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Abstract

Orthology inference is central to phylogenomic analyses. Phylogenomic data sets commonly include transcriptomes and
low-coverage genomes that are incomplete and contain errors and isoforms. These properties can severely violate the
underlying assumptions of orthology inference with existing heuristics. We present a procedure that uses phylogenies for
both homology and orthology assignment. The procedure first uses similarity scores to infer putative homologs that are
then aligned, constructed into phylogenies, and pruned of spurious branches caused by deep paralogs, misassembly,
frameshifts, or recombination. These final homologs are then used to identify orthologs. We explore four alternative tree-
based orthology inference approaches, of which two are new. These accommodate gene and genome duplications as well
as gene tree discordance. We demonstrate these methods in three published data sets including the grape family,
Hymenoptera, and millipedes with divergence times ranging from approximately 100 to over 400 Ma. The procedure
significantly increased the completeness and accuracy of the inferred homologs and orthologs. We also found that data
sets that are more recently diverged and/or include more high-coverage genomes had more complete sets of orthologs.
To explicitly evaluate sources of conflicting phylogenetic signals, we applied serial jackknife analyses of gene regions
keeping each locus intact. The methods described here can scale to over 100 taxa. They have been implemented in python
with independent scripts for each step, making it easy to modify or incorporate them into existing pipelines. All scripts
are available from https://bitbucket.org/yangya/phylogenomic_dataset_construction.
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Introduction
Orthology is a phylogenetic concept as orthologous genes are
defined as those genes that have descended from an ancestral
sequence of their common ancestor through speciation
(Fitch 1970, 2000). Accurate orthology inference is critical
for phylogenomic reconstruction and functional studies.
However, this inference is especially challenging for data
sets using transcriptomes or low-coverage genomes that
often contain misassemblies and partial or missing sequences.
The complexities of these data types also make it difficult to
distinguish recently duplicated copies from allelic variations,
splice variants, and misassemblies.

A number of orthology inference methods have been ap-
plied to phylogenomic analyses based on transcriptomes and
low-coverage genomes, such as orthoMCL (Li et al. 2003),
Hcluster_sg (as part of TreeFam; Li et al. 2006), SCaFoS
(Roure et al. 2007), HaMStR (Ebersberger et al. 2009), and
OrthoSelect (Schreiber et al. 2009). Emerging tools such as
OMA-GETHOGs (Roth et al. 2008; Altenhoff et al. 2013) and
Agalma (Dunn et al. 2013) have also attracted interest in their
phylogenomic applications. Among them, HaMStR is by far
the most widely used. HaMStR is based on a modified recip-
rocal similarity criterion that starts with querying a set
of precomputed high-quality orthologs (“core-orthologs”)

against candidate sequences (Ebersberger et al. 2009).
The resulting significant hits are then queried against all
genes in the reference taxon. HaMStR only adds the candidate
to the ortholog group if the best hit in the reference taxon is
also member of the same ortholog group (Ebersberger et al.
2009). Considering that incomplete sequences, gene and
genome duplication, and molecular rate heterogeneity are
almost certainly present in most data sets, the reciprocal cri-
terion is frequently violated. A number of other alternative
orthology inference pipelines also suffer from using similarity
measurements as approximations to directly infer orthology
(Li et al. 2003; Roure et al. 2007; Schreiber et al. 2009; Altenhoff
et al. 2011, 2013).

Given the incomplete and noisy nature of transcriptomic
and low-coverage genomic data, orthology is best inferred by
using phylogenies to separate paralogs and orthologs after
homology has been established (Gabald�on 2008). A variety
of tree-based orthology inference methods have been devel-
oped. However, with a few exceptions, most of these tree-
based methods require a known species tree. This is often
undesirable as many of these data were generated for the
purpose of estimating an unknown species tree. PHYLDOG
(Boussau et al. 2013) estimates gene trees and the species tree
simultaneously taking duplications and gene loss into
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account. However, it was designed for genomic data. Besides
potential scaling issues with such an approach as data sets
grow, transcriptomes may lack a particular gene due to
silencing or low expression and coverage. Taxa with low
gene coverages tend to be grouped together due to shared
“gene loss” (Boussau et al. 2013).

An alternative strategy adopted by Agalma (Dunn et al.
2013) and recent implementations of OrthologID (Chiu et al.
2006) consists of two stages: Obtaining homologs and sepa-
rating orthologs from paralogs. Both pipelines infer homologs
using an all-by-all BLAST search (Altschul et al. 1990) followed
by Markov clustering (MCL) that identifies sequence clusters
based on the relative connectivity (presence/absence of hits)
and relative strength of connections (E values from BLAST
hits) among sequences (van Dongen 2000). A phylogenetic
tree is then inferred for each homolog. To obtain orthologs,
the two pipelines use different approaches. Agalma takes only
the homolog tree topology into account. It looks for the
subtree that has the highest number of nonrepeating taxa,
cuts it off as an ortholog, and repeats the search and cutting
on the remaining tree (Dunn et al. 2013). This approach has
the advantage of being relatively assumption free. However,
when there are genome duplications, it breaks orthologs into
fragments. This is especially problematic when there are mul-
tiple, nested genome duplications as is frequently seen in
plants (De Smet et al. 2013). On the other hand, orthologID
considers both homolog tree topology and the homolog
sequence alignment, using a partial guide tree determined
from taxa with genome sequences available (Chiu et al.
2006). It is able to accommodate gene and genome duplica-
tions, yet it is limited by the availability of annotated genomes
required to build the guide tree for each ortholog group.
Most areas of the tree of life still lack reasonable whole-
genome sequence coverage. Both Agalma and orthologID
improve enormously on previous methods by taking gene
tree into account (Chiu et al. 2006; Dunn et al. 2013).
However, there is the great potential for additional compo-
nents and methods that would allow for higher flexibility
and broader applications.

