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This paper proposes an approach to linguistic multiple attribute decision-making problems with interactive unbalanced linguistic
assessment information by unbalanced linguistic generalized Heronian mean aggregation operators. First, some generalized
Heronian mean aggregation operators with unbalanced linguistic information are proposed, involving the unbalanced linguistic
generalized arithmetic Heronian mean operator and the unbalanced linguistic generalized geometric Heronian mean operator.
For the situation that the input arguments have different degrees of importance, the unbalanced linguistic generalized weighted
arithmetic Heronian mean operator and the unbalanced linguistic generalized weighted geometric Heronian mean operator are
developed.Thenwe investigate their properties and someparticular cases. Finally, the effectiveness anduniversality of the developed
approach are illustrated by a low-carbon tourist instance and comparison analysis. A sensitivity analysis is performed as well to test
the robustness of proposed methods.

1. Introduction

As an important part of multicriteria decision-making, mul-
tiple attribute decision-making (MADM) [1] and multiob-
jective decision-making build up the multicriteria decision-
making system. The MADM concentrates research on dis-
crete finite alternatives. The essence of MADM is ranking
for the given alternatives and selecting the most desirable
one. In order to integrate the individual preference value
into a collective one, various operators have been presented
during the past few years, such as the ordered weighted
average (OWA) operator [2] which pays attention to the
ordered position of each input datum, the ordered weighted
geometric (OWG) operator [3], the dependent uncertain
OWA (DUOWA) operator [4, 5], and the generalized OWA
(GOWA) operator by adding an attitude parameter [6].
Zhou and Chen [7] investigated the continuous generalized
OWA operator. Merigo [8, 9] presented the induced uncer-
tain heavy OWA operators and induced generalized OWA

(IGOWA) operator by using induced variables. Liao and Xu
[10, 11] investigated the hybrid aggregation operators which
consider the weight of arguments and their positions simul-
taneously. Liu et al. [12] presented some q-Rung Orthopair
Fuzzy Aggregation Operators which could describe the space
of uncertain information broadly.

However, the above aggregation operators have one thing
in common: all input arguments are irrelevant, which is not
realistic. The Heronian mean (HM) operator can overcome
the drawback and has been improved to be an aggregation
operator in [13]. Subsequently, a new range of extensions have
been proposed, like the generalized Heronian mean (GHM)
operator [14, 15], the intuitionistic fuzzy geometric HM
(IFGHM) operator [16], the uncertain linguistic Heronian
mean (ULHM) aggregation operators [17, 18], partitioned
Heronian means operator [19], and Heronian aggregation
operators of intuitionistic fuzzy numbers [20]. The Heronian
mean operator has some particular characteristics that the
others do not have. Contrasting the Choquet integral or
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power average operator which stresses on weight changes
subjectively or objectively, Heronian mean focuses on aggre-
gated arguments themselves. For a set of criteria values𝑒𝑖(𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛), the Bonferroni mean operator only considers
the correlation between 𝑒𝑖 and 𝑒𝑗(𝑖 ̸= 𝑗). However, the
relationship between 𝑒𝑖 and itself can not be considered. The
Heronianmean operator can solve the correlation of both the
different criteria values 𝑒𝑖, 𝑒𝑗(𝑖 < 𝑗) and the criteria value 𝑒𝑖
itself.

With the development of society, the decision-making
information is more and more fuzzy or uncertain [21, 22]. It
is more suitable and reasonable to express the preference in
the form of linguistic information rather than real number.
Some fuzzy linguistic approaches were firstly introduced by
Zadeh [23]. Later on, a series of extended linguistic term
sets have been developed, such as intuitionistic linguistic
term set (ILTS) [24–28], 2-tuple linguistic term set (2TLTS)
[19, 29–33], virtual linguistic term set (VLTS) [34], proba-
bilistic linguistic term set (PLTS) [35], and hesitant fuzzy
linguistic tern set (HFLTS) [36]. The ILTS was introduced
by Wang and Li [36] which has three main parts: linguistic
terms, membership function, and nonmembership function.
Herrera and Martinez [37] presented 2-tuple linguistic (2TL)
model which can avoid information loss validly. To preserve
all the given information, Xu [34] extended the original
linguistic term set to a continuous linguistic term set and
introduced the concept of the virtual linguistic term. Some
researchers have reported that the computational models of
both the 2-tuple linguistic model and the virtual linguistic
model are equivalent [38, 39]. In consideration of the possible
uncertainties in linguistic expression, the probability linguis-
tic term set (PLTS) [35] was developed through adding the
probabilities without loss of any original linguistic variables.
TheHFLTS, combining the LTS and the HFS, was introduced
by Rodŕıguez et al. [40]. It is a more reasonable information
expression form, which can be used to describe people’s
subjective cognitions.

Obviously, the above linguistic aggregation operators are
based upon symmetrically and uniformly placed linguistic
term set. However, it is necessary to give evaluations by using
nonsymmetrically and nonuniformly distributed linguistic
terms [41] in some cases. For example, when assessing a
person’s ability, the linguistic term set used by experts is{extremely bad, bad,medium, almost good, good, quite good,
very good, extremely good, perfect}.The number of the terms
lying on the left of the central term “medium” (two) is less
than that on the right one (six). To overcome the drawback,
the unbalanced linguistic representation model has been
presented in [42]. Subsequently, the unbalanced linguistic
aggregation operators were introduced, for instance, the
unbalanced linguistic OWG (ULOWG) operator [43], the
unbalanced linguistic weighted OWA (ULWOWA) operator
[41], and the unbalanced linguistic power average (ULPA)
operator [44]. Furthermore, unbalanced linguistic aggrega-
tion operators in risk analysis were also investigated in [45,
46].

Through the above analysis, it is very important and
necessary to develop the Heronian mean operator to cope
with unbalanced linguistic information.Thus, the aim of this

paper is to solvemultiple attribute decision-making problems
inwhich the evaluation information is correlative unbalanced
linguistic information by combining the Heronian mean
operator with unbalanced linguistic variables. We first intro-
duce the unbalanced linguistic generalized arithmetic Hero-
nian mean (ULGAHM) operator and the unbalanced lin-
guistic generalized geometric Heronian mean (ULGGHM)
operator.Themost crucial advantage of these operators is that
they could take into account correlation of input variables and
deal with unbalanced linguistic information. For the situation
that different attributes have different degrees of importance,
the unbalanced linguistic generalized weighted arithmetic
Heronian mean (ULGWAHM) operator and the unbalanced
linguistic generalized weighted geometric Heronian mean
(ULGWGHM) operator are presented and applied toMADM
problems. The motivation of this paper is reposed on the
following facts:

(i) The existing aggregation operators with unbalanced
linguistic information are mainly concentrated on the OWA
and OWG operator. There was less research about Heronian
mean operator with unbalanced linguistic information.

(ii) The generalized Heronian mean aggregation opera-
tors can reflect the relationship of both the different criteria
values 𝑒𝑖, 𝑒𝑗(𝑖 < 𝑗) and the criteria value 𝑒𝑖 itself. In addition,
they have flexible parameters 𝑝 and 𝑞, and we could select the
appropriate𝑝 and 𝑞 tomeet the different actual requirements.

(iii) Zou [43] just considered the weights of criteria in
unbalanced linguistic environment. Meng [44] considered
the weights of both experts and attributes. However, both
of them ignore the relationship of input arguments. The
multiple attribute decision-making [43, 44] can not deal with
the situation where the assessment is in form of interrelated
unbalanced linguistic information. Jiang [45] emphasized the
changing of the weight of aggregation operator not the input
arguments themselves. These new Heronian mean operators
with unbalanced linguistic information could be used to solve
above cases effectively.

The rest of the paper is arranged as follows: Section 2
introduces some basic concepts and notions. Some oper-
ational laws for unbalanced linguistic 2-tuple are defined
in Section 3. In Section 4, some existing Heronian mean
operators are reviewed and further we developed some new
unbalanced linguistic generalized Heronian mean operators
and investigated the properties and particular cases. Section 5
presents themultiple attribute decision-making problemwith
unbalanced linguistic information. Subsequently, an actual
example is given in Section 6. Section 7 concludes the
comparison analyses with other methods. Finally, the paper
is summarized in Section 8.

2. Preliminaries

In this section, we briefly review the linguistic approach and
the unbalanced linguistic representation model.

2.1. The Linguistic Approach. As an approximate technique,
the linguistic approach [23] expresses the qualitative infor-
mation in form of linguistic values of linguistic labels. Let 𝑆 ={𝑠0, 𝑠1, . . . , 𝑠𝑔} be a linguistic term set. The label 𝑠𝛼 represents
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a possible value of linguistic labels. For instance, a linguistic
term set of seven labels could be given as follows:

S = {s0 = none (N) , s1 = very bad (VB) , s2= (bad)B, s3 = (medium)M, s4 = (good)G, s5= (very good)VG, s6 = (perfect)P} (1)

where the central label 𝑠3 represents the mediocre comment
and the others sit on either side of the central one symmet-
rically and uniformly. Generally, 𝑆 should meet the following
features:

(1) A negation operator: Neg(𝑠𝑖) = 𝑠𝑔+1−𝑖.
(2) An order: 𝑠𝑖 ≥ 𝑠𝑗 if and only if 𝑖 ≥ 𝑗.
(3) A max operator: max(𝑠𝑖, 𝑠𝑗) = 𝑠𝑖 if 𝑠𝑖 ≥ 𝑠𝑗; a min

operator: min(𝑠𝑖, 𝑠𝑗) = 𝑠𝑖 if 𝑠𝑖 ≤ 𝑠𝑗.
In order to avoid information loss effectively, Herrera [37]

introduced the 2-tuple fuzzy linguistic representation model
which is composed of a linguistic label 𝑠𝑖 and a real number𝛼 ∈ [−0.5, 0.5) denoting the value of symbolic translation.

Definition 1 (see [37]). Let 𝑆 = {𝑠0, 𝑠1, . . . , 𝑠𝑔} be a linguistic
term set and let 𝛽 ∈ [0, g] be a number value representing the
aggregation result of linguistic symbolic.Then the functionΔ
is defined as follows:Δ : [0, g] 󳨀→ S × [−0.5, 0.5) (2)Δ (𝛽) = (𝑠𝑖, 𝛼)

with
{{{
𝑠𝑖𝛼 = 𝛽 − 𝑖 𝑖 = 𝑟𝑜𝑢𝑛𝑑 (𝛽)𝛼 ∈ [−0.5, 0.5) (3)

where round (⋅) is the integer operator, 𝑠𝑖 is the closest index
label to 𝛽, and 𝛼 is the value of symbolic translation.

Definition 2 (see [37]). Let 𝑆 = {𝑠0, 𝑠1, . . . , 𝑠𝑔} be a linguistic
term set and let (𝑠𝑖, 𝛼𝑖) be a linguistic 2-tuple. Then the
equivalent numerical value 𝛽 ∈ [0, 𝑔] to a 2-tuple (𝑠𝑖, 𝛼𝑖) can
be obtained by the following function Δ−1 : 𝑆 × [−0.5, 0.5) →[0, 𝑔] Δ−1 (𝑠𝑖, 𝛼) = 𝛼 + 𝑖 = 𝛽 (4)

We can convert a linguistic term to a linguistic 2-tuple by
adding a value 0 as symbolic translation:Δ (𝑠𝑖) = (𝑠𝑖, 0) . (5)

The computational model of 2-tuple linguistic infor-
mation has been developed, such as 2-tuple comparison
operator, 2-tuple negation operator, and a wide range of 2-
tuple aggregation operators.

2.2. The Unbalanced Linguistic Representation Model. The
unbalanced linguistic representation model was introduced
by Herrera [42]. The advantage of this model is that it
can manage the linguistic assessment variables which are
nonuniformly and nonsymmetrically distributed.

N M H PVH

Figure 1: Unbalanced linguistic term set.

Definition 3 (see [42]). If a linguistic term set S has a
maximum linguistic term, a minimum linguistic term, and
a central linguistic term and other terms are nonuniformly
and nonsymmetrically distributed around the central one on
both left and right lateral sets, i.e., the different discrimination
levels on both sides of central linguistic term, then this type
of linguistic term sets is called unbalanced linguistic term
sets. An unbalanced linguistic term set S can be noted as𝑆 = 𝑆𝐿 ∪ 𝑆𝐶 ∪ 𝑆𝑅, in which 𝑆𝐶 contains the central linguistic
term merely and 𝑆𝐿 contains all left linguistic terms lower
than the central one. Similarly, 𝑆𝑅 contains all right linguistic
terms higher than the central one.

