’s six districts was generally consistent with the model
results. The maximum value of actual measurement data in Zengcheng District exceeded
300 µg/m3, indicating that large-scale straw burning in the suburbs of Guangzhou in
late summer and early autumn caused particulate pollution to escalate; after verification
of meteorological conditions, the monitoring period was one week after the typhoon on
23–29 September, and the PM2.5 concentration showed a trend from low to high. The daily
average concentration of Tianhe and Yuexiu in the core areas even exceeded 80 µg/m3.
These daily changes may be caused by changes in meteorological factors (such as wind
direction, temperature, mixing height, etc.). These factors change with the day and sig-
nificantly affect the formation, diffusion and removal mechanism of air pollution [41]. In
addition, the temporal heterogeneity of the PM2.5 concentration may be affected by road
location and layout, and traffic dynamics (flow, speed, fleet composition) [42]. These typi-
cal sampling units provide high-quality air pollutant data, which show more geographic
differences than the data captured by conventional monitoring.

4.2. Population Exposure Assessment and Its Lung Cancer Health Risk

The results of the study show that using exposure level indicators that consider
population distribution is more robust than simply using PM2.5 concentration to assess
population pollutant exposure levels.

The pixel-based dynamic population map can appropriately depict the population
exposure risk distribution. Compared with previous exposure assessment methods, the
proposed method fully considers the estimation accuracy of PM2.5 concentration and the
temporal and spatial variability of population distribution. In addition, the average level of
PM2.5 exposure in each grid is determined by the population distribution of the time scale
because the population distribution of different time scales has a greater degree of variation.
Since the distribution of the static population at various time scales remains unchanged,
the use of census data to calculate the temporal and spatial differences of PM2.5 exposure
levels depends on the PM2.5 concentration, and the use of LBS data depends more on the
population distribution during the period. The pollutant exposure level of each grid was
tested for normality, and all did not conform to the normal distribution. The Mann-Whitney
U test was used to analyze the difference between dynamic and static exposure levels. The
results showed that there was a significant difference between the static population and
dynamic population exposure levels (p < 0.001). Therefore, the use of dynamic population
distribution data to analyze population exposure levels is more accurate, and the estimated
health risks are also more accurate.

According to the results of the population exposure risk assessment model, Yuexiu,
Tianhe, Liwan and other areas have high long-term exposure risks. These areas have a large
population of people for a long time, and they are near important transportation links and
hubs. Human activities such as automobile emissions have led to higher overall pollutant
concentrations. In addition, the areas with higher PM2.5 exposure levels in any scenario
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are the Haizhu District and the northwestern part of Panyu, which are related to the high
levels of both the number of people and the concentration.

On the other hand, there is strong evidence that acute and long-term exposure to PM2.5
increases the incidence of heart and lung diseases. For every 10 µg/m3 increase in PM2.5
concentration, lung cancer mortality will increase by 15–27% [3]. In China, high levels of
indoor air pollution caused by the burning of coal and biomass have also led to a high
incidence of lung cancer even among non-smokers [43]. The incidence of lung cancer is
affected by many factors, with smoking, special occupational exposure, air pollution, and
genetic factors being the main factors. According to the Guangzhou Tobacco Survey, in
2004, the smoking rate of residents over 15 years old in Guangzhou was 28.4%, in 2010
it was 26.7%, and in 2017 it dropped to 20.7%. Obviously, the number of smokers has
been declining in the past ten years. With the continuous improvement of public health
awareness, the smoking rate will be further reduced. The main cause of lung cancer will be
air pollution, especially fine particulate matter.

Spatial interpolation was performed for lung cancer incidence data in 11 administrative
districts of Guangzhou based on ArcGIS for spatial autocorrelation analysis. Taking into
account the lag effect between the PM2.5 levels and lung cancer, the correlation analysis
was performed, and the results suggest that the incidence of lung cancer in 2012–2015
was significantly related to the PM2.5 concentration levels of the current year and the
previous 7–8 years. The results also show that the PM2.5 levels in this period of 4–6 years
have a significant impact on the incidence of lung cancer. The spatial interpolation results
also show that the high incidence of lung cancer is concentrated in the urban area of
Guangzhou. It shows a decreasing trend from west to east, and it is lower in the southern
and northern parts, which is generally consistent with the spatial distribution pattern of
the cumulative concentration of PM2.5. Considering the cumulative and lagging effects of
the PM2.5 pollution levels on the incidence of lung cancer from the time and space scales,
the study focused on the impact of historical factors on the incidence of lung cancer. The
results indicate that the incidence of lung cancer does have a certain correlation with PM2.5,
which is consistent with Han [44].

4.3. Research Advantages and Limitations

This study uses limited monitoring data and spatial pollution models to draw a spatial
distribution map of Guangzhou’s annual and quarterly average PM2.5 in 2015. On-site
monitoring is combined to verify the results with innovation. The results show that the
model simulation is reliable. In assessing population exposure levels, the innovative use
of LBS data to draw dynamic population distribution, fully considering the temporal
and spatial variability of population distribution, to achieve high-precision population
exposure level assessment. At the same time, research has a greater development direction
in the future. First, the accuracy of spatial interpolation is higher in this research. Future
research can combine hybrid models such as satellite AOD data and draw distribution
maps on an hourly scale to further improve the temporal and spatial resolution. Second,
the majority of Weibo users are young adults and students, ignoring the situation of
middle-aged and elderly people and children. The distribution map of LBS data actually
shows the distribution of active users rather than the real population density. Research
has shown that potential sampling bias will not weaken the performance of social media
data in characterizing dynamic population distribution, so we are cautious when drawing
conclusions using big data.

5. Conclusions

By integrating PM2.5 data from the National Air Quality Real-Time Monitoring Plat-
form and introducing an improved PM2.5 exposure assessment model based on LBS data,
this study compared and analyzed the exposure risks under static and dynamic population
data and explored the potential association between lung cancer incidence and PM2.5 pollu-
tion levels. The study found that Guangzhou PM2.5 spatially presents the characteristics of
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high levels in the Liwan and Yuexiu urban core areas and low levels in the Conghua District
and Nansha District. In the four seasons, the PM2.5 concentration in winter is significantly
higher than that in other seasons, followed by autumn, and it is lowest in spring and
summer. Based on the spatial distribution of the PM2.5 concentrations and PM2.5 popula-
tion exposure intensity indicators, the population exposure risk assessment on a fine scale
has been better achieved. The accuracy of dynamic exposure was determined by visual
comparison, and the importance of population dynamic change in environmental exposure
and health assessment was illustrated. In addition, the incidence of lung cancer is spatially
similar to that of PM2.5 pollution, indicating a potential spatial correlation between the two.
Since the smoking rate is greatly reduced at present, fine particulate matter has become the
primary cause of lung cancer, and the lag effect of PM2.5 exposure is approximately eight
years. Therefore, there is a need for more control over highly populated and highly polluted
areas, for example, it is possible to set up locations in long-term high-density crowds to
conduct pollution monitoring and survey work, control local vehicles according to crowd
exposure levels, and achieve the most efficient resource allocation to more effectively reduce
overall pollution exposure and protect public health. The results and methods discussed in
this article are suitable for high-resolution population exposure studies, which can provide
ideas for environmental exposure and health assessment in other typical regions. They can
also provide a theoretical basis for current hotspot exposure studies. This plays a key role
in formulating regional air pollution policies, realizing population health monitoring and
travel health prevention and control.
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Kriging interpolation (b) LUR model.
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