Here, we outline a flexible orthology inference procedure
based on identifying homologs followed by cleaning, aligning,
and cutting homolog trees. We demonstrate this approach
and compare different methods for cutting homolog trees
in three recently published phylogenomic data sets across
diverse taxonomic groups and ages. The grape family, or
Vitaceae, consists of approximately 900 species with a stem
age of approximately 95 Ma (Wen et al. 2013). The grape data
set (GRP) (Wen et al. 2013) includes 15 transcriptomes and a
proteome from the grape genome annotation. The millipedes
(class Diplopoda) are an ancient and diverse group with
fossils dating back to 428 Ma (Brewer and Bond 2013).
The millipedes data set (MIL) (Brewer and Bond 2013) in-
cludes nine transcriptomes, one expressed sequence tag (EST)
data set, and two non-millipedes proteomes from genome
annotation. The aculeate Hymenoptera includes ants, bees,
and wasps and has a crown age of approximately 150 Ma
(Wilson et al. 2013). The aculeate Hymenoptera data set
(MIL) (Johnson et al. 2013) includes 18 ingroup data sets

(11 transcriptomes, 1 low-coverage genome, 6 annotated ge-
nomes) and one outgroup from annotated genome.

New Approaches

Our orthology inference approach is tree-based, does not rely
on a known species tree, and is capable of accommodating
genome duplications and different outgroup scenarios. It dif-
fers from previous published tree-based and species tree-in-
dependent orthology inference methods in a number of ways.
We take phylogenetic trees into account in both homolog
inference as well as ortholog inference. We explore four alter-
native strategies for obtaining orthologs from cutting homo-
log trees, two of which are newly proposed to explicitly
accommodate gene duplications. To evaluate conflicting
phylogenetic signals, we use a jackknife strategy with multiple
resampling ratios. This strategy resamples by locus, not by site,
and therefore keeps each locus intact and explicitly evaluates
conflicting phylogenetic signals among loci. Finally, given the
ever-changing landscape of sequence processing, alignment,
and tree inference methods, each step of our procedure
is written in separate python scripts with a lightweight
phylogenetic tree library, which allows for steps to be easily
modified, swapped, and moved between computer clusters
and desktop machines.

Results and Discussion

Homology Inference Using Clusters and Trees

Our homology inference method starts with an all-by-all
BLAST followed by clustering filtered BLAST hits using MCL
(van Dongen 2000). For each cluster we align into a multiple
sequence alignment, infer a phylogenetic tree using maxi-
mum likelihood, cut deep paralogs, and remove aberrant
and redundant tips (fig. 1).

A number of methods can be used for conducting the
initial homology search. For the analyses presented here,
initial all-by-all homology searches were conducted using
peptide sequences against a peptide database (BLASTP).
In addition, we also conducted homology search using
coding sequences (CDS) against a CDS database (BLASTN)
in the GRP data set, which contains the most recently di-
verged group among the three we analyzed here. A third
approach employed by Agalma (Dunn et al. 2013) uses tran-
scripts translated by all six frames (TBLASTX) for homology
search, and then simultaneously translate and align CDS using
MACSE (Ranwez et al. 2011). This approach is promising
for improving translation accuracy yet very time consuming
and is currently limited to relatively small data sets.

Once a BLAST score has been calculated between each
sequence pair, there are two general strategies for homology
clustering. The simplest method is to filter out BLAST results
that do not meet a minimal coverage percentage for either
sequence (“hit fraction”; Chiu et al. 2006; Sanderson and
McMahon 2007), then obtain clusters that are connected
by the remaining hits. However, this approach is sensitive
to both the value of the minimum hit fraction filter and
large gene families that have sequences of intermediate com-
pleteness that can attract even less complete sequences.
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FIG. 1. Flow chart of homology and orthology inferences.
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Our experience with using hit fraction alone is that it results
in “snowballs” of gigantic clusters that are difficult to align
because there is only partial overlap between many of the
sequences. A second approach for homology clustering is
to use a clustering algorithm, the most popular of which is
MCL (van Dongen 2000). MCL is a general clustering algo-
rithm that breaks any network of connected nodes into clus-
ters by using the presence/absence of connections and the
relative strength of those connections. It has the advantage of
being extremely fast and efficient with computer memory.
However, the algorithm uses only a single source of data (e.g.,
E values from BLAST hits) for clustering without taking the
hierarchical structure of gene families into account. Because E
values are dependent on data set size and sequence lengths
(Altschul et al. 1990), the behavior and robustness of MCL
have yet to be evaluated for data sets that include many
partial sequences and sequence isoforms. In addition, because
the E values produced by the BLAST algorithms frequently
reach the lowest and most significant value (10�180) among
large gene families, using MCL alone frequently produces clus-
ters that are very large and difficult to align accurately. These
large clusters are often removed from further analysis in ex-
isting pipelines, reducing the amount of usable data in these
phylogenomic data sets.