Example 4. When experts try to evaluate the “comfort” of a
car, the linguistic assessment set is S= {N (none), M (middle),
H (high), VH (very high), P (perfect)}, in which 𝑆𝐿 = {𝑁},𝑆𝐶 = {𝑀}, 𝑆𝑅 = {𝐻,𝑉𝐻, 𝑃}. Obviously, it has the minimum
linguistic term N, the maximum linguistic term P, and the
central linguistic term M, and the number of terms in the
left is 1 which is lower than that in the right (3). In other
words, discrimination levels on both sides of central linguistic
term are different. So S is an unbalanced linguistic term set
(Figure 1).

In order to transmit the unbalanced linguistic terms into
linguistic 2-tuple information, the concept of a linguistic
hierarchy was defined as follows.

Definition 5 (see [47, 48]). A linguistic hierarchy is a set of all
levels with each level being a linguistic term set of different
granularity. It can be noted as 𝐿𝐻 = ⋃𝑡 𝑙(𝑡, 𝑛(𝑡)), where𝑙(𝑡, 𝑛(𝑡)) is a level belonging to the linguistic hierarchy, 𝑡 is
a number that indicates the level of the hierarchy, and 𝑛(𝑡)
is the granularity of the linguistic term set of t. The set 𝐹𝑃𝑡 ={0, 1/2(𝑛(𝑡)−1), ⋅ ⋅ ⋅ , (2𝑛(𝑡)−1)/2(𝑛(𝑡)−1), 1} is called former
modal points set of the level t.The construction of a LHmust
satisfy linguistic hierarchy basic rules:

Rule 1: to preserve all former modal points of the
membership functions of each linguistic term from
one level to the following one.
Rule 2: to make smooth transitions between succes-
sive levels. The aim is to add a new linguistic term set
in the hierarchy such that a new linguistic term will
be added between each pair of terms belonging to the
term set of the previous level t.

Example 6. A linguistic hierarchy of level 3 could be given as
follows:𝐿𝐻 = 𝑙(1, 3) ∪ 𝑙(2, 5) ∪ 𝑙(3, 9) = {𝑠30, 𝑠31, 𝑠32} ∪ {𝑠50, ⋅ ⋅ ⋅ , 𝑠54} ∪{𝑠90, ⋅ ⋅ ⋅ , 𝑠98}, where n(1)=3, n(2)=5, n(3)=9; that is, the first
level is a linguistic term set of granularity 3, the second level
is a linguistic term set of granularity 5, and the third level
is a linguistic term set of granularity 9. It can be graphically
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l(3,9)

l(2,5)

l(1,3)

Figure 2: Linguistic hierarchies of 3, 5, and 9 labels.

Table 1: Linguistic hierarchies.

Level t=1 t=2 t=3
Granularity n(t)=3 n(t)=5 n(t)=9

shown in Figure 2with the granularity for each linguistic term
set of a LH according to the rules in Table 1.

Definition 7 (see [49]). Let 𝑠𝑛(𝑡)𝑖 be a linguistic termof the level𝑡, then the transformation function from a linguistic level 𝑡 to
another level 𝑡󸀠 is defined as follows:𝑇𝐹𝑡𝑡󸀠 (𝑠𝑛(𝑡)𝑖 , 𝛼𝑛(𝑡))

= Δ 𝑡󸀠 (Δ−1𝑡 (𝑠𝑛(𝑡)𝑖 , 𝛼𝑛(𝑡)) ⋅ (𝑛 (𝑡󸀠) − 1)𝑛 (𝑡) − 1 ) (6)

Example 8. Let (𝑠52, 0.3) be a linguistic 2-tuple representation
of level 2, and its linguistic 2-tuple representation of level 3 is

𝑇𝐹23 (𝑠53, 0.3) = Δ 3(Δ−12 (𝑠52, 0.3) ⋅ (9 − 1)(5 − 1) )
= Δ 3 (4.6) = (𝑠95, −0.4) . (7)

For each label of unbalanced linguistic term set, the
semantic representation can be obtained by using linguistic
hierarchies. The transformation process is illustrated by the
following example.

Example 9. For an unbalanced linguistic term set S = {N, M,
H, VH, P}, it can be transformed to 2-tuple representation
according to the following steps.

Step 1. Due to 𝑆𝐿 = {𝑁}, assume #(𝑆𝐿) represents the number
of linguistic terms in 𝑆𝐿, #(𝑆𝐿) = 1. ∃𝑛(1) = 3 such that (𝑛(1)−1)/2 = 1 = #(𝑆𝐿), and 𝑆𝐿 can be represented by a label of level
1 in LH, i.e.,𝑁 = 𝑠30.
Step 2. Due to 𝑆𝑅 = {𝐻,𝑉𝐻, 𝑃}, suppose #(𝑆𝑅) is the number
of linguistic labels in 𝑆𝑅, #(𝑆𝑅) = 3. ∃𝑛(2) = 5, 𝑛(3) = 9

with (𝑛(2) − 1)/2 = 2 < #(𝑆𝑅) < (𝑛(3) − 1)/2 = 4, and the
semantic representation of 𝑆𝑅 can be got from labels of level 3,
4 in LH. Assume 𝑙𝑎𝑏𝑖 is the number of assigned labels of level
i in LH; according to proposition 3 in [42], 𝑙𝑎𝑏2 = (𝑛(3) −1)/2 − #(𝑆𝑅) = 1 and 𝑙𝑎𝑏3 = 2 can be obtained; that is, 𝑆𝑅 can
be represented by three labels of level 3 and two labels of level
4; i.e.,𝐻 = 𝑠53, 𝑉𝐻 = 𝑠97, 𝑃 = 𝑠98.
Step 3. To bridge representation gaps defined in [42], 𝑆𝐶 can
be represented by the upside of the central label in level 1 and
the downside of level 3, respectively; i.e.,𝑀 = 𝑠31 ∪ 𝑠94.
Step 4. The ultimate representations are as follows:𝑆𝐿 : 𝑁 = 𝑠30;𝑆𝐶 : 𝑀 = 𝑠31 ∪ 𝑠94;𝑆𝑅 : 𝐻 = 𝑠53,𝑉𝐻 = 𝑠97,𝑃 = 𝑠98.

(8)

Definition 10 (see [42]). The transformation function from
an unbalanced linguistic 2-tuple 𝑠𝑖 ∈ 𝑆 to its corresponding
linguistic 2-tuple representation 𝑠𝑛(𝑡)𝑘 in LH is a mapping𝐿𝐻 : 𝑆 × [−0.5, 0.5) → 𝐿𝐻 × [−0.5, 0.5), such that∀𝑠𝑖 ∈ 𝑆, ∃𝑠𝑛(𝑡)𝑘 𝐿𝐻(𝑠𝑖, 𝛼𝑖) = (𝑠𝑛(𝑡)𝑘 , 𝛼𝑖).

Conversely, we can obtain the linguistic 2-tuple represen-
tation from the unbalanced linguistic 2-tuple:𝐿𝐻−1 : 𝐿𝐻 × [−0.5, 0.5) → 𝑆 × [−0.5, 0.5), ∀𝑠𝑛(𝑡)𝑘 ∈𝑆𝑛(𝑡), 𝐿𝐻−1(𝑠𝑛(𝑡)𝑘 , 𝛼𝑖) = (𝑠𝑖, 𝜆), 𝜆 can be determined by

cases as follows:

(1) If 𝑠𝑖(𝑠𝑖 ∈ 𝑆) is represented by merely one label in LH,
then 𝐿𝐻−1(𝑠𝑛(𝑡)𝑘 , 𝛼𝑖) = (𝑠𝑖, 𝛼𝑖), 𝜆 = 𝛼𝑖.

(2) If 𝑠𝑖(𝑠𝑖 ∈ 𝑆) is represented by two labels in LH, then𝜆 = 𝛼𝑖 or
𝜆 = Δ−1𝑡 (𝑠𝑛(𝑡)𝑘 , 𝛼𝑖) ⋅ (𝑛 (𝑡 + 1) − 1)𝑛 (𝑡) − 1

− 𝑟𝑜𝑢𝑛𝑑(Δ−1𝑡 (𝑠𝑛(𝑡)𝑘 , 𝛼𝑖) ⋅ (𝑛 (𝑡 + 1) − 1)𝑛 (𝑡) − 1 ) (9)

(3) If there exists no 𝑠𝑖 ∈ 𝑆 such that 𝑠𝑖 = 𝑠𝑛(𝑡)𝑘 ,
we convert 𝑠𝑛(𝑡)𝑘 to another level; that is, 𝐿𝐻−1(𝑠𝑛(𝑡)𝑘 , 𝛼𝑖) =𝐿𝐻−1(𝑇𝐹𝑡𝑡󸀠(𝑠𝑛(𝑡)𝑘 , 𝛼𝑖)), then return to (1) or (2).

Example 11. Continuing Example 9, we have𝐿𝐻 (𝑃, 0) = (𝑠1716, 0) ,𝐿𝐻−1 (𝑠95, −0.3) = (𝐴𝐺, −0.3) ,
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𝐿𝐻−1 (𝑠94, 0.2) = 𝐿𝐻−1 (𝑇𝐹31 (𝑠94, 0.2))= 𝐿𝐻−1 (𝑠31, 0.4) = (𝑀, 0.4) .
(10)

3. Some Operational Laws for Unbalanced
Linguistic 2-Tuple

Based on 2-tuple representation model, we propose some
operational laws and properties of unbalanced linguistic 2-
tuple.

Definition 12. Let (𝑠𝑖, 𝛼𝑖) and (𝑠𝑗, 𝛼𝑗) be two unbalanced
linguistic 2-tuples, 𝜆 > 0, then one has

(1) (𝑠𝑖, 𝛼𝑖) ⊕ (𝑠𝑗, 𝛼𝑗) = 𝐿𝐻−1(Δ(Δ−1(𝑇𝐹𝑡𝑖𝑡𝐻(𝐿𝐻(𝑠𝑖, 𝛼𝑖))) +Δ−1(𝑇𝐹𝑡𝑗𝑡𝐻(𝐿𝐻(𝑠𝑗, 𝛼𝑗)))));
(2) (𝑠𝑖, 𝛼𝑖) ⊗ (𝑠𝑗, 𝛼𝑗) = 𝐿𝐻−1(Δ(Δ−1(𝑇𝐹𝑡𝑖𝑡𝐻(𝐿𝐻(𝑠𝑖, 𝛼𝑖))) ⋅Δ−1(𝑇𝐹𝑡𝑗𝑡𝐻(𝐿𝐻(𝑠𝑗, 𝛼𝑗)))));
(3) 𝜆 ⋅ (𝑠𝑖, 𝛼𝑖) = 𝐿𝐻−1(Δ(𝜆 ⋅ Δ−1(𝑇𝐹𝑡𝑖𝑡𝐻(𝐿𝐻(𝑠𝑖, 𝛼𝑖)))));
(4) (𝑠𝑖, 𝛼𝑖)𝜆 = 𝐿𝐻−1(Δ(Δ−1(𝑇𝐹𝑡𝑖𝑡𝐻(𝐿𝐻(𝑠𝑖, 𝛼𝑖))))𝜆).

Theorem 13. Assume that (𝑠𝑖, 𝛼𝑖) and (𝑠𝑗, 𝛼𝑗) are two unbal-
anced linguistic 2-tuples, 𝜆 > 0, then

(1) (𝑠𝑖, 0) ⊕ (𝑠𝑗, 0) = (𝑠𝑗, 0) ⊕ (𝑠𝑖, 0);
(2) (𝑠𝑖, 0) ⊗ (𝑠𝑗, 0) = (𝑠𝑗, 0) ⊗ (𝑠𝑖, 0);
(3) 𝜆 ⋅ ((𝑠𝑖, 0) ⊕ (𝑠𝑗, 0)) = (𝜆 ⊙ (𝑠𝑖, 0)) ⊕ (𝜆 ⊙ (𝑠𝑗, 0));
(4) (𝜆1 + 𝜆2) ⋅ (𝑠𝑖, 0) = (𝜆1 ⋅ (𝑠𝑖, 0)) ⊕ (𝜆2 ⋅ (𝑠𝑖, 0));
(5) ((𝑠𝑖, 0) ⊗ (𝑠𝑗, 0))𝜆 = (𝑠𝑖, 0)𝜆 ⊗ (𝑠𝑗, 0)𝜆;
(6) 𝜆1 ⋅ 𝜆2 ⋅ (𝑠𝑖, 0) = (𝜆1𝜆2) ⋅ (𝑠𝑖, 0);
(7) (𝑠𝑖, 0)𝜆1 ⊗ (𝑠𝑖, 0)𝜆2 = (𝑠𝑖, 0)𝜆1+𝜆2 ;
(8) ((𝑠𝑖, 0)𝜆1)𝜆2 = (𝑠𝑖, 0)𝜆1 ⋅𝜆2 .

