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OBJECTIVE—Autoimmune diabetes in the nonobese diabetic
(NOD) mouse model results from a breakdown of T-cell toler-
ance caused by impaired tolerogenic dendritic cell development
and regulatory T-cell (Treg) differentiation. Re-establishment of
the Treg pool has been shown to confer T-cell tolerance and
protection against diabetes. Here, we have investigated whether
murine thymic stromal lymphopoietin (TSLP) re-established
tolerogenic function of dendritic cells and induced differentiation
and/or expansion of Tregs in NOD mice and protection against
diabetes.

RESEARCH DESIGN AND METHODS—We examined the
phenotype of TSLP-conditioned bone marrow dendritic cells
(TSLP-DCs) of NOD mice and their functions to induce nonin-
flammatory Th2 response and differentiation of Tregs. The func-
tional relevance of TSLP and TSLP-DCs to development of
diabetes was also tested.

RESULTS—Our results showed that bone marrow dendritic
cells of NOD mice cultured in the presence of TSLP acquired
signatures of tolerogenic dendritic cells, such as an absence of
production of pro-inflammatory cytokines and a decreased ex-
pression of dendritic cell costimulatory molecules (CD80, CD86,
and major histocompatibility complex class II) compared with
LPS-treated dendritic cells. Furthermore, TSLP-DCs promoted
noninflammatory Th2 response and induced the conversion of
naı̈ve T-cells into functional CD4�CD25�Foxp3� Tregs. We
further showed that subcutaneous injections of TSLP for 6 days
or a single intravenous injection of TSLP-DCs protected NOD
mice against diabetes.

CONCLUSIONS—Our study demonstrates that TSLP re-estab-
lished a tolerogenic immune response in NOD mice and protects
from diabetes, suggesting that TSLP may have a therapeutic
potential for the treatment of type 1 diabetes. Diabetes 57:
2107–2117, 2008

D
endritic cells are professional antigen-present-
ing cells (APCs) that have the potential to
induce immune response and T-cell tolerance
(1). Immature or semimature tolerogenic den-

dritic cells have been shown to induce and maintain
peripheral T-cell tolerance, whereas terminally differenti-
ated mature dendritic cells induce the development of
effector T-cells (1). Tolerogenic dendritic cells (tDCs)
produce interleukin (IL)-10 and have impaired abilities to
synthesize IL-12p70 and indolamine 2,3-dioxygenase and
to activate T-cells in vitro (2). Conditioning dendritic cells
with granulocyte macrophage–colony-stimulating factor
(GM-CSF) (3), IL-10, and/or transforming growth factor-�
(TGF-�) (4,5) as well as 1,25-dihydroxyvitamin D3 (6) has
been shown to promote tDCs that induce Th2 response
and/or differentiation of CD4�CD25�Foxp3� regulatory
T-cells (Tregs). When injected in mice, tDCs were able to
suppress acute graft-versus-host disease (7) and autoim-
munity (8). Recently, we and others have shown that
injections of GM-CSF prevented the development of auto-
immune diseases by increasing the number of semimature
tDCs and by inducing Treg differentiation (9–11).

Tregs arise during the normal process of T-cell matura-
tion in the thymus, and their differentiation can be induced
in the periphery by conversion of CD4�CD25�Foxp3� into
CD4�CD25�Foxp3� Tregs (12–14). Tregs are crucial for
suppressing autoimmune responses and maintaining pe-
ripheral immunological tolerance (15). The influence of
Tregs in maintaining T-cell tolerance is strongly supported
by the observations of the development of autoimmune
syndromes in mice lacking Tregs and by the findings that
defects in Foxp3 gene expression in humans and mice lead
to autoimmune syndromes in early life (16,17). In agree-
ment with these observations, prevention of rheumatoid
arthritis, inflammatory bowel disease, and type 1 diabetes
has been achieved by reconstitution of autoimmune-prone
mice with Tregs (18).