To effectively separate gene families of various sizes, we
developed a multistep procedure (fig. 1). Sequence similarity
search results (here we use BLAST) are filtered using a min-
imum coverage fraction (hit fraction; here we use at least 0.4;
Chiu et al. 2006; Sanderson and McMahon 2007) to remove
hits from conserved motifs and short sequence fragments,
and then clustered with MCL based on the filtered hits.
The purpose of this initial clustering step is simply to form
clusters of sizes that can be accurately aligned. Therefore
values of the hit fraction cutoff and the inflation values in
MCL are chosen to be as low as possible to ensure a coarse
clustering that produces clusters containing less than a few
thousand sequences each.

When a cluster contains deep duplications, the alignment
will be poorly aligned, and the resulting phylogenetic tree will
contain long branches subtending orthologs, especially in rel-
atively recent data sets such as GRP and HYM (representative
trees in fig. 1, showing trees from initial clusters using pep-
tides). These branches often root orthologs at random inter-
nodes and interfere with orthology inference. One way to
remove these deep duplications is to use all-by-all BLASTN
using CDS instead of BLASTP using peptide sequences. This
approach is effective only in recently diverged groups such as
the grape family, and we found that with increasing diver-
gence BLASTN is susceptible to Type II error. A second ap-
proach is using a higher inflation value in MCL (van Dongen
2000). By increasing the inflation value the clustering algorism
is more sensitive to the contrasts in E values and connectivity
among sequences, and tend to produce smaller clusters at the
risk of breaking apart homologs at unexpected places. A third
approach is to cut apart these deep duplications using a set of
branch length cutoffs that are empirically determined by the
distribution of branch lengths among ingroup taxa. In doing
so, the accuracy of the alignments and the homolog trees are

significantly improved. Although one can potentially detect
subclusters that are significantly more distantly related
among than within each subcluster, given the hierarchical
structure of gene families, cutoffs for subclusters are often
arbitrary and dependent on the phylogenetic distance
among the ingroup taxa. Therefore here we simply set em-
pirical branch length cutoffs to eliminate branches that are
much older than diversification of orthologs. Finally, we trim
spurious terminal branches that are much longer than sister
branches that are usually a result of misassembly.

De novo assembled transcriptomes often have multiple
isoforms for each gene that form monophyletic or paraphy-
letic tips on the gene tree. For phylogenomic purposes,
only the isoform with the highest number of nonambiguous
characters in the alignment is kept as the representative, with
the rest removed. This procedure differs from Smith et al.
(2011) and the “monophyly masking” step in Agalma
(Dunn et al. 2013) in that instead of only masking monophy-
letic tip duplicates, we also mask paraphyletic grades of the
same taxon, and we retain the isoform with the highest
number of aligned characters after trimming instead of keep-
ing a random one. Alternatively, one can keep the isoform
with the shortest distance from its sister taxa or simply a
random isoform. However, short branches often result from
incomplete sequences, and a random isoform can contain
poorly aligned sections from misassembly. By choosing
the one with the most aligned characters after trimming we
maximize the information retained. Another option is to pick
either the longest isoform or the isoform with the highest
read coverage from each isoform group (e.g., Trinity subcom-
ponent). However, in practice, a subcomponent from an
assembler (e.g., Trinity) does not always correspond to a
gene and its splice variants (Grabherr et al. 2011). A previous
benchmark study in a model plant species (Yang and Smith
2013) shows that chimeric transcripts exist in around 4% of
Trinity assemblies, and picking the longest isoform alone will
likely further increase the percentage of chimeric sequences.
Picking the highest covered isoform per subcomponent, on
the other hand, reduces the percentage of chimera from 4%
to around 1% at the cost of reducing the total base pairs
assembled by around 10% (Yang and Smith 2013). A final
consideration for picking the representative isoform is alter-
native splicing. Splice variants with different exon content
will introduce bias to distance-based orthology inference
methods, whereas tree-based methods are less likely to be
affected.

Orthology Inference

We present four alternative orthology inference methods that
may be used once homolog phylogenies have been inferred
(fig. 1). The maximum inclusion (MI) method iteratively cuts
out the subtree with the highest number of taxa without
taxon duplication (Dunn et al. 2008, 2013; Smith et al.
2011). A second method iteratively searches for the subtree
with the highest number of ingroup taxa, cuts it out as a
rooted tree (RT) and infers gene duplications from root to
tips. When duplicated taxa are found between the two sides
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at a bifurcating node, the side containing a smaller number
of taxa is cut off. The third method looks for clusters with
monophyletic outgroups (MO), roots the tree, and infers
gene duplication in a similar way as RT. Both RT and MO
are similar to the tree-pruning method implemented in
TreeKO (Marcet-Houben and Gabald�on 2011) in that both
traverse a rooted tree from root to tips and prune at nodes
with taxon duplications. The two differ in that TreeKO con-
siders all possible decompositions, calculates the pairwise dis-
tance between all candidate orthologs from two different
homologs, and chooses one ortholog from each homolog
that minimizes pair wise tree distance. However, given the
incompleteness and noise in both transcriptome and
low-coverage genome data, using a particular homolog as a
reference for reconciliation bears the risk of introducing ad-
ditional noise. Instead, we choose the decomposition that
retains the highest number of taxa to maximize final matrix
occupancy. Finally, we compare these results to only using
homologs that had no duplicated taxon and are one-to-one
(1to1) orthologs.