Proof. (1)(𝑠𝑖, 0) ⊕ (𝑠𝑗, 0) = 𝐿𝐻−1 (Δ (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))
+ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))
= 𝐿𝐻−1 (Δ (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))
+ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))) = (𝑠𝑗, 0) ⊕ (𝑠𝑖, 0) ;

(11)

(2)(𝑠𝑖, 0) ⊗ (𝑠𝑗, 0) = 𝐿𝐻−1 (Δ (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))
⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))
= 𝐿𝐻−1 (Δ (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))
⋅ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))) = (𝑠𝑗, 0) ⊗ (𝑠𝑖, 0) ;

(12)

(3)𝜆 ⊙ ((𝑠𝑖, 0) ⊕ (𝑠𝑗, 0)) = 𝐿𝐻−1 (Δ (𝜆
⋅ (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))
+ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))) = 𝐿𝐻−1 (Δ (𝜆
⋅ (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) + 𝜆⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))) = (𝜆 ⊙ (𝑠𝑖, 0)) ⊕ (𝜆⊙ (𝑠𝑗, 0)) ;

(13)

(4)(𝜆1 + 𝜆2) ⊙ (𝑠𝑖, 0) = 𝐿𝐻−1 (Δ ((𝜆1 + 𝜆2)⋅ (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))))) = 𝐿𝐻−1 (Δ (𝜆1⋅ (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) + 𝜆2⋅ (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))))) = (𝜆1 ⊙ (𝑠𝑖, 0))⊕ (𝜆2 ⊙ (𝑠𝑖, 0))
(14)

(5)((𝑠𝑖, 0) ⊗ (𝑠𝑗, 0))𝜆
= 𝐿𝐻−1 (Δ (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))
⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝜆)
= 𝐿𝐻−1 (Δ(Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))𝜆
⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))𝜆)) = (𝑠𝑖, 0)𝜆 ⊗ (𝑠𝑗, 0)𝜆 ;

(15)

(6)𝜆1 ⊙ 𝜆2 ⊙ (𝑠𝑖, 0)= 𝐿𝐻−1 (Δ ((𝜆1 ⋅ 𝜆2) ⋅ (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))))= (𝜆1𝜆2) ⊙ (𝑠𝑖, 0) ;
(16)

(7)(𝑠𝑖, 0)𝜆1 ⊗ (𝑠𝑖, 0)𝜆2= 𝐿𝐻−1 (Δ(Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))𝜆1
⋅ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))𝜆2))
= 𝐿𝐻−1 (Δ(Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))𝜆1+𝜆2)) = (𝑠𝑖,
0)𝜆1+𝜆2 ;

(17)
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(8)

((𝑠𝑖, 0)𝜆1)𝜆2
= 𝐿𝐻−1 (Δ((Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))𝜆1)𝜆2))
= 𝐿𝐻−1 (Δ(Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 𝛼𝑖)))𝜆1 ⋅𝜆2))
= (𝑠𝑖, 0)𝜆1 ⋅𝜆2 .

(18)

4. Some Heronian Mean Operators

4.1. The Existing Heronian Mean Operators. The Heronian
mean operator has the capacity of capturing the interaction
between the input arguments.

Definition 14 (see [15]). Let (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛) be a collection of
nonnegative numbers; the Heronian mean operator is a
mapping HM: (0, +∞)𝑛 → (0, +∞) which satisfies

𝐻𝑀(𝑥1, 𝑥2, ⋅ ⋅ ⋅ 𝑥𝑛) = 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖√𝑥𝑖𝑥𝑗 (19)

A series of HM operators are provided, such as the gen-
eralized HM (GHM) operator and the generalized geometric
HM (GGHM) operator.

Definition 15 (see [15]). Let (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛) be a collection of
nonnegative numbers and 𝑝 ≥ 0, 𝑞 ≥ 0, 𝑝 + 𝑞 > 0; the
generalized Heronian mean operator is a mapping GHM:(0, +∞)𝑛 → (0, +∞) which satisfies

𝐺𝐻𝑀𝑝,𝑞 (𝑥1, 𝑥2, ⋅ ⋅ ⋅ 𝑥𝑛)
= ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖𝑥𝑖𝑝𝑥𝑗𝑞)

1/(𝑝+𝑞) (20)

Definition 16 (see [17]). Let (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛) be a collection of
nonnegative numbers and 𝑝 ≥ 0, 𝑞 ≥ 0, 𝑝 + 𝑞 > 0; the
generalized geometric Heronian mean operator is a mapping
GGHM: (0, +∞)𝑛 → (0, +∞) which satisfies𝐺𝐺𝐻𝑀𝑝,𝑞 (𝑥1, 𝑥2, ⋅ ⋅ ⋅ 𝑥𝑛)

= 1𝑝 + 𝑞 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 (𝑝𝑥𝑖 + 𝑞𝑥𝑗)2/𝑛(𝑛+1) (21)

4.2. The Proposed Heronian Mean Operators. The Heronian
mean operator can capture the relevance of individual argu-
ment. However, it is rarely applied in unbalanced linguistic
information. In this section, we shall extend the Heronian
mean operator to the situation in which the input arguments
are unbalanced linguistic information and shall develop some
unbalanced linguistic Heronian mean operators, such as
the unbalanced linguistic generalized arithmetic Heronian
mean (ULGAHM) operator, the unbalanced linguistic gen-
eralized geometry Heronian mean (ULGGHM) operator, the
unbalanced linguistic generalized weighted Heronian mean
(ULGWHM) operator, and the unbalanced linguistic gen-
eralized weighted geometric Heronian mean (ULGWGHM)
operator. Moreover, some properties of these operators are
investigated; some special cases with respect to the parameter
values are discussed simultaneously.

Definition 17. Let 𝑝, 𝑞 ≥ 0, 𝑝 + 𝑞 > 0 and (𝑠𝑖, 0)(𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛)
be a collection of unbalanced linguistic 2-tuple variables, then
the unbalanced linguistic generalized arithmetic Heronian
mean operator of dimension n is a mapping ULGAHM:Ω𝑛 → Ω, which satisfies

𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))
= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/(𝑝+𝑞)) (22)

where Ω is the set of all unbalanced linguistic 2-tuple
variables and 𝑡𝐻 is the level of the maximum granularity in
LH.

Now, we explore some properties of the ULGAHM
operator.

Theorem 18. Let ((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) be a collection of unbal-
anced linguistic 2-tuples and 𝑝, 𝑞 ≥ 0, then the properties of the
ULGAHM operator are given as follows:

(1) Monotonicity: let ((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) and ((𝑠󸀠1, 0), ⋅ ⋅ ⋅ ,(𝑠󸀠𝑛, 0)) be two collections of unbalanced linguistic 2-
tuples and (𝑠𝑖, 0) ≥ (𝑠󸀠𝑖 , 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, then

𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))≥ 𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞 ((𝑠󸀠1, 0) , ⋅ ⋅ ⋅ , (𝑠󸀠𝑛, 0)) . (23)

(2) Idempotency: if (𝑠𝑖, 0) = (𝑠, 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, then
𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))= 𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞 ((𝑠, 0) , ⋅ ⋅ ⋅ , (𝑠, 0)) = (𝑠, 0) . (24)

(3) Boundedness: ULGAHM operator lies between maxi-
mum and minimum operator; i.e.,
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min ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))≤ 𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))≤ max ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) .
(25)

Proof. (1) Since (𝑠𝑖, 0) ≥ (𝑠󸀠𝑖 , 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, according
to the definition of LH and Δ,

we have 𝑇𝐹𝑡𝑖𝑡𝐻(𝐿𝐻(𝑠𝑖, 0)) ≥ 𝑇𝐹𝑡𝑖󸀠𝑡𝐻 (𝐿𝐻(𝑠󸀠𝑖 , 0)) for all 𝑖 =1, ⋅ ⋅ ⋅ , 𝑛; based on Definition 12,

( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝
⋅ (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻(𝑠𝑗, 0))))𝑞)1/(𝑝+𝑞)

≥ ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖󸀠𝑡𝐻 (𝐿𝐻(𝑠󸀠𝑖 , 0))))𝑝
⋅ (Δ−1 (𝑇𝐹𝑡𝑗󸀠𝑡𝐻 (𝐿𝐻 (𝑠󸀠𝑗, 0))))𝑞)1/(𝑝+𝑞)

(26)

Thus,𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞((𝑠1,0),⋅ ⋅ ⋅ , (𝑠𝑛, 0))≥𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞((𝑠󸀠1,0), ⋅ ⋅ ⋅ , (𝑠󸀠𝑛, 0)).
(2) Since (𝑠𝑖, 0) = (𝑠, 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, we have

𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))
= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠, 0))))𝑝 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠, 0))))𝑞)1/(𝑝+𝑞))
= 𝐿𝐻−1 (Δ ((Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠, 0)))))) = (𝑠, 0) .

(27)

(3) Let (𝑠∗, 0) = min((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)), (𝑠∗, 0) =
max((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)); according to the property of idem-
potency, we have 𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞((𝑠∗, 0), ⋅ ⋅ ⋅ , (𝑠∗, 0)) = (𝑠∗, 0),𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞((𝑠∗, 0), ⋅ ⋅ ⋅ , (𝑠∗, 0)) = (𝑠∗, 0), since (𝑠∗, 0) ≤(𝑠𝑖, 0) ≤ (𝑠∗, 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛.

Thus, (𝑠∗, 0) = 𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞((𝑠∗, 0), ⋅ ⋅ ⋅ , (𝑠∗, 0)) ≤𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) ≤ 𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞((𝑠∗, 0), ⋅ ⋅ ⋅ ,(𝑠∗, 0)) = (𝑠∗, 0).

It is easy to see that the unbalanced linguistic generalized
arithmetic Heronian mean operator does not satisfy the
property of commutativity.

We can get a series of special cases by assigning different
values to the parameters 𝑝 and 𝑞 of the ULGAHM operator.

(1) If 𝑞 → 0, we get
𝑈𝐿𝐺𝐴𝐻𝑀𝑝,0 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻(𝑠𝑗, 0))))𝑞)1/(𝑝+𝑞))
= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝)1/𝑝)
= 𝐿𝐻−1(Δ( 𝑛∑

𝑖=1

2 (𝑛 − 𝑖 + 1)𝑛 (𝑛 + 1) (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝)1/𝑝) = ( 𝑛⨁
𝑖=1

(2 (𝑛 − 𝑖 + 1)𝑛 (𝑛 + 1) ⊙ (𝑠𝑖, 0)𝑝))1/𝑝 ,

(28)

which is called the unbalanced linguistic general-
ized weighted mean (ULGWM) operator with the

descending weight vector (2/(𝑛 + 1), ⋅ ⋅ ⋅ , 2/𝑛(𝑛 +1))𝑇.
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(2) If 𝑝 = 1, 𝑞 → 0, we have
𝑈𝐿𝐺𝐴𝐻𝑀1,0 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/𝑞)
= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))))
= 𝐿𝐻−1(Δ( 𝑛∑

𝑖=1

2 (𝑛 − 𝑖 + 1)𝑛 (𝑛 + 1) (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))))) = 𝑛⨁
𝑖=1

(2 (𝑛 − 𝑖 + 1)𝑛 (𝑛 + 1) ⊙ (𝑠𝑖, 0)) .
(29)

The ULGAHM operator reduces to the unbalanced
linguistic weighted mean (ULWM) operator.