Autoimmune diabetes in the nonobese diabetic (NOD)
mouse model results from a breakdown of T-cell tolerance
due to impaired development of tDCs and Treg differenti-
ation (19,20). In addition, bone marrow–derived dendritic
cells (BM-DCs) of NOD mice were shown to express
abnormal levels of costimulatory molecules under pro-
inflammatory conditions and increased capacity to secrete
IL-12p70 and to stimulate CD4� and CD8� T-cells (21–23).
Consequently, the capacity of dendritic cells in NOD mice
to sustain the pool and suppressive function of Tregs is
altered, which leads to progression of type 1 diabetes
(24,25).

From the Department of Pediatric, Immunology Division, Centre de Recher-
che Clinique, Faculty of Medicine and Health Sciences, University of
Sherbrooke, Sherbrooke, Quebec, Canada.

Corresponding author: Dr. Abdelaziz Amrani, abdelaziz.amrani@usherbrooke.ca.
Received 11 February 2008 and accepted 6 May 2008.
Published ahead of print at http://diabetes.diabetesjournals.org on 13 May

2008. DOI: 10.2337/db08-0171.
© 2008 by the American Diabetes Association. Readers may use this article as

long as the work is properly cited, the use is educational and not for profit,
and the work is not altered. See http://creativecommons.org/licenses/by
-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked “advertisement” in accordance

with 18 U.S.C. Section 1734 solely to indicate this fact.

ORIGINAL ARTICLE

DIABETES, VOL. 57, AUGUST 2008 2107



Thymic stromal lymphopoietin (TSLP) was first identi-
fied in conditioned medium supernatants of the mouse
thymic stromal cell line Z210R.1 (26). TSLP, a member of
the IL-7 cytokine family, is preferentially expressed by
epithelial cells mainly in the lung, skin, and gut (27,28).
Recently, clues for a function of TSLP in humans came
from two observations. TSLP was found to be selectively
expressed by thymic epithelial cells of Hassall’s corpus-
cles, and TSLP-activated dendritic cells (TSLP-DCs) in-
duced differentiation of CD4�Foxp3� thymocytes into
CD4�Foxp3� Tregs (29). Recently, Jiang et al. (30) have
reported that TSLP produced by mouse medullary thymic
epithelial cells contribute to Foxp3� expression and Treg
maturation. In addition, Lee et al. (31) have shown that
TSLP triggered the conversion of thymic Foxp3�CD4�

T-cells into Foxp3� T-cells in a dendritic cell–independent
manner.

Here, we have investigated whether murine TSLP-DCs
and TSLP induce differentiation and/or expansion of Tregs
in the NOD mouse model and protection against diabetes.
We found that TSLP-DCs acquire signatures of tDCs and
induce the conversion of naı̈ve T-cells into functional
Tregs. We have further shown that subcutaneous injec-
tions of TSLP or a single intravenous injection of TSLP-
DCs protects NOD mice against diabetes. Our data are the
first to report that TSLP induces a tolerogenic immune
response and protects against diabetes in NOD mice.