Orthology Inferences from Example Data Sets

To demonstrate the utility of the methods presented here, we
analyzed three data sets: GRP (Wen et al. 2013), MIL
(Brewer and Bond 2013), and HYM (Johnson et al. 2013).
The original authors provided peptides for HYM, whereas
both MIL and GRP data were downloaded as raw reads
from the NCBI Sequence Read Archive (SRA). For the MIL
data set, our read filtering procedure differed from Brewer
and Bond (2013). For details on deviations see Materials and
Methods. Our quality filter removed 15–23% of read pairs

(supplementary table S1, Supplementary Material online). Of
the remaining read pairs, 0.03–0.82% contained adapters and
were removed. The cleaned data sets contained 19–40 million
read pairs each, 11–17% less than Brewer and Bond (2013).
For the GRP data set, our quality filter removed 16–41% of
read pairs (supplementary table S2, Supplementary Material
online). Of the remaining read pairs 0.01–0.92% contained
adaptors and were removed. After filtering 27–37 million
read pairs for each taxon were used for de novo assembly.

Homology and orthology inference were conducted using
the methods as described above (for more details see
Materials and Methods). The resulting ortholog occupancy
curves were convex for HYM and GRP (fig. 2), indicating a
high number of orthologs containing high percentage of taxa,
whereas the almost straight curves for MIL indicate that rel-
atively few orthologs have high percentage of taxa. The shapes
were determined by the divergence time and the complete-
ness of sequences in individual taxon (annotated genome vs.
transcriptome/low-coverage genomes), whereas the orthol-
ogy inference methods shifted the height and the slope of
the curves.

The HYM Data Set
With seven out of 19 taxa from annotated genomes, the
taxon occupancy curves of HYM were convex and all had a
plateau that contained around 3,000–4,000 orthologs with
complete or near complete taxon occupancy (fig. 2). One
taxon in HYM, Apterogyna ZA01, was from a low-coverage
genome and resulted in the narrow peak above the plateau in
all four curves. Given that the outgroup Nasonia vitripennis
had 12,925 genes, and the ingroup Apis mellifera had 10,570
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genes, numbers of orthologs with at least eight taxa were high
(MI: 9,128, RT: 8,251, MO: 7,665 and 1to1: 4,937).

Our RT method recovered 7,558 orthologs with at least
nine taxa and 4,172 orthologs with at least 16 ingroup taxa,
significantly more than the 5,214 and 3,018, respectively,
from the Johnson et al. (2013) analyses using OrthologID
(Chiu et al. 2006). Our final supermatrices contained ortho-
logs with full taxon sets and at least 100 amino acids (aa)
in trimmed alignments (MI: 1,160 loci, 620,150 aa; RT: 1,116
loci, 588,895 aa; MO: 992 loci, 525,061 aa; and 1to1: 761 loci,
369,371 aa), all with high amino acid occupancy (89.0%, 88.8%,
89.2% and 91.0%, respectively). Again these numbers are
much higher than the 525 orthologs with full taxon occu-
pancy recovered using OrthologID (Chiu et al. 2006; Johnson
et al. 2013).

The GRP Data Set
With one annotated genomes and 15 transcriptomes, the
GRP curves were also convex and all had a plateau that con-
tained around 5,000–7,000 orthologs with full taxon occu-
pancy (fig. 2). The large number of orthologs with full
taxon occupancy likely reflects the fact that the GRP data
set is relatively recent, with the split between the ingroups
and the outgroup being approximately 95 Ma (Wen et al.
2013). Compared with the 29,971 genes in the Vitis vinifera
(GRP) genome, approximately half of genes (a third for 1to1)
had orthologs with at least eight taxa (MI: 15,488, RT: 14,929,
MO: 14,016, and 1to1: 9,149).

We constructed the supermatrices using orthologs that
had the full taxon set and containing at least 300 nt in
trimmed alignments (MI: 7,462 loci, 10,925,506 nt; RT: 7,070
loci, 10,315,343 nt; MO: 6,686 loci, 9,870,949 nt; and 1to1:
5,166 loci, 7,403,388 nt). All four supermatrices had high
nucleotide occupancy (89.6%, 89.1%, 89.2%, and 91.5%,
respectively). Our ortholog sets with full taxon occupancy
were much larger compared with the 417 (before filtering)
and 229 (after filtering) orthologs by Wen et al. (2013) using
Hcluster_sg (Li et al. 2006).

The MIL Data Set
With two annotated genomes and ten transcriptomes and
ingroups dating back to more than 400 Ma (Brewer and Bond

2013), the MIL taxon occupancy curves were almost straight
(fig. 2). The numbers of orthologs containing at least eight
taxa were MI: 3,398, MO: 2,335, and 1to1: 2,075, whereas RT
recovered 3,125 orthologs with at least six “ingroup” taxa
(millipedes + Lithobius; see Materials and Methods). Among
the four methods, MI recovered the highest number of ortho-
logs, whereas the numbers of orhtologs recovered by both RT
and MO were reduced by the high level of phylogenetic un-
certainty among deep nodes. For the final supermatrices, we
included orthologs that had no more than one taxon miss-
ing and each had at least 100 aa in the trimmed alignments
(MI: 1,085, RT: 736, MO: 739, and 1to1: 712). Despite the
variation in numbers, all four ortholog sets contained signif-
icantly more orthologs compared with the 221 orthologs re-
covered using HaMStR (Ebersberger et al. 2009) using similar
alignment filtering procedures as Brewer and Bond (2013).