(3) If 𝑝 = 2, 𝑞 → 0, we obtain
𝑈𝐿𝐺𝐴𝐻𝑀2,0 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=1 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))2 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/(2+𝑞))
= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))2)1/2)
= 𝐿𝐻−1(Δ( 𝑛∑

𝑖=1

2 (𝑛 − 𝑖 + 1)𝑛 (𝑛 + 1) (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))2)1/2) = ( 𝑛⨁
𝑖=1

(2 (𝑛 − 𝑖 + 1)𝑛 (𝑛 + 1) ⊙ (𝑠𝑖, 0)2))1/2 ,
(30)

which is called the unbalanced linguistic weighted
square mean (ULWSM) operator.

(4) If 𝑝 → 0, we have
𝑈𝐿𝐺𝐴𝐻𝑀0,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/(𝑝+𝑞))
= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/𝑞)
= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑗=1𝑗 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/𝑞) = ( 𝑛⨁

𝑗=1

( 2𝑗𝑛 (𝑛 + 1) ⋅ (𝑠𝑗, 0)𝑞))
1/𝑞 .

(31)

Obviously, the ULGAHM operator reduces to the
unbalanced linguistic generalized weighted mean

(ULGWM) operator with the ascending weight
vector (2/𝑛(𝑛 + 1), ⋅ ⋅ ⋅ , 2/(𝑛 + 1))𝑇.
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(5) If 𝑝 = 𝑞 = 1, we obtain
𝑈𝐿𝐺𝐴𝐻𝑀1,1 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/(𝑝+𝑞))
= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))1/2)
= 𝑛⨁
𝑖=1

𝑛⨁
𝑗=𝑖

( 2𝑛 (𝑛 + 1) ⊙ ((𝑠𝑖, 0) ⊗ (𝑠𝑗, 0)))1/2 .
(32)

(6) If 𝑝 = 𝑞 = 1/2, we get
𝑈𝐿𝐺𝐴𝐻𝑀1/2,1/2 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/(𝑝+𝑞))
= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))1/2 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻(𝑠𝑗, 0))))1/2))
= 𝑛⨁
𝑖=1

𝑛⨁
𝑗=𝑖

( 2𝑛 (𝑛 + 1) ⊙ ((𝑠𝑖, 0)1/2 ⊗ (𝑠𝑗, 0)1/2)) ,
(33)

which we call general unbalanced linguistic Heronian
mean (ULHM) operator in this case.

We introduce the concept of the unbalanced linguistic
generalized geometric Heronian mean operator as follows.

Definition 19. Let 𝑝, 𝑞 ≥ 0, 𝑝 + 𝑞 > 0, and (𝑠𝑖, 0)(𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛)
be a collection of unbalanced linguistic 2-tuples, then the
unbalanced linguistic generalized geometric Heronian mean
operator of dimension n is a mapping ULGGHM: Ω𝑛 → Ω,
which satisfies

𝑈𝐿𝐺𝐺𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))
= 𝐿𝐻−1(Δ(( 1𝑝 + 𝑞 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 (𝑝 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) + 𝑞 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))))2/𝑛(𝑛+1))) (34)

where Ω is the set of all the unbalanced linguistic 2-
tuples and 𝑡𝐻 is a level of the maximum granularity in
LH.

Some properties of the unbalanced linguistic generalized
geometric Heronian mean operator are investigated as fol-
lows.

Theorem 20. Let ((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) be a collection of unbal-
anced linguistic 2-tuples and 𝑝, 𝑞 ≥ 0, then the properties of the
ULGGHM operator are given as follows:

(1) Monotonicity: let ((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) and ((𝑠󸀠1, 0), ⋅ ⋅ ⋅ ,(𝑠󸀠𝑛, 0)) be two collections of unbalanced 2-tuple
linguistic variables and (𝑠𝑖, 0) ≥ (𝑠󸀠𝑖 , 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑛, then
𝑈𝐿𝐺𝐺𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))≥ 𝑈𝐿𝐺𝐺𝐻𝑀𝑝,𝑞 ((𝑠󸀠1, 0) , ⋅ ⋅ ⋅ , (𝑠󸀠𝑛, 0)) . (35)
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(2) Idempotency: if (𝑠𝑖, 0) = (𝑠, 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, then𝑈𝐿𝐺𝐺𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))= 𝑈𝐿𝐺𝐺𝐻𝑀𝑝,𝑞 ((𝑠, 0) , ⋅ ⋅ ⋅ , (𝑠, 0)) = (𝑠, 0) . (36)

(3) Boundedness: let (𝑠∗, 0) = min((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)),(𝑠∗, 0) = max((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)), then (𝑠∗, 0) ≤𝑈𝐿𝐺𝐺𝐻𝑀𝑝,𝑞((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) ≤ (𝑠∗, 0).

Proof. The proof ofTheorem 20 can be seen in the Appendix.

Similarly, the unbalanced linguistic generalized geomet-
ric Heronian mean operator does not satisfy the property of
commutativity.

Next, we analyze some particular cases in regard to
parameters 𝑝 and 𝑞.

(1) If 𝑞 → 0, then
𝑈𝐿𝐺𝐺𝐻𝑀𝑝,0 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ( 1𝑝 + 𝑞 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 (𝑝 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) + 𝑞 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))2/𝑛(𝑛+1))))
= 𝐿𝐻−1(Δ( 𝑛∏

𝑗=1

(Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))2(𝑛+𝑖−1)/𝑛(𝑛+1))) = 𝑛⨂
𝑖=1

((𝑠𝑖, 0)2(𝑛−𝑖+1)/𝑛(𝑛+1)) ,
(37)

which we call the unbalanced linguistic geometric
mean (ULGM) operator with the descending weight
vector. It has no relationship with p while 𝑞 → 0.

(2) If 𝑝 → 0, then

𝑈𝐿𝐺𝐺𝐻𝑀0,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))
= 𝐿𝐻−1(Δ( 1𝑝 + 𝑞 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 (𝑝 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) + 𝑞 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))2/𝑛(𝑛+1))))
= 𝐿𝐻−1(Δ( 𝑛∏

𝑗=1

(Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))2𝑗/𝑛(𝑛+1))) = 𝑛⨂
𝑗=1

((𝑠𝑗, 0)2𝑗/𝑛(𝑛+1)) .
(38)

The ULGGHM operator reduces to the unbalanced
linguistic geometric mean (ULGM) operator with the

ascending weight vector. It has no relationship with q
while 𝑝 → 0.

(3) If 𝑝 = 𝑞 = 1, then
𝑈𝐿𝐺𝐺𝐻𝑀1,1 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ( 1𝑝 + 𝑞 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 (𝑝 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) + 𝑞 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))2/𝑛(𝑛+1))))
= 𝐿𝐻−1(Δ(12 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 ((Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) + (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))2/𝑛(𝑛+1))))
= 𝑛⨂
𝑖=1

𝑛⨂
𝑗=𝑖

(12 ⊙ ((𝑠𝑖, 0) ⊕ (𝑠𝑗, 0))2/𝑛(𝑛+1)) .
(39)
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(4) If 𝑝 = 𝑞 = 1/2, then
𝑈𝐿𝐺𝐺𝐻𝑀1/2,1/2 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ( 1𝑝 + 𝑞 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 (𝑝 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) + 𝑞 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))2/𝑛(𝑛+1))))
= 𝐿𝐻−1(Δ( 𝑛∏

𝑖=1

𝑛∏
𝑗=𝑖

(12 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) + 12 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))2/𝑛(𝑛+1)))
= 𝑛⨂
𝑖=1

𝑛⨂
𝑗=𝑖

((12 ⊙ (𝑠𝑖, 0) ⊕ 12 ⊙ (𝑠𝑗, 0))2/𝑛(𝑛+1)) ,
(40)

whichwe call general unbalanced linguistic geometric
Heronian mean (ULHM) operator in this case.

In (22) and (34), all aggregated arguments have the same
importance. However, different parameters have different
importance because of the different attitudes of decision-
makers. Considering the importance of each argument, so
we introduce the unbalanced linguistic generalized weighted
arithmetic Heronian mean (ULGWAHM) operator and the

unbalanced linguistic generalized weighted geometric Hero-
nian mean (ULGWGHM) operator as follows.

Definition 21. Let 𝑝, 𝑞 ≥ 0, 𝑝 + 𝑞 > 0, and (𝑠𝑖, 0)(𝑖 =1, ⋅ ⋅ ⋅ , 𝑛) be a collection of unbalanced linguistic 2-tuples,
then the unbalanced linguistic generalized weighted arith-
metic Heronian mean operator of dimension n is a mapping
ULGWAHM: Ω𝑛 → Ω, which satisfies

𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))
= 𝐿𝐻−1(Δ((∑𝑛𝑖=1∑𝑛𝑗=𝑖 (𝑤𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))))𝑝 (𝑤𝑗 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))𝑞)1/(𝑝+𝑞)(∑𝑛𝑖=1∑𝑛𝑗=𝑖 𝑤𝑝𝑖 𝑤𝑞𝑗)1/(𝑝+𝑞) )) (41)

where Ω is the set of all the unbalanced linguistic 2-tuples,𝑡𝐻 is a level of the maximum granularity in LH, and 𝑊 =(𝑤1, , ⋅ ⋅ ⋅ , 𝑤𝑛)𝑇 is the weight vector of (𝑠𝑖, 0)(𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛),
satisfying 𝑤𝑖 ≥ 0, ∑𝑛𝑖=1 𝑤𝑖 = 1.

Now, we discuss some properties of the unbalanced
linguistic generalized weighted arithmetic Heronian mean
operator.

Theorem22. Assume that ((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) is a collection of
unbalanced linguistic 2-tuples and 𝑝, 𝑞 ≥ 0, then the properties
of the unbalanced linguistic generalized weighted arithmetic
Heronian mean operator are given as follows:

(1) Reducibility: let 𝑤1 = ⋅ ⋅ ⋅ = 𝑤𝑛 = 1/𝑛, then𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))= 𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) . (42)

(2) Monotonicity: let ((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) and ((𝑠󸀠1, 0), ⋅ ⋅ ⋅ ,(𝑠󸀠𝑛, 0)) be two collections of unbalanced linguistic 2-
tuples and (𝑠𝑖, 0) ≥ (𝑠󸀠𝑖 , 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, then

𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))≥ 𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,𝑞 ((𝑠󸀠1, 0) , ⋅ ⋅ ⋅ , (𝑠󸀠𝑛, 0)) . (43)

(3) Idempotency: if (𝑠𝑖, 0) = (𝑠, 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, then𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))= 𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,𝑞 ((𝑠, 0) , ⋅ ⋅ ⋅ , (𝑠, 0)) = (𝑠, 0) . (44)

(4) Boundedness: let (𝑠∗, 0) = min((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)),(𝑠∗, 0) = max((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)), then(𝑠∗, 0) ≤ 𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))≤ (𝑠∗, 0) . (45)

It is easy to see that the unbalanced linguistic generalized
weighted arithmeticHeronianmean operator does not satisfy
the property of commutativity.

Proof. The proof of Theorem 22 and some special cases of
the unbalanced linguistic generalized weighted arithmetic
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Heronian mean operator in regard to parameters 𝑝 and 𝑞 can
be seen in the Appendix.

Considering the importance of input arguments and
unbalanced linguistic generalized geometric Heronian mean
operator, we further introduce the unbalanced linguistic gen-
eralized weighted geometric Heronian mean (ULGWGHM)
operator.

Definition 23. Let 𝑝, 𝑞 ≥ 0, 𝑝 + 𝑞 > 0, and (𝑠𝑖, 0)(𝑖 =1, ⋅ ⋅ ⋅ , 𝑛) be a collection of unbalanced linguistic 2-tuples,
then the unbalanced linguistic generalized weighted geomet-
ric Heronian mean operator of dimension n is a mapping
ULGWGHM: Ω𝑛 → Ω, which satisfies

𝑈𝐿𝐺𝑊𝐺𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))
= 𝐿𝐻−1(Δ( 1𝑝 + 𝑞 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 ((𝑝 ⋅ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝑠𝑖, 0))) + (𝑞 ⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝑠𝑗, 0)))))

(2(𝑛−𝑖+1)/𝑛(𝑛+1))⋅(𝑤𝑗/∑
𝑛
𝑘=𝑖 𝑤𝑘))) (46)

whereΩ is the set of all the unbalanced linguistic 2-tuples, 𝑡𝐻
is a level of LHwhich has themaximum granularity, and𝑊 =(𝑤1, , ⋅ ⋅ ⋅ , 𝑤𝑛)𝑇 is the weight vector of (𝑠𝑖, 0)(𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛)
satisfying 𝑤𝑖 ≥ 0, ∑𝑛𝑖=1 𝑤𝑖 = 1.