RESEARCH DESIGN AND METHODS

NOD/Ltj mice were from The Jackson Laboratories (Bar Harbor, ME).
8.3-NOD mice obtained from Dr. P. Santamaria (Microbiology and Infectious
Diseases, University of Calgary, Alberta, Canada) have been described previ-
ously (32). The mice were housed under pathogen-free conditions, in accor-
dance with the guidelines of the local institutional animal care committee.
Antibodies and reagents. Anti–CD8�-PE (clone 53–6.7), anti–CD4-fluores-
cein isothiocyanate (FITC)/biotin/APC (clone GK1.5), anti–CD25-FITC (clone
7D4), anti–CD11b-FITC (clone M1/70), anti–CD11c-FITC/biotin (clone HL3),
anti–CD80-biotin (clone 16-10A1), anti–CD86-biotin (clone GL1), and anti–I-
Ag7-biotin (clone 10-3.6) antibodies, and streptavidin-PerCP were from Becton
Dickinson (San Jose, CA). Anti–Foxp3-FITC/PE (FJK-16s) and anti-Rat IgG2a
(eBR2a) antibodies were from eBiosciences (San Diego, CA). Anti-CD3 anti-
body (clone 145-2C11) was from Dr. P. Santamaria. The NRP-A7 peptide, a
mimotope of the endogenous IGRP peptide that is recognized by the TCR of
8.3 CD8� T-cells, and tumor-derived negative control peptide (TUM) were
from C. Servis (Biochemistry Institute, Lausanne University, Switzerland).
Murine recombinant TSLP (lot no. ELR0307011) was from R&D Systems
(Minneapolis, MN).
Treatment and dendritic cells transfer. Female NOD/Ltj mice were
injected subcutaneously with recombinant mouse TSLP (500 ng � 200 �l�1 �
mouse�1 � day�1) or PBS for 6 days. In dendritic cell transfer experiments,
3-week-old female NOD/Ltj mice received one intravenous injection of TSLP-
DCs or LPS-DCs (5 � 106 cells/mouse). Diabetes was monitored by a urine
glucose test using Uristix (Bayer, Minneapolis, MN), and blood glucose was
measured with an Advantage Accu-Check glucometer (Roche Diagnostics,
Indianapolis, IN). The animals were considered diabetic after two positive
Uristix readings or when blood glucose was �15 mmol/l.
T-cell isolation. CD4� T-cell subpopulations and CD8� T-cells were purified
using antibody-coated magnetic beads from Miltenyi Biotec (Bergish Glad-
bach, Germany).
Generation of BM-DCs. BM-DCs were generated with GM-CSF and IL-4 as
previously described (33). On day 7, dendritic cells were left unstimulated
(immature DCs [iDCs]) or exposed (48 h) to 1 �g/ml LPS (Sigma-Aldrich, St.
Louis, MO) or 20 ng/ml TSLP (R&D Systems).
Proliferation assays and cytokine quantification. CD8� T-cells (2 � 104

lymphocytes/well) were incubated with 1 �g/ml NRP-A7 peptide– or 1 �g/ml
TUM peptide–pulsed irradiated dendritic cells (5 � 103 cells/well) for 3 days
at 37°C. CD4� T-cells (2 � 104 lymphocytes/well) were incubated with a
combination of 5 �g/ml anti-CD3 and 20 units/ml IL-2 in the presence of
irradiated dendritic cells (5 � 103 cells/well) under similar conditions.
Supernatants were collected 48 h later for cytokine quantification using ELISA

kits (R&D Systems). Cultures were pulsed with 1 �Ci [3H]thymidine/well
during the last 18 h and radioactivity was counted.
Foxp3 expression. Foxp3 staining was assessed by intracellular staining
using FITC–anti-mouse/rat staining kit (eBiosciences, San Diego, CA) (11).
Cells were analyzed using the CellQuest (BD Biosciences) or the FCS express
V3 software (De Novo Software, Los Angeles, CA).
CFSE-based killing assay. Killing assays were adapted from the technique
of Jedema et al. (34). Briefly, RMAS-Kd cells (preincubated at 26°C overnight)
were labeled with CFSE, washed, and resuspended (5 � 104 cells/ml) in
lymphocyte complete medium. Carboxy fluorescein diacetate succinimidyl
ester (CFSE)-labeled RMAS-Kd cells (5 � 103 cells � 100 �l�1 � well�1) were
pulsed with NRP-A7 or TUM (1 �g/ml) and used as target cells. Effector
8.3-CD8� T-cells were added at 1:2, 1:4, and 1:10 target:effector ratios. The
plates were incubated at 37°C for 6 h and analyzed by fluorescence-activated
cell sorter (FACS). The percentage of survival was calculated as follows: %
survival � [number of viable CFSE� target cells (t � 6 h)]/[number viable
CFSE� target cells (t � 0)] � 100.
T-cell and BM-DC co-cultures. BM-DCs were cultured for 48 h in the
presence of LPS or TSLP, extensively washed, and resuspended in fresh
medium. Dendritic cells were then co-cultured with total splenic T-cells,
purified CD4�CD25� T-cells, or purified CD4�CD25� T-cells in round-bottom
anti-CD3–coated 96-well culture plates in LCM containing 20 units/ml IL-2.
Cultures were done in triplicate at a 1:4 dendritic cell:T-cell ratio.
Suppression assays. Purified CD4�CD25� T-cells cultured in the presence of
iDCs, LPS-DCs, or TSLP-DCs for 3 or 7 days were co-cultured with purified
8.3-CD8� T-cells at a 1:1 ratio in the presence of 1 �g/ml peptide-pulsed APCs
(105 irradiated splenocytes/well) for 3 days at 37°C as described previously
(11). Cells were pulsed with 1 �Ci [3H]thymidine/well during the last 18 h and
radioactivity was counted.
Histopathology. Pancreata were fixed in formalin, embedded in paraffin,
sectioned, and stained with hematoxylin-eosin. Islet insulitis was scored as
described previously (11).
Statistical analyses. Student’s t test and 	2 tests were used to determine the
statistical significance, which was set at the 95% confidence level.