Species Trees and Sources of Conflicts

We used concatenated supermatrices for species tree infer-
ence, partitioning by each locus. These supermatrices may
contain conflicting phylogenetic signals due to hybridization,
deep coalescence, contamination, and horizontal gene trans-
fer. Noise and bias from assembly and orthology and tree
inference may also complicate phylogenetic signal. To evalu-
ate the presence of conflicting phylogenetic signal, we
conducted serial jackknife analyses for each supermatrix
keeping each locus intact.

The HYM Data Set
Species trees reconstructed from the HYM data set were
overall highly consistent among all four orthology inference
methods in topology, branch lengths, and support values
(fig. 3). They had identical topologies to those in the analysis
by Johnson et al. (2013). All branches received a support
value of 100% from both the bootstrap and 30% jackknife
analyses. Branches received less-than-perfect support values
using STAR or PhyloNet in Johnson et al. (2013) similarly
received less-than-perfect jackknife support values in our
10% and/or 20 gene jackknife analyses. The node uniting
Formicidae and Apoidea (marked with an arrow in fig. 3)
received 81–97% jackknife support with around 100 loci

FIG. 3. Maximum-likelihood analysis of the HYM data set. Taxon names were abbreviated to the first four letters of the genus names except the left-
most tree. Orthology inference methods: MI, maximum inclusion; RT, extracting rooted ingroup clades; MO, monophyletic outgroups; 1to1, filtered
one-to-one orthologs. All nodes received bootstrap and 30% jackknife support values of 100 and are not shown. Node labels are also not shown if all
support values are 100. Arrows indicate nodes with relatively low support.
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and around 60% with 20 loci. Given that five of the nine taxa
in this clade were from annotated genomes and the entire
tree was otherwise well supported, this Formicidae + Apoidea
node warrants further investigation of the source of the
conflict.

The GRP Data Set
The topology we recovered was well supported and in con-
gruent with the topology recovered by Wen et al. (2013)
except one of the basal nodes (fig. 4, indicated with
arrows). We reanalyzed both the 417- and 229-gene CDS
matrixes from Wen et al. (2013) with RAxML v7.3.5
(Stamatakis 2006), partitioning by gene. The two resulting
trees similarly showed low support values at two of the
basal nodes (fig. 4). The original species tree inference by
Wen et al. (2013) did not apply any partition to the conca-
tenated supermatrices and received bootstrap support of 100
for all nodes. Their topology stability test only included nodes
among the ingroups without examining the uncertainty
in the outgroup placement. Also, although their topological
stability test involved serial subsampling by locus as we did
here, they discarded the subsampled replicates when the
maximum-likelihood tree had a topology different from the
“standard topology.” They then calculated mean bootstrap
values using only those replicates that agreed with the stan-
dard topology with no partitioning of subsampled matrixes.
When partitioning was applied, all six supermatrices (fig. 4),
four from our orthology inference, and two from Wen et al.
(2013), showed strong conflicting signal among the deep

nodes in Vitaceae. Therefore there is a need to take a closer
look at the conflicting signals, the topology from plastid
sequences, and perhaps also sequences from additional out-
group samples.

The MIL Data Set
We recovered similar results to Brewer and Bond (2013)
for the MIL data set. Despite the generally well-supported
topology, the placement of Pseudopolydesmus was unstable.
Clades including Pseudopolydesmus had low support
values regardless of orthology inference methods used
(fig. 5, arrows in upper four trees), and the support values
in both RT and 1to1 decreased with increasing subsampling
ratios. This indicates strong conflicting signals in the place-
ment of Pseudopolydesmus. We subsequently removed
Pseudopolydesmus from the initial RAxML output for homo-
log tree inference, trimmed tips, and carried out orthology
and species tree inferences. By doing so the support values
were significantly improved (fig. 5, lower four trees). Although
the resulting species trees were well supported, the node
uniting Prostemmiulus, Cambala, and Archispirostreptus
(marked with an arrow in fig. 5, lower four trees) received
support values of 88–94% when subsampling 10% of total
genes and 59–72% when subsampling 20 genes. These values
were relatively low compared with the rest of the tree and
may deserve further investigations.

A number of other multilocus species tree methods have
been used for reconstructing species trees and evaluating
topological support using multiple genes without

FIG. 4. Maximum-likelihood analysis of the GRP CDS data set. Taxon names were replaced by the collection numbers except the top left tree. Orthology
inference methods: MI, maximum inclusion; RT, extracting rooted ingroup clades; MO, monophyletic outgroups; 1to1, filtered one-to-one orthologs.
Node labels are not shown when all support values are 100. Arrows indicate nodes with relatively low support.
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concatenation. Methods such as STAR (Liu, Yu, et al. 2009)
and MP-EST (Liu et al. 2010) assume that coalescence
is the only source of gene tree discordance, making boot-
strap numbers derived from these models difficult to inter-
pret. The program BUCKy does not assume a single source of
discordance (An�e et al. 2007; Larget et al. 2010). However,
BUCKy assumes that each individual gene has enough
phylogenetic information and that the Markov chain
Monte Carlo chains mixed well enough such that the
posterior distribution of each gene tree reflects true
phylogenetic uncertainty. For phylogenomic data sets with
assembly error, partial and missing sequences, and genes
with significant diversity in information content and molec-
ular rate and therefore posterior distributions spread over
many alternative topologies, BUCKy gives low concordance
values across the tree that are difficult to interpret (Cui et al.
2013).