Some properties of the unbalanced linguistic generalized
weighted geometric Heronianmean operator are investigated
as follows.

Theorem 24. Suppose that ((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) is a collection
of unbalanced linguistic 2-tuples and 𝑝, 𝑞 ≥ 0, then the
properties of the ULGWGHM operator are given as follows:

(1) Reducibility: let 𝑤1 = ⋅ ⋅ ⋅ = 𝑤𝑛 = 1/𝑛, then𝑈𝐿𝐺𝑊𝐺𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))= 𝑈𝐿𝐺𝐺𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) . (47)

(2) Monotonicity: let ((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) and ((𝑠󸀠1, 0), ⋅ ⋅ ⋅ ,(𝑠󸀠𝑛, 0)) be two collections of unbalanced linguistic 2-
tuples and (𝑠𝑖, 0) ≥ (𝑠󸀠𝑖 , 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, then𝑈𝐿𝐺𝑊𝐺𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))≥ 𝑈𝐿𝐺𝑊𝐺𝐻𝑀𝑝,𝑞 ((𝑠󸀠1, 0) , ⋅ ⋅ ⋅ , (𝑠󸀠𝑛, 0)) . (48)

(3) Idempotency: if (𝑠𝑖, 0) = (𝑠, 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, then𝑈𝐿𝐺𝑊𝐺𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))= 𝑈𝐿𝐺𝑊𝐺𝐻𝑀𝑝,𝑞 ((𝑠, 0) , ⋅ ⋅ ⋅ , (𝑠, 0)) = (𝑠, 0) . (49)

(4) Boundedness: let (𝑠∗, 0) = min((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)),(𝑠∗, 0) = max((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)), then(𝑠∗, 0) ≤ 𝑈𝐿𝐺𝑊𝐺𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))≤ (𝑠∗, 0) . (50)

Proof. The proof of Theorem 24 is similar to that of Theo-
rem 22, so it is omitted.

Similarly, the unbalanced linguistic generalized weighted
geometric Heronianmean operator does not satisfy the prop-
erty of commutativity. Some special cases of the unbalanced
linguistic generalized weighted geometric Heronian mean
operator in regard to parameters 𝑝 and 𝑞 can be seen in the
Appendix.

5. MAGDMMethod Based on Unbalanced
Linguistic Information

In this section, we will develop the process of solvingMADM
problem by using the new proposed unbalanced linguistic
Heronian mean operators and entropy measure method to
solve MADM problems, where the weights of attributes
are unknown, and the assessment values are unbalanced
linguistic terms.

5.1. Problem Description. A MADM problem can be de-
scribed as a quadruple ⟨𝑋, 𝐸,𝐷, 𝑆⟩, where𝑋 = {𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑚} is a set of all possible alternatives for
decision-makers and𝑚 ≥ 2;𝐸 = {𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑛} is a set of attributes for each alternative,
and the attributes are supposed to be correlative in this paper;𝐷 = {𝑑1, ⋅ ⋅ ⋅ , 𝑑𝑡} is a set of decision-makers;𝑆(𝑘) = (𝑠(𝑘)𝑖𝑗 )𝑚×𝑛 is the decision matrix provided by the
kth decision-maker 𝑑𝑘, and 𝑠(𝑘)𝑖𝑗 represents the preference
value of 𝑥𝑖 with respect to attributes 𝑒𝑗, 𝑠(𝑘)𝑖𝑗 taking the form
of unbalanced linguistic terms.

5.2. Entropy Method to Determine the Attribute Weights. An
important step of the MADM problem is the determination
of the attribute weights. We first introduce the concept
of entropy for unbalanced linguistic term sets, then an
optimization model is constructed to determine the weights
of attributes.

Definition 25. Let 𝑆 = {𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑔} be an unbalanced
linguistic term set, 𝑋 = {𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛} be a finite set, and
a mapping 𝐿𝑈 : 𝑋 → 𝑆, then a pair (𝑋, 𝐿𝑈) is called
unbalanced linguistic fuzzy set, and the value 𝐿𝑈(𝑥) is said
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to be the grade of unbalanced linguistic membership of 𝑥 in(𝑋, 𝐿𝑈).
In particular, if 𝐿𝑈(𝑥𝑖) is the maximum label or the

minimum label, i.e., 𝐿𝐶 = {𝐿𝑈(𝑥𝑖) = 𝑠1 or 𝑠𝑔, 𝑥𝑖 ∈ 𝑋, 𝑖 =1, ⋅ ⋅ ⋅ , 𝑛}, then the unbalanced linguistic fuzzy set will reduce
to a crisp set.

If all unbalanced linguistic fuzzy sets are denoted as𝐿𝑈𝐹𝑆𝑆(𝑋), then the concept of entropy for unbalanced
linguistic information can be developed as follows.

Definition 26. Let 𝑋 = {𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛} be a finite set, 𝐿𝑈1 ={𝐿(𝑥𝑖) = 𝑠𝛼𝑖 , 𝑥𝑖 ∈ 𝑋} and 𝐿𝑈2 = {𝐿(𝑥𝑖) = 𝑠𝛽𝑖 , 𝑥𝑖 ∈ 𝑋} be
two unbalanced linguistic term sets defined in X, and 𝐿𝑈(𝑥)
be the negation of 𝐿𝑈(𝑥); 𝐸(𝐿𝑈(𝑥)) is said to be an entropy
measure for unbalanced linguistic term set if the following
properties are valid:

(1) 0 ≤ 𝐸(𝐿𝑈(𝑥)) ≤ 1;
(2) 𝐸(𝐿𝑈(𝑥)) = 0 if and only if 𝐿𝑈(𝑥) is a crisp set in X,

i.e., 𝐿𝑈(𝑥) = {𝐿𝑈(𝑥𝑖) = 𝑠1 or 𝑠𝑔, 𝑥𝑖 ∈ 𝑋};
(3) 𝐸(𝐿𝑈(𝑥)) is a uniquemaximum if 𝑠𝑖 is the central label𝑠𝑐;
(4) 𝐿𝑈1 ≥ 𝐿𝑈2 if 𝑠𝛽𝑖 ≥ 𝑠𝛼𝑖 for 𝑠𝛼𝑖 ≥ 𝑠𝑐 or if 𝑠𝛽𝑖 ≤ 𝑠𝛼𝑖 for𝑠𝛼𝑖 ≤ 𝑠𝑐;
(5) 𝐸(𝐿𝑈(𝑥)) = 𝐸(𝐿𝑈(𝑥)).
According to Definition 26, we can construct the fol-

lowing formula as the entropy measure of the unbalanced
linguistic information:

𝐸 (𝐿𝑈 (𝑥)) = 41𝑛 𝑛∑𝑖=1Δ
−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))𝑔𝑡𝐻

⋅ (1 − Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))𝑔𝑡𝐻 ) (51)

The entropy of unbalanced linguistic information under
each attribute could be calculated according to (51), which is
denoted as 𝐸(𝐿𝑈(𝑥𝑗)), 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛.

The ideal of entropy method is that if the entropy among
all attributes for an alternative is larger, then the effective
information is less; thus the attributes should be assigned less
weight; otherwise, it should be assigned a greater weight.

If the information about weight 𝑤𝑗 of the attribute 𝑒𝑗(𝑗 =1, ⋅ ⋅ ⋅ , 𝑛) is completely unknown, we can build the following
equations to determine the attribute weight:

𝑤𝑗 = 1 − 𝐸 (𝐿𝑈 (𝑥𝑗))∑𝑛𝑗=1 (1 − 𝐸 (𝐿𝑈 (𝑥𝑗))) , 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛 (52)

Sometimes, the decision-makers only offer partly known
information about attribute weights; let Φ be the set of the
partly known information about attribute weights. In order

to get an objective attribute weight vector, the optimal model
based on maximum entropy principle could be constructed:

max 𝐸𝑤
= 𝜆 𝑛∑
𝑗=1

𝑤𝑗𝐸 (𝐿𝑈 (𝑥𝑗))
+ (1 − 𝜆)(− 𝑛∑

𝑗=1

𝑤𝑗 ln𝑤𝑗)
s.t. (𝑤1, ⋅ ⋅ ⋅ , 𝑤𝑛) ∈ Φ0 ≤ 𝑤𝑗 ≤ 1,

(53)

where 𝜆 ∈ [0, 1] is an attribute parameter representing the
attitude of the decision-makers toward one of the objectives.

5.3. The Decision-Making Procedure. To obtain the best
opinion, the new approach based on the new unbalanced
linguistic Heronian mean operator is presented to solve the
MADM problem. The new approach involved the following
steps.

Step 1. Calculate the semantic representation about the
unbalanced linguistic variables.

The semantic representation can be calculated by𝐿𝐻 : 𝑆 × [−0.5, 0.5) 󳨀→ 𝐿𝐻 × [−0.5, 0.5) . (54)
Step 2. Translate the unbalanced linguistic variable 𝑠𝑖𝑗 to a
linguistic 2-tuple variable.

A linguistic 2-tuple variable can be obtained as (𝑟𝑖𝑗, 𝛼𝑖𝑗),
where 𝑟𝑖𝑗 = Δ(𝑟𝑜𝑢𝑛𝑑(Δ−1(𝐿𝐻(𝑠𝑖𝑗)))), 𝛼𝑖𝑗 = Δ−1(𝐿𝐻(𝑠𝑖𝑗)) −𝑟𝑜𝑢𝑛𝑑(Δ−1(𝐿𝐻(𝑠𝑖𝑗))).
Step 3. Calculate the entropy of unbalanced linguistic values
under all attributes.

The entropy of unbalanced linguistic values under ith
attribute can be calculated by

𝐸 (𝐿𝑈 (𝑥𝑗)) = 41𝑛 𝑛∑𝑗=1Δ
−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))𝑔𝑡𝐻

⋅ (1 − Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))𝑔𝑡𝐻 ) . (55)

Step 4. Generate the attribute weight vector 𝑊 = {𝑤1, ⋅ ⋅ ⋅ ,𝑤𝑛}.
Once the linguistic 2-tuple variables and entropy are ob-

tained, the attribute weights can be generated by the optimal
model:

max 𝐸𝑤
= 𝜆 𝑛∑
𝑗=1

𝑤𝑗 (1 − 𝐸 (𝐿𝑈 (𝑥𝑗)))
+ (1 − 𝜆)(− 𝑛∑

𝑗=1

𝑤𝑗 ln𝑤𝑗)
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s.t. (𝑤1, ⋅ ⋅ ⋅ , 𝑤𝑛) ∈ Φ0 ≤ 𝑤𝑗 ≤ 1.
(56)

Step 5. Output the comprehensive assessment values for each
alternative.

Based on the weights obtained in Step 4, utilize the
ULGWAHM operator or ULGWGHM operator to obtain
the comprehensive evaluation values in terms of unbalanced
linguistic term for each alternative

(𝛾𝑖, 𝛼𝑖) = 𝑈𝐿𝐺𝑊𝐴𝐻𝑀((𝛾𝑖1, 𝛼𝑖1) , ⋅ ⋅ ⋅ , (𝛾𝑖𝑛, 𝛼𝑖𝑛)) ; (57)

or

(𝛾𝑖, 𝛼𝑖) = 𝑈𝐿𝐺𝑊𝐺𝐻𝑀((𝛾𝑖1, 𝛼𝑖1) , ⋅ ⋅ ⋅ , (𝛾𝑖𝑛, 𝛼𝑖𝑛)) . (58)

Step 6. Rank all alternatives.
Compare the overall values of all alternatives according

to unbalanced linguistic comparison laws and select the best
one.

Step 7. End.

6. Illustrative Example

In this section, we employ an unbalanced linguistic selection
model of low-carbon tourism (LCTD) (adapted from [50]) by
applying the proposed MADMmethod and give an example
to demonstrate its effectiveness and validity.