RESULTS

TSLP-DCs display a tolerogenic phenotype. We first
examined the effect of TSLP on the phenotype of BM-DCs
generated with GM-CSF and IL-4. As expected, nonstimu-
lated BM-DCs expressed low levels of CD80, CD86, and
major histocompatibility complex (MHC) class II mole-
cules, a characteristic of iDCs (Fig. 1A), and further
stimulation with LPS (LPS-DCs) increased levels of CD80,
CD86, and MHC class II (Fig. 1A), a characteristic of fully
mature dendritic cells. Interestingly, iDCs exposed to
TSLP (TSLP-DCs) expressed levels of CD80, CD86, and
MHC II intermediate between those expressed by iDCs
and fully mature LPS-DCs (Fig. 1A and B). The phenotype
observed in the case of TSLP-DCs was characteristic of
semimature dendritic cells. Furthermore, TSLP-DCs ex-
pressed low levels of OX40L (CD134) than LPS-DCs (Fig.
1A and B). Together, these results suggested that TSLP-
DCs acquired a semimature phenotype.

We next quantified tumor necrosis factor-� (TNF-�),
interferon-
 (IFN-
), and IL-12p70 in the supernatants of
iDCs, LPS-iDCs, and TSLP-DCs. Consistent with previous
studies (21,35), we found that LPS-DCs of NOD mice
produced high amounts of TNF-�, IFN-
, and IL-12p70,
whereas TSLP-DCs produced low or barely detectable
amounts of IFN-
, TNF-�, and IL-12p70 (Fig. 1C). These
data suggested that, in contrast to fully mature LPS-DCs of
NOD mice, TSLP-DCs adopt a semimature phenotype and
halt their production of inflammatory cytokines.
TSLP-DCs induce antigen-specific CD8� T-cells to
proliferate and to differentiate into cytotoxic T-cells.
The capacity of TSLP-DCs to activate and differentiate
NRP-A7–reactive 8.3-CD8� T-cells into cytotoxic T-cells
was compared with iDCs and LPS-DCs. Data showed no
differences in the antigen-specific proliferation of 8.3-
CD8� T-cells in the presence of iDCs, LPS-DCs, or
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TSLP-DCs (Fig. 2A). To determine whether TSLP-DCs
induced naı̈ve 8.3-CD8� T-cells to produce Tc1 or Tc2
cytokines, we quantified IL-2, IFN-
, and IL-4. There
were no differences in the amounts of IL-2 and IFN-

produced by 8.3-CD8� T-cells primed with iDCs, LPS-
DCs, or TSLP-DCs (Fig. 2B and C). In addition, no IL-4
was detected under all experimental conditions (data
not shown). To investigate whether TSLP-DCs affected