Comparison among Methods of Homology and
Orthology Inference

Among the four alternative orthology inference methods
we examined, MI has the advantage of not requiring any
outgroup information. It works well even in the absence of
high-quality outgroups. However, in the presence of genome
duplication, MI breaks orthologs each time duplicated taxon
names are detected. Both RT and MO explicitly accommo-
date gene and genome duplications among the ingroups and
are especially suitable for clades that have many gene/
genome duplications. However, both require high-quality

outgroup taxa that are phylogenetically distinct from the
ingroup. In addition, RT requires outgroups that will not be
included in the final ortholog sets and work best when there
are multiple successive outgroups. The 1to1 strategy works
for relatively small data sets, but otherwise is not likely to be
useful. With transcriptome data sets that are both incom-
plete, redundant, and contain errors and isoforms, restricting
to 1to1 relationships ignores the evolutionary history of gene
families and is susceptible to repeated gene loss (De Smet
et al. 2013). Finally, if the data set lacks high-quality outgroups
and is complicated by genome duplications, the quality of
orthology inference using any method will be problematic
(table 1).

A final consideration for tree-based orthology inference
is the computational cost. Our experience is that with increas-
ing data set size, the computational bottleneck is at the stage
of all-by-all homology search, which scales exponentially with
the data set size. One possible modification is to infer a core
homolog set using taxa with genome sequences, and then
carry out homology search using sequences from the remain-
ing taxa against these core homologs. This approach has the
risk of missing novel genes that are not represented in the
core homolog set. Once clusters are obtained, the alignment
and tree inference steps can be easily distributed in many
computer cores. With the recent advance in large-scale
alignment and tree inference tools (Liu et al. 2012;
Stamatakis et al. 2012; Katoh and Standley 2013), it is the
time to fully take advantage of the information in gene
trees to obtain more complete and more accurate homolog
and ortholog sets.

FIG. 5. Maximum-likelihood analysis of the MIL. Taxon names were abbreviated to the first four letters of the genus names except the top left tree.
Orthology inference methods: MI, maximum inclusion; RT, extracting rooted ingroup clades; MO, monophyletic outgroups; 1to1, filtered one-to-one
orthologs. Node labels are not shown when all support values are 100. Arrows indicate nodes with relatively low support.
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Conclusion
This study demonstrates the power of tree-based homology
and orthology inference to recover significantly more usable
data from short-read transcriptomic and low-coverage geno-
mic data sets than existing heuristics. By reanalyzing three
published data sets, we illustrate the procedures for obtaining
cleaned and optimized homologs and orthologs, and show
the utility of different strategies for resolving data sets of dif-
ferent age, completeness, rooting scenarios, and presence
of genome duplications. We also illustrate the importance
of including complete genomes, even if as members of
the outgroup. The number of orthologs recovered can be
dramatically improved with more complete data from
individual taxa.

The real power of our tree-based procedure is that it
preserves the full complement of evolutionary history
present in each gene family. With this approach, future
studies will be able to explore the rich information in these
phylogenomic data sets such as functional and phyloge-
netic location of tree discordance, gene and genome duplica-
tions, shifts in molecular rates, and signatures of natural
selection in nonmodel systems at an unprecedentedly
broad scale.

Materials and Methods

Data Sets and Sequence Processing

For the MIL data set, nine transcriptomes from Brewer and
Bond (2013) were downloaded from the SRA (accessions:
SRX326775–SRX326777, SRX326779–SRX326784). Paired-
end 50 bp reads were filtered using the read cleaning proce-
dure from Yang and Smith (2013): Reads with average quality
scores lower than 32 were removed; bases at the 30-end with
quality scores lower than 20 were trimmed, and only reads
longer than 30 bp after trimming were kept. Both reads in a
read pair were removed if one of the reads did not pass the
quality filter. Adapter contamination was screened against
the UniVec database (http://www.ncbi.nlm.nih.gov/tools/
vecscreen/univec/, last accessed November 20, 2013) and,
the Illumina TruSeq adapters and all vector containing
read pairs were removed. This differed from the original pub-
lication in that we removed the entire read pair when an
adapter was detected in either of the reads, instead of cutting
off the first nine bases from all reads. Given the typical inser-
tion size for Illumina RNA-seq libraries (~130–200 bp), the

presence of an adapter dimer (~120 bp) would often render
a read pair to be useless. All nine transcriptomes were assem-
bled using Trinity version 20131110 with default settings
(Grabherr et al. 2011), except that min_kmer_cov was set
to 2 instead of the default value of 1, consistent with
Brewer and Bond (2013). Archispirostreptus gigas EST se-
quences were downloaded from GenBank (4,008 in total, ac-
cessions FN194820–FN198827; Meusemann et al. 2010).
All transcripts were translated using TransDecoder version
20131137 assisted by pfam domain information (Haas et al.
2013). Following Brewer and Bond (2013), additional prote-
ome data of Ixodes scapularis were downloaded from
VectorBase (www.vectorbase.org, last accessed November
19, 2013; Megy et al. 2012); and peptide sequences of
Daphnia pulex were downloaded from the Joint Genome
Institute http://genome.jgi-psf.org (filtered models v1.1, last
accessed November 19, 2013; Colbourne et al. 2011).