6.1. Background. Over the past several decades, economic
development has been recognized as the only approach to
improve quality of life and social status in communities and
cities of different areas, especially in developing countries.
Along with rapid social and economic development, prob-
lems of carbon emissions are getting serious and have been
of critical concern to both national and local governments
worldwide for many decades. Increasing numbers of carbon
emissions issues (such as global warming, air pollution, sea
levels rising, glaciers melting, and Nino phenomenon) can
lead to a variety of impacts on and liabilities in public health
and sustainable regional development. As a significant part of
economic development, the tourism industry is encouraging
low-carbon tourism and developing low-carbon tourism
destinations (LCTDs). Low-carbon tourism is a “green”
form of tourism that is based on the goals of low-energy
consumption, low pollution, and low emissions. Therefore,
it is important for tourists to select the best option(s) from
multiple low-carbon tourism destinations based on multiple
attributes while considering carbon reduction, lower energy
consumption, and environmental protection because of their
ability to protect environment and public health.

Next, we would like to employ an illustrative example to
provide certain reference attributes for unbalanced linguistic
selection of LCTDs by applying the proposed MAGDM
approach.

6.2. Case Study

6.2.1. The Establishment of Assessment Systems for LCTDs.
In order to mitigate the damage of carbon emissions and
save energy, many low-carbon tourism destinations have
been developed. Moreover, many tourists have recognized
the importance of low-carbon tourism for environmental
protection. In order to find a good balance between the
enjoyment of a trip and carbon emission reduction, it is
crucial for tourists to compare and evaluate some known low-
carbon tourism destinations and then choose the best one(s)
from these options. Generally speaking, this evaluation and
selection process is based on several criteria or attributes. In
this case study, the attributes consist of the following four
aspects:𝑒1: low-carbon transportation, low-energy consump-

tion vehicles, and pick-up and drop-off services as
reflected in connecting different scenic sites and
reaching the destination.𝑒2: hotels and accommodation, as reflected in green-
material labels, low-carbon facilities, and a low-
carbon environment and education management.
Food service including green food, a low-carbon
environment, and low-energy waste handling mech-
anisms.𝑒3: consumption satisfaction, as reflected in the ser-
vice cost of travel agencies, ticket prices for scenic
sites, and the cost of accommodation.𝑒4: attraction and impact of scenic sites, including
low-carbon customer service and low-carbon man-
agement and control.

In order to select the best LCTD, a tourist (i.e., decision-
makers) wants to go on a low-carbon trip. After preliminary
screening, there are four low-carbon tourism destinations as
the set of alternatives.Therefore, in this case study, the tourist
is empowered to provide preferences in terms of several
unbalanced linguistic terms on the response alternatives𝑥𝑖(𝑖 = 1, ⋅ ⋅ ⋅ , 4) under the four attributes 𝑒𝑗(𝑗 = 1, ⋅ ⋅ ⋅ , 4).
Assume that the four alternatives are to be evaluated using
the following unbalanced linguistic term set S= {N (none),
L (low), M (medium), AH (almost high), H (high), QH (quite
high), VH (very high), AT (almost total), T (total)}, the density
is extreme, 𝑡𝐻 = 4, and a linguistic hierarchy is 𝐿𝐻 = 𝑙(1, 3)∪𝑙(2, 5)∪𝑙(3, 9)∪𝑙(4, 17) = {𝑠30, 𝑠31, 𝑠32}∪{𝑠50, ⋅ ⋅ ⋅ , 𝑠54}∪{𝑠90, ⋅ ⋅ ⋅ , 𝑠98}∪{𝑠170 , ⋅ ⋅ ⋅ , 𝑠1716}.

To obtain the most preferred LCTD, we present the
effective MADM approach for the problem, where attribute
weights are partly unknown due to the problem complexity.
Then the performance unbalanced linguistic assessments
for each alternative 𝑥𝑖(𝑖 = 1, ⋅ ⋅ ⋅ , 4) are listed in Table 2.
According to the approach developed in Section 5 and the
given parameters, we can rank the order of alternatives by
applying the MATLAB software package. The concrete steps
are shown as follows.

6.2.2. Procedure of MAGDM Problem Based on Unbalanced
Linguistic HeronianMean Operators. We adopt the proposed
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Table 2: Decision matrix with unbalanced linguistic information.𝑒1 𝑒2 𝑒3 𝑒4
X1 L AH H H
X2 AH H QH L
X3 AH L AH M
X4 M H AH M

method to rank the alternatives in the example and select the
best one. The decision steps are as follows.

Step 1. Calculate the semantic representations which are in
form of unbalanced linguistic terms and they are shown as𝑁 = 𝑠50,𝐿 = 𝑠51,𝑀 = 𝑠52,𝐴𝐻 = 𝑠95,𝐻 = 𝑠96,𝑄𝐻 = 𝑠1713,𝑉𝐻 = 𝑠1714,𝐴𝑇 = 𝑠1715,𝑇 = 𝑠1716.

(59)

Step 2. Translate the unbalanced linguistic variable 𝑠(𝑘)𝑖𝑗 to the
linguistic 2-tuple variables which are expressed as(𝑁, 0) = (𝑠50, 0) ,(𝐿, 0) = (𝑠51, 0) ,(𝑀, 0) = (𝑠52, 0) ,(𝐴𝐻, 0) = (𝑠95, 0) ,(𝐻, 0) = (𝑠96, 0) ,(𝑄𝐻, 0) = (𝑠1713, 0) ,(𝑉𝐻, 0) = (𝑠1714, 0) ,(𝐴𝑇, 0) = (𝑠1715, 0) ,(𝑇, 0) = (𝑠1716, 0) .

(60)

Step 3. Calculate the entropy of unbalanced linguistic values
under each attribute.

Utilizing (52), the entropy of each attribute can be derived
as follows: 𝐸1 (𝐿𝑈 (𝑥𝑗)) = 0.906,

𝐸2 (𝐿𝑈 (𝑥𝑗)) = 0.797

𝐸3 (𝐿𝑈 (𝑥𝑗)) = 0.809,
𝐸4 (𝐿𝑈 (𝑥𝑗)) = 0.914.

(61)

Step 4. Generate the attribute weight vector.
Utilizing the optimal model (53) and the Lingo 11.0

software package, the attribute weights can be derived with𝜆 = 1/2 as follows: 𝑤1 = 0.2648,𝑤2 = 0.2793,𝑤3 = 0.1943,𝑤4 = 0.2615.
(62)

Step 5. Output the comprehensive assessment values for each
alternative.

Utilizing the ULGWAHM operator with the parameters𝑝 = 𝑞 = 1, we can get the overall collective preference value(𝛾𝑖, 𝛼𝑖) of the alternative 𝑥𝑖(𝛾1, 𝛼1) = (𝐴𝐻, −0.2941) ,(𝛾2, 𝛼2) = (𝐴𝐻, −0.16355) ,(𝛾3, 𝛼3) = (𝑀, −0037775) ,(𝛾4, 𝛼4) = (𝐴𝐻, −0.2283) .
(63)

Step 6. We can get 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3; therefore the
alternative 𝑥2 is the best choice.
6.3. Sensitivity Analysis of the Parameters in Unbalanced

Linguistic Heronian Mean Aggregation Operators

6.3.1. Sensitivity Analysis of the Parameters p or q. In order to
illustrate the impact of the parameters p and q on aggregation
results, we fixed one of p and q, and different rankings
of alternatives and decision-making based on ULGWAHM
operator can be obtained which were shown in Figures 3 and
4.

We can find from Figure 3 that

(1) when 𝑞 ∈ (0, 0.6960], we have 𝑥1 ≻ 𝑥2 ≻ 𝑥4 ≻ 𝑥3 and
the best alternative is 𝑥1;

(2) when 𝑞 ∈ (2.6960, 8], we have 𝑥1 ≻ 𝑥4 ≻ 𝑥2 ≻ 𝑥3 and
the best alternative is 𝑥1.
We can find from Figure 4 that

(1) when 𝑝 ∈ (0, 0.35], we have 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1 and
the optimal alternative is 𝑥2;

(2) when 𝑝 ∈ (0.35, 8], we have 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3 and
the optimal alternative is 𝑥2.

From Figures 3 and 4, we can see that the larger the value
of p or q is, the larger the aggregated value is. Therefore,
proper selection can be made according to the attitude
of the decision-makers. For instance, in practical decision
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Figure 3: Comprehensive value obtained by ULGWAHM (𝑝 =0, 𝑞 ∈ (0, 8]).
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Figure 4: Comprehensive value obtained by ULGWAHM (𝑞 =0, 𝑝 ∈ (0, 8]).
problems, the decision-maker who is pessimistic can choose
the smaller values of the parameters p and q while the
optimistic one can choose the bigger values of the parameters
p and q.

6.3.2. Sensitivity Analysis of the Parameters p and q. If we let
the parameters p and q change simultaneously, the associated
aggregation results of each alternative could be obtained
which are shown in Figures 5–8.

From Figures 5–8, we can find that the interaction of
arguments becomes stronger as values of parameters p and q
increase. Therefore, the manager can choose suitable values

Figure 5: Comprehensive values for alternative x1 obtained by
ULGWAHM operator (𝑝 ∈ [0, 10], 𝑞 ∈ [0, 10]).
p and q to determine the optimal alternative based on the
practical need and his/her preference.

If we use ULGWGHM operator replacing ULGWAHM
operator in the above investment, we could obtain the
overall collective preference value of each alternative with
p=q=1 shown in Table 3 and the aggregation values of each
alternative as the values p and q changed simultaneously
in Figures 9–12. Obviously, in most cases, the values by
ULGWGHM operator are smaller than that of ULGWAHM
one for the same aggregation arguments which denote the
former is pessimistic while the latter is optimistic. Thus,
the decision-maker can suitably select the best alternative
according to his/her preference to meet real need. It is of
crucial importance in practical decision-making.

From the above analysis, we can choose appropriate value
of parameters p, q and the suitable operator to meet the
various actual requirements. Consequently, it is more feasible
and flexible for decision-making problems.

7. Comparison Analyses of
the Results Obtained

In this section, a set of comparative studies was conducted
with the relevant frequently used aggregation approach and
classical decision-making method to demonstrate the feasi-
bility and applicability of the proposed unbalanced linguistic
MADMmethod of this paper.

7.1. Comparison with the Existing Linguistic Aggregation Oper-
ators. Firstly, we compare ourmethods with previous 2-tuple
linguistic aggregation operators including the dependent 2-
tuple ordered weighted average (D2TOWA) operator and
the dependent 2-tuple ordered weight geometric (D2TOWG)
operator [31], and the 2-tuple weighted Bonferroni mean
(2TWBM) operator and the 2-tuple weighted geometric
Bonferroni mean (2TWGBM) operator [51].

Wei [31] proposed the concepts of series dependent 2-
tuple (D2TL) aggregation operators and a linguistic MADM
problem with 2-tuple linguistic information. In order to
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Table 3: The collective overall preference values obtained by the proposed method.𝑥1 𝑥2 𝑥3 𝑥4
ULGWAHM LH−1(Δ(9.4118))

(AH,−0.2941) LH−1(Δ(9.6729))
(AH,−0.16355) LH−1Δ(7.8489))

(M,−0.037775) LH−1(Δ(9.5434)
(AH,−0.2283)

Ranking 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3
ULGWGHM LH−1(Δ(7.3211))

(M,−0.169725) LH−1(Δ(10.1566))
(AH,0.1566)

LH−1Δ(7.4289))
(M,−0.142775) LH−1(Δ(9.4471))

(AH,−0.27645)
Ranking 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1

Table 4: Comparison with the existing linguistic operators.

Aggregation operators Linguistic distribution Parameter number Order of alternative
D2TOWA operator Balanced One 𝑥2 ≻ 𝑥1 ≻ 𝑥4 ≻ 𝑥3
D2TOWG operator Balanced One 𝑥2 ≻ 𝑥1 ≻ 𝑥4 ≻ 𝑥3
2TWBM operator Balanced Two 𝑥2 ≻ 𝑥1 ≻ 𝑥4 ≻ 𝑥3
2TWGBM operator Balanced Two 𝑥2 ≻ 𝑥1 ≻ 𝑥4 ≻ 𝑥3
ULGWAHM operator Unbalanced Two 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3
ULGWGHM operator Unbalanced Two 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1

Figure 6: Comprehensive values for alternative x2 obtained by
ULGWAHM operator (𝑝 ∈ [0, 10], 𝑞 ∈ [0, 10]).
use the D2TOWA, D2TOWG, 2TWBM, and 2TWGBM
operators, the evaluation values of this paper should be
transformed into 2-tuple linguistic information which are as
follows: 𝑁 󳨀→ (𝑠50, 0) ,𝐿 󳨀→ (𝑠51, 0) ,𝑀 󳨀→ (𝑠52, 0) ,𝐴𝐻 󳨀→ (𝑠95, 0) ,𝐻 󳨀→ (𝑠96, 0) ,𝑄𝐻 󳨀→ (𝑠1713, 0) ,𝑉𝐻 󳨀→ (𝑠1714, 0) ,

Figure 7: Comprehensive values for alternative x3 obtained by
ULGWAHM operator (𝑝 ∈ [0, 10], 𝑞 ∈ [0, 10]).