differentiation of naı̈ve 8.3-CD8� T-cells into cytotoxic
T-cells, we tested the capacity of 8.3-CD8� T-cells
cultured with iDCs or LPS-DCs or TSLP-DCs to kill
RMAS-Kd cells (34). Similar levels of cytotoxic activity
were detected in 8.3-CD8� T-cells primed with NRP-A7–
pulsed iDCs, LPS-DCs, or TSLP-DCs (cytolytic activities
were 41.0 � 7.45, 50.0 � 7.04, and 50.74 � 3.45%,
respectively) (Fig. 2D).
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FIG. 1. TSLP-DCs display tolerogenic properties. A: BM-DCs (1 � 105 cells/well) were cultured for 2 days in the absence of stimulus (iDCs) or
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0.01, and ***P < 0.001.
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TSLP-DCs differentiate CD4� T-cells into noninflam-
matory Th2 cells. Human TSLP-DCs induce a robust
expansion of CD4� T-cells that can differentiate into
noninflammatory or inflammatory Th2 cells (36–38).
Therefore, we examined the ability of TSLP-DCs to polar-
ize CD4� T-cells into Th2 cytokine-producing cells. Prolif-
eration and cytokine production by splenic CD4� T-cells
were determined by incubating naı̈ve CD4� T-cells with
anti-CD3 and IL-2 in the absence or presence of allogeneic
iDCs, LPS-DCs, or TSLP-DCs following the protocol of
Watanabe et al. (29). Whereas, anti-CD3 and IL-2 induced
moderated proliferation of CD4� T-cells, a combination of
anti-CD3 and IL-2 with iDCs, LPS-DCs, or TSLP-DCs
induced 4.1-, 3.8-, and 4.5-fold increases of CD4� T-cell
proliferation, respectively (Fig. 3A). We next examined
cytokine production and found that CD4� T-cells cultured
with TSLP-DCs produced significantly high amounts of
Th2 cytokines, such as IL-4, and low amounts of IFN-
, as
reported previously (38). Furthermore, these cells pro-
duced more TGF-� and IL-10 than naı̈ve CD4� T-cells
cultured with iDCs or LPS-DCs (Fig. 3B).
CD4� T-cells expanded with TSLP-DCs are enriched
in Tregs. We next determined whether the increased
production of IL-10 and TGF-� was due to an increased
pool of Tregs within the population of CD4� T-cells
cultured in the presence of TSLP-DCs. The percentage of

CD4�CD25�Foxp3� T-cells present in CD4� T-cells ex-
panded with a combination of anti-CD3 and IL-2, in the
absence or presence of iDCs, LPS-DCs, or TSLP-DCs, was
analyzed by FACS (Fig. 4). Results showed that after 7
days of culture, CD4� T-cells activated in the absence of
dendritic cells or in the presence of iDCs or LPS-DCs
contained 6.12 � 0.55, 6.68 � 0.73, and 6.86 � 0.23% of
CD4�CD25�Foxp3� T-cells, respectively (Fig. 4A and B).
Of significance, CD4� T-cells co-activated in the presence
TSLP-DCs contained nearly twice as much Foxp3�CD4�

T-cells (11.25 � 1.33%, P � 0.05) as CD4� T-cells co-
activated in the presence of iDCs or LPS-DCs (Fig. 4A and
B).
TSLP-DCs induced expansion and differentiation of
CD4�CD25�Foxp3� Tregs in vitro. We next investi-
gated whether the increased number of Tregs in splenic
CD4� T-cells co-activated in the presence of TSLP-DCs
resulted from an expansion of Tregs and/or the Treg
differentiation. Purified CD4�CD25� (Foxp3�) and CD4�

CD25� (Foxp3�) were cultured with anti-CD3 and IL-2
in the absence of dendritic cells or presence of iDCs,
LPS-DCs, or TSLP-DCs. The expansion of CD4�CD25�

Foxp3� T-cells was determined by [3H]thymidine incorpo-
ration assay. Stimulation with anti-CD3 and IL-2 induced
marginal proliferation of CD4�CD25� T-cells, whereas
co-activation with iDCs or LPS-DCs weakly increased
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proliferation (Fig. 5A). In contrast, TSLP-DCs induced
robust proliferation (Fig. 5A), as previously reported (29).