We suggest that future NCBI SRA submissions contain
information about what kit and modifications were used
for library preparation, the adapters used and the distribution
of insertion sizes in either or both the SRA submission and
the methods narratives, even when the library preparation
was outsourced. Such information would greatly facilitate
effective reuse of these archived data sets.

For the GRP data set, all 15 transcriptomes generated
by Wen et al. (2013) were downloaded from GenBank (SRA
accessions SRX286217–SRX286231). Paired-end 90 bp reads
were filtered by quality scores, and adaptor contamination
was removed with the same procedure as for MIL. The re-
maining reads were assembled using Trinity version 20140413
with default settings (Grabherr et al. 2011), and translated
using TransDecoder version rel16JAN2014 assisted by pfam
domain information (Haas et al. 2013). CDS of V. vinifera were
downloaded from the Phytozome database v9.1 (Jaillon et al.
2007; Goodstein et al. 2012).

For the HYM data set, all peptide sequences were kindly
provided by the authors (Johnson et al. 2013), including pep-
tide sequences from additional studies (http://www.ncbi.nlm.
nih.gov/bioproject/66515; https://www.hgsc.bcm.edu/arthro
pods/bumble-bee-genome-project; Weinstock et al. 2006;
Bonasio et al. 2010; Werren et al. 2010; Smith, Smith, et al.
2011; Smith, Zimin, et al. 2011; Kocher et al. 2013). All
peptides were reduced with cd-hit (-c 0.99 -n 5), and
CDS were reduced with cd-hit-est (-c 0.995 -n 10 -r 1;
Fu et al. 2012).

Table 1. Comparison of the Four Alternative Orthology Inference Methods Used in This Study.

High-Quality
Outgroups

Genome
Duplications

Examples MI RT MO 1to1

Present Absent HYM, MIL Good Good Good if only interested
in low-copy genes

OK with a small number of taxa

Absent Absent Deep metazoan
phylogeny; GRP

Good Bad Bad OK with a small number of taxa

Present Present Many plant groups Bad Good Good if only interested
in low-copy genes

OK with a small number of taxa

Absent Present Many plant groups Bad Bad Bad May be the only choice

3089

Orthology Inference in Nonmodel Organisms . doi:10.1093/molbev/msu245 MBE

-
-
millipedes
 (MIL)
'
http://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/
http://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/
www.vectorbase.org
http://genome.jgi-psf.org
-
grapes (
)
Coding sequences (
)
Vitis 
Hymenoptera (
)
http://www.ncbi.nlm.nih.gov/bioproject/66515
http://www.ncbi.nlm.nih.gov/bioproject/66515
https://www.hgsc.bcm.edu/arthropods/bumble-bee-genome-project
https://www.hgsc.bcm.edu/arthropods/bumble-bee-genome-project
 Kocher 
etal
. 2013;
b
Weinstock 
etal
. 2006; Werren 
etal
. 2010


Homology Inference

Homology searches were carried out using all-by-all BLASTP
from peptides of all three data sets and an additional all-by-all
BLASTN search using CDS from GRP. All BLAST searches used
an E value cutoff of 1 and max_target_seqs set to 100. BLAST
output was filtered by a requirement that the hit fraction
being at least 0.4 (Chiu et al. 2006; Sanderson and
McMahon 2007). MCL (MCL v12-068; van Dongen 2000;
Enright et al. 2002; van Dongen and Abreu-Goodger 2012)
was performed on filtered all-by-all BLASTP hits, with the E
value cutoff set to 10�5 and an inflation value of 1.4. Ends
with no BLAST hits, presumably from misassembly and/or
frameshift, were cut off. Remaining sequences shorter than
40 characters were removed, and clusters smaller than eight
taxa were removed. Each resulting cluster was aligned using
MAFFT v7.043b (–genafpair–maxiterate 1000 if less than
1,000 sequences; –auto when 1,000 or more sequences;
Katoh and Standley 2013).

Clusters may include divergent sequences and the align-
ments therefore require refinement (the optional step; fig. 1).
Alignments that included 200 or more sequences were re-
fined with SAT�e v2.2.7 (Liu, Raghavan, et al. 2009; Liu et al.
2012) starting with alignments from MAFFT. Alignments
were trimmed with Phyutility v2.2.6 (-clean 0.01) and an initial
phylogenetic tree estimated with FastTree v. 2.1.7 (Price et al.
2010). The resulting trees often contain misassembly, recom-
bination, or paralogs with deep splits that formed long
branches. These long branches (1.5 for MIL, 1.2 for HYM,
and 0.6 for GRP with peptides) were cut and sequences
from each subtree were realigned using MAFFT followed by
SAT�e as the previous step. As for the GRP CDS data set the
initial alignments using MAFFT were well aligned and were
directly used in subsequent steps.

Resulting alignments were trimmed with Phyutility (-clean
0.1). Maximum-likelihood phylogenies were inferred using
RAxML v7.3.5 (Stamatakis 2006) with the model
PROTCATWAG for peptides and the model GTRCAT for
CDS. The resulting trees occasionally still had unusually long
tips that likely arose from misassembly and/or frameshift.
A tip was removed if it was more than 10 times longer
than the average distance to tips seen in its sister clade,
and was longer than 0.75 for MIL, 0.6 for HYM, or 0.1 for
GRP. When monophyletic or paraphyletic tips from the same
taxa were present in a tree, only the one with the highest
number of nonambiguous characters in the trimmed align-
ment was kept as the representative, with the rest removed
(Dunn et al. 2008; Smith, Wilson, et al. 2011).