𝐴𝑇 󳨀→ (𝑠1715, 0) ,𝑇 󳨀→ (𝑠1716, 0) .
(64)

After calculating the dependent weights 𝑤11 = 0.3182,𝑤12 = 0.2576, 𝑤13 = 0.2576, 𝑤14 = 0.1667, 𝑤21 = 0.3261,𝑤22 = 0.2681, 𝑤23 = 0.2391, 𝑤24 = 0.1667, 𝑤31 = 0.3333,𝑤32 = 0.2500, 𝑤33 = 0.2500, 𝑤34 = 0.1667, 𝑤41 = 0.3056,𝑤42 = 0.2500, 𝑤43 = 0.2500, 𝑤44 = 0.1944, the overall
collective preference can be obtained. The comparison is
shown in Table 4 (p=q=1). The aggregation results of four
alternatives by ULWBM operator as the parameters 𝑝 and 𝑞
changed simultaneously in Figures 13–16.

Compared with the existing 2-tuple linguistic aggrega-
tion operators, our proposed approaches have the following
advantages:
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Figure 8: Comprehensive values for alternative x4 obtained by
ULGWAHM operator (𝑝 ∈ [0, 10], 𝑞 ∈ [0, 10]).

Figure 9: Comprehensive values for alternative x1 obtained by
ULGWGHM operator (𝑝 ∈ [0, 10], 𝑞 ∈ [0, 10]).

Figure 10: Comprehensive values for alternative x2 obtained by
ULGWGHM operator (𝑝 ∈ [0, 10], 𝑞 ∈ [0, 10]).

Figure 11: Comprehensive values for alternative x3 obtained by
ULGWGHM operator (𝑝 ∈ [0, 10], 𝑞 ∈ [0, 10]).

Figure 12: Comprehensive values for alternative x4 obtained by
ULGWGHM operator (𝑝 ∈ [0, 10], 𝑞 ∈ [0, 10]).

Figure 13: Comprehensive values for alternative x1 obtained by
ULWBM operator (𝑝 ∈ [0, 10], 𝑞 ∈ [0, 10]).
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Figure 14: Comprehensive values for alternative x2 obtained by
ULWBM operator (𝑝 ∈ [0, 10], 𝑞 ∈ [0, 10]).

Figure 15: Comprehensive values for alternative x3 obtained by
ULWBM operator (𝑝 ∈ [0, 10], 𝑞 ∈ [0, 10]).

(1) The approach in this paper considers the interactions
between not only criteria values 𝑒𝑖 and 𝑒𝑗 (𝑖 < 𝑗) but also
between 𝑒𝑖 and itself, while the method of [31] cannot process
and [51] ignores the correlation between 𝑒𝑖 and itself. Thus,
the method in this paper is more effective than the others.

(2) The proposed method of this paper has flexible
parameters p and q. We can choose the appropriate values of
parameters to satisfy the real demand. But the method in [31]
has no selectable parameters. Thus, the proposed method is
more flexible.

(3) The method in [31, 51] can only deal with the case
where the input arguments are the form of 2-tuple whereas
ours is suitable for three cases: linguistic variables, 2-tuple,
and unbalanced linguistic information which indicates that
ours is more universal.

7.2. The TOPSIS Method for Unbalanced Linguistic MAMD.
In the following, wewill put emphasis on the classical TOPSIS
method. The basic principle of the TOPSIS method is that

Figure 16: Comprehensive values for alternative x4 obtained by
ULWBM operator (𝑝 ∈ [0, 10], 𝑞 ∈ [0, 10]).
the optimal alternative should have the farthest distance from
the negative ideal solution and the closest distance from the
positive ideal solution simultaneously. The steps are involved
by using the TOPSIS method.

Step 1. We can obtain the 2-tuple linguistic representation
shown in Section 6.2.2.

Step 2. Define the unbalanced linguistic positive ideal solu-
tion (ULPIS) and the negative ideal solution (ULNIS). Since
the unbalanced linguistic term set is S= {N (none), L (low), M
(medium), AH (almost high), H (high), QH (quite high), VH
(very high), AT (almost total), T (total)}, thus the ULPIS and
ULNIS are 𝑟− = 𝑁 and 𝑟+ = 𝑇, respectively.
Step 3. Calculate the distance from each evaluation value to
ULPIS and ULNIS using the following equation:

𝑑+𝑖 = 𝑛∑
𝑗=1

𝑤𝑗𝑑 (𝑟𝑖𝑗, 𝑟+) ,
𝑑−𝑖 = 𝑛∑
𝑗=1

𝑤𝑗𝑑 (𝑟𝑖𝑗, 𝑟−) (65)

where the separation between alternatives is the Ham-
ming distance; i.e., 𝑑(𝑟𝑖𝑗, 𝑟−) = |Δ−1(𝑇𝐹𝑡𝑡ℎ(𝐿𝐻(𝑟𝑖𝑗))) −Δ−1(𝑇𝐹𝑡𝑡ℎ(𝐿𝐻(𝑟−)))|, then we can get 𝑑+𝑖 and 𝑑−𝑖 . It is obvious
that the larger𝑑−𝑖 and the smaller𝑑+𝑖 , the better the alternative.
Step 4. Calculate the closeness coefficient to ideal solution as

𝐶𝐶𝑖 = 𝑑−𝑖𝑑+𝑖 + 𝑑−𝑖 , 𝑖 = 1, 2, 3, 4 (66)

The closeness coefficient to ideal solution for the alterna-
tive 𝑥𝑖 can be obtained as

𝐶𝐶1 = 𝑑+1𝑑+1 + 𝑑−1 = 0.5442,
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𝐶𝐶2 = 𝑑−2𝑑+2 + 𝑑−2 = 0.6469,
𝐶𝐶3 = 𝑑−3𝑑+3 + 𝑑−3 = 0.4876,
𝐶𝐶4 = 𝑑−4𝑑+4 + 𝑑−4 = 0.5941

(67)

According to the closeness coefficient, we can determine
the ranking of all alternatives as 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3, and the
best alternative is 𝑥2.

Obviously, the ranking of alternatives obtained by the
unbalanced linguistic TOPSIS method is identical to that
by the ULGWAHM aggregation operator, which states the
validity of the proposed method in this paper.Thus, response
solution 𝑥2 is the most appropriate one.

According to the comparison that focuses on different
angles, we find the result based on the ULGWAHM operator
is identical to other operators and TOPSIS methods. In fact,
these methods have their own advantages and disadvantages
correspondingly. In summary, the ULGAHM model pro-
posed in this paper has the following characteristics:

(1)Theproposedmethod of this paper is suitable for series
linguistic information, including linguistic variables, 2-tuple,
and unbalanced linguistic information which is universal.

(2) The approach in this paper considers the correlation
of all attributes; simultaneously it has flexible parameters
to satisfy the complex decision-making problems. Thus, the
proposed method is flexible.

(3) We propose a model to deal with the situation where
the weights information is unknown. The proposed model
for optimal weight vector is advantaged and effective, which
takes objective weights information into consideration.

In summary, the developed method would be more suit-
able to handle indeterminate information and unbalanced
information in complex decision-making problems. There-
fore, it is more reasonable than existing methods.

8. Conclusions

This paper focuses on MADM problem with unbalanced
linguistic information, which introduced some new unbal-
anced linguistic Heronian mean aggregation functions by
using unbalanced linguistic information and Heronian mean
operator. First, we have presented the ULGAHM operator
and the ULGGHMoperator.Then, the ULGWAHMoperator
and ULGWGHM operator have been proposed in consider-
ation of different importance of attributes. These operators
are very helpful in situations where the assessed information
can not be expressed with real number but with unbalanced
linguistic information. Some main properties and particular
cases of the operators have been studied. We have applied the
new method for investment projects and made the selection
based on the new aggregation operators. It is easy to find that
the results are the identical one with the special ULGWAHM
operator and ULGWGHM operator.

In the future, we expect to extend unbalanced linguistic
Heronian mean operator to other situations, such as interval
linguistic information, intuitionistic fuzzy linguistic environ-
ment, and more complicated situation, and consider other
applications.

Appendix

A. The Proof of Theorem 20

Proof. (1) Since (𝑠𝑖, 0) ≥ (𝑠󸀠𝑖 , 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛,
then 𝑇𝐹𝑡𝑖𝑡𝐻(𝐿𝐻(𝑠𝑖, 0)) ≥ 𝑇𝐹𝑡𝑖󸀠𝑡𝐻 (𝐿𝐻(𝑠󸀠𝑖 , 0)), 𝑇𝐹𝑡𝑗𝑡𝐻(𝐿𝐻(𝑠𝑗, 0)) ≥𝑇𝐹𝑡󸀠𝑗𝑡𝐻(𝐿𝐻(𝑠󸀠𝑗, 0)) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛,

1𝑝 + 𝑞 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 (𝑝 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) + 𝑞 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))2/𝑛(𝑛+1))
≥ 1𝑝 + 𝑞 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 (𝑝 (Δ−1 (𝑇𝐹𝑡󸀠𝑖𝑡𝐻 (𝐿𝐻 (𝑠󸀠𝑖 , 0)))) + 𝑞 (Δ−1 (𝑇𝐹𝑡󸀠𝑗𝑡𝐻 (𝐿𝐻 (𝑠󸀠𝑗, 0)))))2/𝑛(𝑛+1))

(A.1)

Thus, 𝑈𝐿𝐺𝐺𝐻𝑀𝑝,𝑞((𝑠1, 0),⋅ ⋅ ⋅, (𝑠𝑛, 0))≥𝑈𝐿𝐺𝐺𝐻𝑀𝑝,𝑞((𝑠󸀠1,0), ⋅ ⋅ ⋅ , (𝑠󸀠𝑛, 0)). (2) Since (𝑠𝑖, 0) = (𝑠, 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, then
𝑈𝐿𝐺𝐺𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ( 1𝑝 + 𝑞 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 (𝑝 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) + 𝑞 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))2/𝑛(𝑛+1))))
= 𝐿𝐻−1 (Δ ((Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠, 0)))))) = (𝑠, 0) .

(A.2)
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(3) According to the property of idempotency andmono-
tonicity, we have (𝑠∗, 0) = 𝑈𝐿𝐺𝐺𝐻𝑀𝑝,𝑞((𝑠∗, 0), ⋅ ⋅ ⋅ , (𝑠∗, 0)) ≤𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)), (𝑠∗, 0) = 𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞((𝑠∗,0), ⋅ ⋅ ⋅ , (𝑠∗, 0)) ≥ 𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)); i.e., (𝑠∗,0) ≤ 𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) ≤ (𝑠∗, 0).

B. The Proof of Theorem 22

Proof. (1) Since 𝑤1 = ⋅ ⋅ ⋅ = 𝑤𝑛 = 1/𝑛, according to (41), we
have

𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))
= 𝐿𝐻−1(Δ((∑𝑛𝑖=1∑𝑛𝑗=𝑖 ((1/𝑛) ⋅ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝 ((1/𝑛) ⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/(𝑝+𝑞)(∑𝑛𝑖=1∑𝑛𝑗=𝑖 (1/𝑛)𝑝 (1/𝑛)𝑞)1/(𝑝+𝑞) ))
= 𝐿𝐻−1(Δ((1/𝑛) (∑𝑛𝑖=1∑𝑛𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/(𝑝+𝑞)(1/𝑛) ⋅ (𝑛 (𝑛 + 1) /2)1/(𝑝+𝑞) ))
= 𝐿𝐻−1(Δ( 2𝑛 (𝑛 + 1) ( 𝑛∑𝑖=1 𝑛∑𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝 (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/(𝑝+𝑞)))
= 𝑈𝐿𝐺𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) .