The role of TSLP-DCs in de novo differentiation of
CD4�CD25�Foxp3� Tregs was investigated in the same
allogeneic assay using purified naı̈ve CD4�CD25� T-cells
of NOD mice. The combination of anti-CD3 and IL-2 did
not induce expression of Foxp3� (data not shown). At day
3, TSLP-DCs induced a moderate (3.32 � 0.18%) but
significant (P � 0.01) higher percentage of Foxp3�CD4�

T-cells compared with cells cultured in the presence of
iDCs or LPS-DCs (1.80 � 0.11 and 1.38 � 0.09%, respec-
tively) (Fig. 5B). Of importance, the percentage of Foxp3�

CD4� T-cells further increased in the presence of TSLP-
DCs (13.78 � 1.84%) in comparison with cultures per-
formed in the presence of iDCs (8.23 � 0.38%) or LPS-DCs
(4.54 � 0.91%), after 7 days of culture (Fig. 5B–D).

Foxp3�-differentiated CD4� T-cells expressed high levels
of CD25, CTLA4, GITR, and CD62L (data not shown).

To confirm that CD4�CD25�Foxp3� Tregs induced by
TSLP-DCs were functional Tregs, we investigated the
capacity of these cells to inhibit the proliferation and
IFN-
 production of diabetogenic 8.3-CD8� T-cells in vitro
(11). Results showed that CD4�CD25�Foxp3� T-cells
activated with anti-CD3 and IL-2 in the absence of den-
dritic cells or in the presence of iDCs or LPS-DCs did not
suppress the proliferation of 8.3-CD8� T-cells (Fig. 5E). In
marked contrast, CD4�CD25�Foxp3� T-cells activated
with anti-CD3 and IL-2 in the presence of TSLP-DCs
decreased the proliferation of 8.3-CD8� T-cells by 50%
(Fig. 5E). The suppressive effect of converted cells was
also observed on IFN-
 release (Fig. 5F). These results
indicated that TSLP-DCs acquired the capacity to induce
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the expansion of Tregs and de novo differentiation of CD4�

CD25�Foxp3� Tregs by conversion of CD4�CD25�

Foxp3� T-cells and/or expansion of CD4�CD25�Foxp3�

T-cells.
TSLP increases the number of Tregs in NOD mice.
The findings that TSLP instructed dendritic cells to acquire
tolerogenic properties in vitro prompted us to investigate
the effect of TSLP on the development of Tregs in NOD
mice. TSLP (500 ng � mouse�1 � day�1) was injected
subcutaneously in the nucchal area for 6 days. The fre-
quency of thymic and peripheral CD4�CD25�Foxp3� T-
cells was determined 24 h and 7 days after the last
injection. Results showed increased percentages of CD4�

CD25�Foxp3� T-cells of TSLP-treated mice compared
with control in the thymus (0.43 � 0.03 vs. 0.27 � 0.03%)
and the spleen (3.92 � 0.13 vs. 2.34 � 0.12%) at 24 h (Fig.
6A and C). There were no changes in lymph nodes. At day
7, the percentage of CD4�CD25�Foxp3� T-cells in the
thymus of TSLP-injected NOD mice decreased to the levels
of control mice (0.31 � 0.03 and 0.27 � 0.03%, respec-
tively). The percentage of Tregs was significantly in-
creased in lymph nodes (4.17 � 0.14%) and spleen (4.19 �
0.23%) compared with control (2.66 � 0.11 and 2.30 �
0.16%, respectively) (Fig. 6B and C), indicating that TSLP
promoted the pool of thymic and peripheral Tregs in NOD
mice.
TSLP-DCs prevent diabetes development in NOD
mice. The in vitro and in vivo studies described above led
us to assess first the capacity of TSLP-DCs to prevent
diabetes development in NOD mice. Therefore, 3-week-old
NOD mice received a single injection of LPS-DCs (control)
or TSLP-DCs and were monitored for diabetes. Diabetes
occurred in 87% of control mice at 12 weeks, whereas only
25% of TSLP-DC–injected mice developed diabetes starting

at 18 weeks (Fig. 7A). The TSLP-DC–induced protection
was maintained up to 45 weeks (P � 0.001; Fig. 7A).
TSLP treatment inhibits diabetes development in
NOD mice. To investigate the capacity of TSLP to protect
against diabetes, 3-week-old NOD mice were treated each
day with a single subcutaneous injection of PBS (control)
or TSLP (500 ng/mouse) for 6 days and followed for
diabetes development. Results showed that at 35 weeks,
almost all control animals had developed diabetes,
whereas 75% of TSLP-treated mice were diabetes free
(blood glucose 5–7 mmol/l) for at least 50 weeks (P �
0.001; Fig. 7A), did not show any signs of side effects, and
were fertile. Histopathological analysis of pancreata of
these animals showed that 93.7% of islets lacked lympho-
cytic infiltration (Fig. 7B). A representative field from
diabetes-free TSLP-treated NOD mice is shown (Fig. 7C).
In contrast, the majority of pancreata from control NOD
mice were devoid of islets (data not shown).