Finally, branches longer than 1.5 for MIL, 1.0 for HYM,
and 0.3 for GRP were cut. The resulting trees were called
homologous gene trees. Three homologous gene tree sets
were obtained: MIL, GRP (CDS only onwards), and HYM.

Orthology Inference

All homologous gene trees were further pruned to produce
the orthologs containing one sequence per species. Four
alternative strategies were applied for each homolog set
(fig. 1): MI, RT, MO, and 1to1.

We used the MI method (Dunn et al. 2008, 2013; Smith,
Wilson, et al. 2011) to search the homologous gene tree for
the subtree that had the highest number of taxa without any
taxon repeat and cut it off as an ortholog (fig. 1). We then
continued searching the remaining tree with the same cutting
criteria until no subtree with at least eight nonrepeating taxa
could be found. As the remaining tree occasionally contained
tips subtended by long branches as a result of leftover from
pruning off orthologs, a tip was removed if it was more than
ten times longer than the average distance to tips seen in its
sister clade, and was longer than 0.4 for MIL, 0.3 for HYM, or
0.1 for GRP.

The RT (fig. 1) strategy uses predefined outgroups to orient
and extract ingroup clades, and then infer locations of gene
duplication events from the extracted ingroup clade. We first
iteratively searched for the subtree that had the highest
number of ingroup taxa regardless of taxon duplications
and cut it off as a rooted tree. We then traversed this
rooted ingroup tree from the root toward the tips, while
inferring locations of gene duplication events from deep
ones to more recent ones by looking for taxon duplication
between the two sides at each bifurcation. When a gene du-
plication was found at a node, the side with a smaller number
of taxa was pruned to maximize taxon occupancy in the
remaining tree. This paralog pruning procedure was carried
out iteratively on all subtrees until no taxon duplication was
left in any subtree with at least eight taxa. As for homologs
that lack outgroups, only those with no taxon duplication
were included as unrooted ortholog trees. Homologs with
duplicated taxa but no outgroup taxa were ignored due to
difficulties in inferring locations of gene duplications without
rooting. The MIL data set included three non-millipede ar-
thropods forming a successive grade to the millipedes. Two of
the more distantly related outgroups, Ixodes, and Daphnia
were both from genome annotations; whereas the third
taxa, Lithobius, was the closest to the millipedes and was
sampled using RNA-seq. Therefore, we regarded both Ixodes
and Daphnia as “outgroup” in our outgroup-based orthology
inferences, and treated Lithobius as a member of the ingroup.
As for HYM, one single nonaculeate genome-derived Nasonia
was used as the outgroup following the original analysis. For
GRP, the transcriptome-derived outgroup Leea was used fol-
lowing the original analysis.

Although RT is effective for data sets with genome dupli-
cations, outgroups used for extracting rooted clades will be
absent from the final orthologs. A modification for RT is to
root ingroups only when the outgroups are monophyletic and
nonrepeating (MO). By doing so, all taxa will be preserved in
the resulting ortholog sets, while losing a fraction of homologs.

Finally, we also present results using only homologs with-
out any taxon repeat (1to1) for completeness, similar to pro-
cedures that use reciprocal criteria (Ebersberger et al. 2009;
Schreiber et al. 2009).

Estimating Species Tree

Following ortholog inference, an alignment was obtained for
each ortholog by extracting aligned sequences from the

3090

Yang and Smith . doi:10.1093/molbev/msu245 MBE

-
``
''
Markov clustering
-
-
-
(
a
t
-
Maximum 
-
c
rooted tree (
)
m
onophyletic outgroups (
)
 (1to1)
maximum inclusion 
c
-
10 
rooted tree
-
,
s
-
millipede
millipedes
-
ile
millipedes
``
''
-
While 
-


homologs. The resulting alignments were trimmed with
Phyutility (-clean 0.3) for HYM and GRP. Because MIL had
more divergent sequences, alignments were trimmed with
Gblocks v0.91b (Talavera and Castresana 2007; Soria-
Carrasco and Castresana 2008) using the same settings as of
Brewer and Bond (2013). For the final supermatrices, we only
included trimmed ortholog alignments that were at least 100
aa for MIL and HYM, or 300 nt for GRP in trimmed length,
and each ortholog had no more than one missing taxon for
MIL, and only orthologs with the full taxon set for HYM and
GRP.

Maximum-likelihood trees were estimated using RAxML
with PROTCATWAG model for the MIL and HYM data sets,
and in ExaML v2.0.4 (Stamatakis et al. 2012) with GTRCAT for
the GRP data set, partitioning each ortholog. Conflicts among
orthologs were estimated by 200 jackknife replicates each
resampling a fixed proportion (10% or 30%), or a fixed
number of 20 orthologs keeping each ortholog intact.
Finally, despite the recognition that the bootstrap method
may provide a poor measurement of confidence in genome-
wide data sets (Salichos and Rokas 2013), we carried out 200
rapid bootstrap replicates for the HYM and MIL data sets to
compare to their respective original analyses.

Supplementary Material
Supplementary tables S1 and S2 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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