(B.1)

(2) Since (𝑠𝑖, 0) ≥ (𝑠󸀠𝑖 , 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, 𝑝, 𝑞 ≥ 0.
Then

(𝑤𝑖 ⋅ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝
≥ (𝑤𝑖 ⋅ Δ−1 (𝑇𝐹𝑡󸀠𝑖𝑡𝐻 (𝐿𝐻 (𝑠󸀠𝑖 , 0))))𝑝 ,

(𝑤𝑗 ⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞
≥ (𝑤𝑗 ⋅ Δ−1 (𝑇𝐹𝑡󸀠𝑗𝑡𝐻 (𝐿𝐻 (𝑠󸀠𝑗, 0))))𝑞 .

(B.2)

Further,

(∑𝑛𝑖=1∑𝑛𝑗=𝑖 (𝑤𝑖 ⋅ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝 (𝑤𝑗 ⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/(𝑝+𝑞)(∑𝑛𝑖=1∑𝑛𝑗=𝑖 𝑤𝑖𝑝𝑤𝑗𝑞)1/(𝑝+𝑞)
≥ (∑𝑛𝑖=1∑𝑛𝑗=𝑖 (𝑤𝑖 ⋅ Δ−1 (𝑇𝐹𝑡󸀠𝑖𝑡𝐻 (𝐿𝐻 (𝑠󸀠𝑖 , 0))))𝑝 (𝑤𝑗 ⋅ Δ−1 (𝑇𝐹𝑡󸀠𝑗𝑡𝐻 (𝐿𝐻 (𝑠󸀠𝑗, 0))))𝑞)1/(𝑝+𝑞)(∑𝑛𝑖=1∑𝑛𝑗=𝑖 𝑤𝑖𝑝𝑤𝑗𝑞)1/(𝑝+𝑞)

(B.3)

Thus, 𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,𝑞((𝑠1, 0), ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) ≥𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,𝑞((𝑠󸀠1, 0), ⋅ ⋅ ⋅ , (𝑠󸀠𝑛, 0)). (3) Since (𝑠𝑖, 0) = (𝑠, 0) for all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, then
𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ((∑𝑛𝑖=1∑𝑛𝑗=𝑖 (𝑤𝑖 ⋅ Δ−1 (𝑇𝐹𝑡𝑡𝐻 (𝐿𝐻 (𝑠, 0))))𝑝 (𝑤𝑗 ⋅ Δ−1 (𝑇𝐹𝑡𝑡𝐻 (𝐿𝐻 (𝑠, 0))))𝑞)1/(𝑝+𝑞)(∑𝑛𝑖=1∑𝑛𝑗=𝑖 𝑤𝑖𝑝𝑤𝑗𝑞)1/(𝑝+𝑞) ))
= 𝐿𝐻−1 (Δ ((Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠, 0)))))) = (𝑠, 0) .

(B.4)
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(4) According to the property of idempotency andmono-
tonicity, we can get (𝑠∗, 0) ≤ 𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,𝑞((𝑠1, 0), ⋅ ⋅ ⋅ ,(𝑠𝑛, 0)) ≤ (𝑠∗, 0).

C. Some Special Cases of
the ULGWAHM Operator in regard to
Parameters 𝑝 and 𝑞
(1) If 𝑞 → 0, then

𝑈𝐿𝐺𝑊𝐴𝐻𝑀𝑝,0 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))
= 𝐿𝐻−1(Δ((∑𝑛𝑖=1∑𝑛𝑗=𝑖 (𝑤𝑖 ⋅ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝 (𝑤𝑗 ⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/(𝑝+𝑞)(∑𝑛𝑖=1∑𝑛𝑗=𝑖 (𝑤𝑖)𝑝 (𝑤𝑗)𝑞)1/(𝑝+𝑞) ))
= 𝐿𝐻−1(Δ((∑𝑛𝑖=1∑𝑛𝑗=𝑖 (𝑤𝑖 ⋅ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝)1/𝑝(∑𝑛𝑖=1∑𝑛𝑗=𝑖 𝑤𝑖𝑝)1/𝑝 ))
= 𝐿𝐻−1(Δ(( 𝑛∑

𝑖=1

( (𝑛 + 𝑖 − 1)𝑤𝑖𝑝∑𝑛𝑖=1 (𝑛 + 𝑖 − 1)𝑤𝑖𝑝 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝))1/𝑝)) = ( 𝑛⨁
𝑖=1

(( (𝑛 + 𝑖 − 1)𝑤𝑖𝑝∑𝑛𝑖=1 (𝑛 + 𝑖 − 1)𝑤𝑖𝑝)
⊙ (𝑠𝑖, 0)𝑝))1/𝑝 ,

(C.1)

which is called the unbalanced linguistic generalized
weighted mean (ULGWM) operator.

(2) If 𝑝 → 0, then
𝑈𝐿𝐺𝑊𝐴𝐻𝑀0,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ((∑𝑛𝑖=1∑𝑛𝑗=𝑖 (𝑤𝑖 ⋅ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))𝑝 (𝑤𝑗 ⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/(𝑝+𝑞)(∑𝑛𝑖=1∑𝑛𝑗=𝑖 (𝑤𝑖)𝑝 (𝑤𝑗)𝑞)1/(𝑝+𝑞) ))
= 𝐿𝐻−1(Δ((∑𝑛𝑖=1∑𝑛𝑗=𝑖 (𝑤𝑗 ⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))𝑞)1/𝑞(∑𝑛𝑖=1∑𝑛𝑗=𝑖 𝑤𝑗𝑞)1/𝑞 )) = 𝐿𝐻−1(Δ(( 𝑛∑

𝑗=1

𝑗𝑤𝑗𝑞∑𝑛𝑗=1 𝑗𝑤𝑗𝑞
⋅ (Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻(𝑠𝑗, 0))))𝑞)1/𝑞)) = ( 𝑛⨁

𝑗=1

( 𝑗𝑤𝑗𝑞∑𝑛𝑗=1 𝑗𝑤𝑗𝑞) ⊙ (𝑠𝑗, 0)𝑞)1/𝑞 .

(C.2)

TheULGWAHMreduces to the unbalanced linguistic
generalized weighted mean (ULGWM) operator.

(3) If 𝑝 = 𝑞 = 1, then
𝑈𝐿𝐺𝑊𝐴𝐻𝑀1,1 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ((∑𝑛𝑖=1∑𝑛𝑗=𝑖 (𝑤𝑖 ⋅ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0)))) (𝑤𝑗 ⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0)))))1/2(∑𝑛𝑖=1∑𝑛𝑗=𝑖 𝑤𝑖𝑤𝑗)1/2 ))
= 𝑛⨁
𝑖=1

𝑛⨁
𝑗=𝑖

(( 𝑤𝑖∑𝑛𝑖=1∑𝑛𝑗=𝑖 𝑤𝑖𝑤𝑗 ⊙ (𝑠𝑖, 0))
1/2 ⊗ ( 𝑤𝑗∑𝑛𝑖=1∑𝑛𝑗=𝑖 𝑤𝑖𝑤𝑗 ⊙ (𝑠𝑗, 0))

1/2) .
(C.3)
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(4) If 𝑝 = 𝑞 = 1/2, we obtain
𝑈𝐿𝐺𝑊𝐴𝐻𝑀1/2,1/2 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ((∑𝑛𝑖=1∑𝑛𝑗=𝑖 (𝑤𝑖 ⋅ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))1/2 (𝑤𝑗 ⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝐿𝐻 (𝑠𝑗, 0))))1/2)∑𝑛𝑖=1∑𝑛𝑗=𝑖 𝑤𝑖1/2𝑤𝑗1/2 ))
= 𝑛⨁
𝑖=1

𝑛⨁
𝑗=𝑖

(( 𝑤𝑖1/2∑𝑛𝑖=1∑𝑛𝑗=𝑖 𝑤𝑖1/2𝑤𝑗1/2 ⊙ (𝑠𝑖, 0)1/2) ⊗ ( 𝑤𝑗1/2∑𝑛𝑖=1∑𝑛𝑗=𝑖 𝑤𝑖1/2𝑤𝑗1/2 ⊙ (𝑠𝑗, 0)1/2)) ,
(C.4)

which we call the unbalanced linguistic general
weighted mean (ULGWM) operator.

D. Some Special Cases of the ULGWGHM
Operator in regard to Parameters 𝑝 and 𝑞
(1) If 𝑞 → 0, then

= 𝐿𝐻−1(Δ(1𝑝 ( 𝑛∏
𝑖=1

𝑛∏
𝑗=𝑖

(𝑝 ⋅ Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝑠𝑖, 0))))(2(𝑛−𝑖+1)/𝑛(𝑛+1))⋅(𝑤𝑗/∑
𝑛
𝑘=𝑖 𝑤𝑘)))

= 𝐿𝐻−1(Δ( 𝑛∏
𝑖=1

(Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝐿𝐻 (𝑠𝑖, 0))))2(𝑛+𝑖−1)/𝑛(𝑛+1))) = 𝑛⨂
𝑖=1

((𝑠𝑖, 0)2(𝑛−𝑖+1)/𝑛(𝑛+1)) ,
(D.1)

which we call the unbalanced linguistic geomet-
ric mean (ULGM) operator with the descending

weight vector. It has no relationship with p while𝑞 → 0.
(2) If 𝑝 → 0, then

𝑈𝐿𝐺𝑊𝐺𝐻𝑀0,𝑞 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0)) = 𝐿𝐻−1(Δ(1𝑞 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 (𝑞 ⋅ Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝑠𝑗, 0))))
(2(𝑛−𝑖+1)/𝑛(𝑛+1))⋅(𝑤𝑗/∑

𝑛
𝑘=𝑖 𝑤𝑘)))

= 𝐿𝐻−1(Δ(( 𝑛∏
𝑖=1

𝑛∏
𝑗=𝑖

(Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝑠𝑗, 0))))(2(𝑛−𝑖+1)/𝑛(𝑛+1))⋅(𝑤𝑗/∑
𝑛
𝑘=𝑖 𝑤𝑘)))

= 𝑛⨂
𝑖=1

𝑛⨂
𝑗=𝑖

((𝑠𝑗, 0)(2(𝑛−𝑖+1)/𝑛(𝑛+1))⋅(𝑤𝑗/∑𝑛𝑘=𝑖 𝑤𝑘)) .
(D.2)

TheULGWGHMoperator reduces to the unbalanced
linguistic weighted geometric mean (ULWGM)

operator. It has no relationship with q while𝑝 → 0.
(3) If 𝑝 = 𝑞 = 1, then

𝑈𝐿𝐺𝑊𝐺𝐻𝑀1,1 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))
= 𝐿𝐻−1(Δ(12 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝑠𝑖, 0)) + Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝑠𝑗, 0))))

(2(𝑛−𝑖+1)/𝑛(𝑛+1))⋅(𝑤𝑗/∑
𝑛
𝑘=𝑖 𝑤𝑘))) = 12

⊙ ( 𝑛⨂
𝑖=1

𝑛⨂
𝑗=𝑖

((𝑠𝑖, 0) ⊕ (𝑠𝑗, 0)))(2(𝑛−𝑖+1)/𝑛(𝑛+1))⋅(𝑤𝑗/∑𝑛𝑘=𝑖 𝑤𝑘) .
(D.3)
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(4) If 𝑝 = 𝑞 = 1/2, then
𝑈𝐿𝐺𝑊𝐺𝐻𝑀1/2,1/2 ((𝑠1, 0) , ⋅ ⋅ ⋅ , (𝑠𝑛, 0))

= 𝐿𝐻−1(Δ(12 ( 𝑛∏𝑖=1 𝑛∏𝑗=𝑖 (Δ−1 (𝑇𝐹𝑡𝑖𝑡𝐻 (𝑠𝑖, 0)) + Δ−1 (𝑇𝐹𝑡𝑗𝑡𝐻 (𝑠𝑗, 0))))
(2(𝑛−𝑖+1)/𝑛(𝑛+1))⋅(𝑤𝑗/∑

𝑛
𝑘=𝑖 𝑤𝑘)))

= ((12 ⊙ (𝑠𝑖, 0)) ⊕ (12 ⊙ (𝑠𝑗, 0)))(2(𝑛−𝑖+1)/𝑛(𝑛+1))⋅(𝑤𝑗/∑𝑛𝑘=𝑖 𝑤𝑘) ,
(D.4)

whichwe call unbalanced linguisticweighted geomet-
ric Heronianmean (ULWGHM) operator in this case.
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