DISCUSSION

We report the ability of murine TSLP to activate dendritic
cells of NOD mice and to blunt their pro-inflammatory
potential. TSLP-DCs induced the conversion of naı̈ve T-
cells of NOD mice into Tregs in vivo and protected NOD
mice from diabetes. We showed for the first time that
injection of TSLP into NOD mice led to an increased
number of Tregs in the thymus followed by increased
peripheral Tregs numbers and conferred a significant
protection against diabetes.

In humans and mice, stimuli such as CD40L or TLR
ligands, LPS, and poly I:C strongly upregulate the expres-
sion of CMH II, CD80, CD86, and CD40 in dendritic cells.
These stimuli induce the maturation of dendritic cells,
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which produce large amounts of inflammatory cytokines,
such as IL-12, TNF-�, IL-1�, and IL-6, which induce Th1
differentiation. However, unlike CD40L and TLR ligands,
human TSLP induces the upregulation of dendritic cells
maturation markers without stimulating the production of

inflammatory cytokines (39). Studies in mice have indi-
cated that TSLP acts directly on early B- and T-cell
development (40,41) and on dendritic cell maturation (42).
Using BM-DCs of NOD mice, we show here that TSLP
promoted a phenotype and a cytokine profile consistent
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with the signature of tolerogenic semimature dendritic
cells reported to be involved in initiating and maintaining
T-cell tolerance (43). Unlike LPS-DCs, TSLP-DCs of NOD
mice displayed less mature phenotypes and switched off
their production of inflammatory cytokines (IL-12p70,
TNF-�, and IFN-
) known to induce a Th1 response.
Consistent with our results, TSLP blunted the production
of IL-12p70, TNF-�, IFN-
, or mRNA encoding IL-12 by
human dendritic cells and type 1 IFN family members that
induce Th1 differentiation (29,44,45). Recent studies have
shown that TSLP-DCs induced the expansion of CD4� and
CD8� T-cells and the differentiation of naı̈ve CD4� T-cells
toward Th2 cells that produced IL-4, IL-13, and TNF-� but
not IL-10 and IFN-
 (38,45). In addition, TSLP-DCs have
been reported to prime CD8� T-cells into IL-5– and
IL-13–producing effector cells exhibiting poor cytotoxic
activity (46). Here, TSLP-DCs of NOD mice induced anti-
gen-specific CD8� T-cell proliferation and differentiation
into cytotoxic T-cells. In addition, TSLP-DCs primed CD4�

T-cells to proliferate and to differentiate into noninflam-
matory Th2 cells that produced large amounts of IL-4 and
IL-10, as reported previously (37). Interestingly, TSLP-DCs
promoted CD4� T-cells to produce large amounts of
TGF-�, a cytokine required for Foxp3 gene expression
during Treg development (47). These data suggested that
TSLP-DC–primed CD4� T-cells contained a high propor-
tion of Foxp3� Tregs. When splenic CD4� T-cells were
cultured in the presence of TSLP-DCs, the percentage of
Foxp3� Tregs was significantly increased compared with
CD4� T-cells primed with LPS-DCs or iDCs. The increase
in the pool of Tregs was not only due to the expansion of
existing Tregs but also to the conversion of CD4�Foxp3�

T-cells into Tregs. Our data were in agreement with a
previous study that showed the capacity of TSLP-DCs to
induce differentiation of Foxp3� T-cells into Tregs and
their expansion using a similar allogeneic culture assay
(29). Moreover, newly formed Tregs displayed character-
istics of naturally occurring Tregs (15), such as expression
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of high levels of CD62L, CTLA-4, and GITR and suppres-
sion of proliferation of CD8� T-cells and IFN-
 production.

In NOD mice, dendritic cell development from myeloid
progenitors is impaired and is associated with abnormal
levels of expression of costimulatory molecules and in-
creased capacity to secrete IL-12p70 and to stimulate
CD4� and CD8� T-cells (21–23). The findings that TSLP
restored tolerogenic functions of BM-DCs of NOD mice
were further extended in in vivo experiments. Results
showed that a single injection of TSLP-DCs in young NOD
mice was sufficient to induce a significant protection
against diabetes, whereas LPS-DC–treated NOD mice
developed accelerated diabetes. This protection re-
sulted from an increased pool of Tregs that exhibited
increased suppressive functions and contained high
proportion of Foxp3high T-cells (G.B., S.G., G.D., A.A.,
unpublished data).

Recently, OX40 engagement of Foxp3� T-cells has been
shown to suppress the induction of Foxp3 driven by
antigen or exogenous TGF-� (48). Here, the conversion of
Foxp3� to Foxp3� CD4� T-cells could be explained by a
reduced expression of OX40L on TSLP-DCs. This possibil-
ity was supported by the findings of enhanced induction of
Foxp3� T-cells when the OX40L/OX40 signaling pathway
was blocked (G.B., S.G., G.D., A.A., unpublished data).
Moreover, the involvement of the OX40/OX40L pathway in
diabetes was consistent with previous reports of diabetes
protection in NOD mice treated with anti-OX40L antibod-
ies and in OX40L�/� NOD mice (49,50). These data sug-
gested the important role of OX40/OX40L interaction in
the differentiation of Tregs and the protection against
diabetes observed here in TSLP-DCs transferred NOD
mice.

Naturally occurring Tregs arise from thymus and are
exported to the peripheral lymphoid organs to contribute
to peripheral tolerance. In NOD mice, the breakdown of
T-cell tolerance is associated with quantitative and quali-
tative decreases in the pool of CD4�CD25� Tregs (24,25).
In view of these observations, several studies have shown
that adoptive transfer of Tregs (51) or reestablishment of
Treg pool using anti-CD3 or GM-CSF treatment (11,52)
were effective in the restoration of T-cell tolerance and
consequent protection from diabetes. Here, subcutaneous
injections of TSLP in NOD mice led to increased number
of Tregs in the thymus and, subsequently, in the peripheral
organs (spleen and lymph node), confirming the capacity
of TSLP to promote Treg differentiation in vivo. Although
TSLP appears to act on dendritic cells in the human
system and on dendritic cells and T-cells in the murine
system (39), increased Treg pool in the thymus may result
from a direct effect of TSLP on T-cells or on dendritic cells.
The underlying mechanisms of increased Tregs have not
been fully elucidated. The involvement of dendritic cells
with tolerogenic properties in TSLP-protected NOD mice
is supported by in vitro data. Furthermore, FITC skin
painting experiments clearly showed that TSLP injection
mobilized skin dendritic cells to the thymus, suggesting
involvement of such dendritic cells in thymic Treg differ-
entiation (data not shown). Whereas Tregs were increased
in the spleen and lymph nodes 7 days after injection, the
pool of thymic Tregs decreased to the levels observed in
control mice. These data suggested that positively selected
thymic Tregs were exported to the periphery and contrib-
uted to the Treg pool required for efficient induction and
maintenance of T-cell tolerance in NOD mice. However,
induction of Treg differentiation in the periphery by immi-
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grant TSLP-conditioned skin dendritic cells cannot be
excluded. This possibility is under current investigations
in our laboratories. The induction of tolerogenic function
of dendritic cells and increased Tregs in TSLP-treated
mice could unveil potential therapeutic treatments of
autoimmune diabetes.

In conclusion, our study showed for the first time that
the existing default of tolerance in autoimmune diabetes in
NOD mice could be restored by TSLP through induction of
tolerogenic dendritic cells, resulting in Treg differentiation
and promotion of noninflammatory IL-10–producing Th2
cells that are a hallmark immune response involved in the
prevention of autoimmune diabetes.
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