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Abstract: The neuronal cell adhesion and recognition molecule L1 does not only ‘keep cells together’
by way of homophilic and heterophilic interactions, but can also promote cell motility when cleaved
into fragments by several proteases. It has largely been thought that such fragments are signs of
degradation. Now, it is clear that proteolysis contributes to the pronounced functional diversity of L1,
which we have reviewed in this work. L1 fragments generated at the plasma membrane are released
into the extracellular space, whereas other membrane-bound fragments are internalised and enter the
nucleus, thus conveying extracellular signals to the cell interior. Post-translational modifications on
L1 determine the sequence of cleavage by proteases and the subcellular localisation of the generated
fragments. Inside the neuronal cells, L1 fragments interact with various binding partners to facilitate
morphogenic events, as well as regenerative processes. The stimulation of L1 proteolysis via injection
of L1 peptides or proteases active on L1 or L1 mimetics is a promising tool for therapy of injured
nervous systems. The collective findings gathered over the years not only shed light on the great
functional diversity of L1 and its fragments, but also provide novel mechanistic insights into the
adhesion molecule proteolysis that is active in the developing and diseased nervous system.

Keywords: cell adhesion and recognition; proteolysis; L1; NCAM; ectodomain shedding

1. Introduction

Neural cell adhesion molecules, also called cell recognition molecules, belong to an
integral membrane protein superfamily with characteristic adhesive and signalling proper-
ties [1]. In particular, two well-studied members of the family, the cell adhesion molecule
L1CAM (or simply L1) and the neural cell adhesion molecule NCAM, are crucial for cell
migration, proliferation, and differentiation during the early stages of nervous system
formation, as well as postnatally in adult neurogenesis [2–4] and neural plasticity [5,6].
Data generated over the past twenty years suggest that, at the protein level, cell adhesion
molecules can exist in the form of proteolytic fragments. Here, we focus on the intracellular
distribution of membrane-bound fragments of L1 formed after the application of particular
stimuli. We present contemporary approaches to understanding the functions of these
fragments, together with the proteases that generate them, in the context of nervous system
development and pathology.

2. L1CAM in Nervous System Development and Neuropsychiatric Disease

L1 has been described as a cell recognition molecule [7], which facilitates adhesion
between neurons. During development, L1 is required for the outgrowth, fasciculation,
and guidance of axons, glial process formation, and neuronal migration [8–10]. At the adult
stages, L1 is involved in neural plasticity, the consolidation of learning and memory, and
post-injury regeneration [11–14]. The L1 gene of the X–chromosome in humans encodes a
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transmembrane type I protein comprising 1257 amino acids. The importance of L1CAM
for the proper development of the nervous system is highlighted by a plethora of reported
pathological mutations in this gene [15]. Many of these mutations cause severe neurological
deficits, often leading to the premature deaths of the affected individuals [15]. Four human
X-linked neurodevelopmental pathologies comprise the L1 syndrome: hydrocephalus, the
degeneration or lack of the corpus callosum, spastic paraplegia, and intellectual disabil-
ity [16–18]. Mice deficient in L1 display similar anatomical abnormalities, resulting in severe
behavioral deficits [19–23]. In these mice, a considerable number of corticospinal tract
axons do not cross the midline to the opposite dorsal column [24]. The aberrantly misplaced
ipsilateral axons do not project beyond cervical levels [24]. Hence, abnormal pyramidal
decussation and ataxia are often seen in L1-deficient mice [9]. Similar neuroanatomical
alterations have been found in mice carrying the constitutive loss-of-function mutation
p.C264Y in the murine L1CAM gene. The mutation is also pathogenic in L1 syndrome
patients [25]. Importantly, ectopic expression of L1 in astrocytes has been shown to affect
corticospinal tract development [26]. It has been suggested that defective axonal projections
through the corpus callosum or corticospinal tract may result in neuronal cell death, loss
of cortical gray matter, increased brain compliance, and, thus, enlarged ventricles [27].
Strikingly, domain modelling has predicted that some missense mutations in L1CAM lead
to protein misfolding and accumulation in the endoplasmic reticulum with aberrant cell
surface expression [16,17,28–30]; meanwhile, other types of mutations affect specific amino
acids in the L1CAM protein, which undergo molecular interactions [31] (Bateman et al.
1996). Not all of the molecular and cellular mechanisms underlying pathogenic mutations
have been explored, but they surely manifest as part of L1 syndrome.

3. The Structure and Functions of Cell Adhesion Molecule L1

The protein backbone of L1 consists of a short and highly conserved cytoplasmic
domain, a transmembrane part, and an extracellular region formed by six immunoglobulin
(Ig)-like and five fibronectin-type III (FNIII)-like domains [32], as shown in Figure 1A. L1
binds homophilically to other L1 molecules [33] or heterophilically to distinct binding
partners [34–36]. At the plasma membrane of a cell, the ectodomain of L1 can interact
with other proteins in a ‘cis’ configuration [37], while the ‘trans’ interaction mediates cell–
cell contacts [38]. It seems that the ectodomain of L1 is a lectin that interacts with sialic
acid [39]. There are several potential sites on L1 for glycosylation, which can affect homo-
and heterophilic interactions [40,41]. Furthermore, L1 can undergo ubiquitination at its
C-terminus [42]; however, these post-translational modifications of the adhesion molecule,
and their functional significance for the proper formation of the nervous system, are not
well understood.

Initially, L1 was found in the nervous system, and has been thoroughly studied. How-
ever, the molecule has been also detected in different types of cancer [43]. In patients with
solid carcinoma, L1 is overexpressed [43], and high expression of L1 in these tumours
predicts a poor outcome [44–46]. In tumours, L1 rarely exerts ‘adhesive properties’ in
terms of holding tumour cells together; rather, it induces invasive and aggressive tumour
growth, metastasis, and chemoresistance [36,47–49]. L1 shows abnormal expression in the
blood vessels of a variety of malignant tumours and has been related to a multitude of
pro-angiogenic effects [50]. Notably, Angiolini and colleagues discovered a novel isoform of
L1CAM expressed in endothelial cells as a result of a NOVA2-induced (neuro-oncological
ventral antigen 2) alternative splicing removing the exon coding for the transmembrane
domain of L1 [51]. This isoform represents a soluble L1CAM variant, which is released
by endothelial cells and able to stimulate angiogenesis via autocrine/paracrine mecha-
nisms [51]. This isoform is overexpressed in the vasculature of ovarian cancer, and high
expression levels correlate with ovarian cancer aggressiveness [51]. The L1 isoforms created
by alternative splicing are just a small portion of those that contribute to the diversity of L1
entities circulating in the body. At the protein level, for instance, L1 is cleaved within the
ectodomain, and in carcinoma patients this cleavage results in the shedding and accumula-
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tion of soluble forms into the extracellular space, including serum and ascites [43,47,52,53],
as shown in Figure 1B. Another proposed mechanism for the metastasising of cancer cells
is the recruitment of L1 and the activation of the mechanotransduction effectors, such
as Yes-associated protein (YAP) and myocardin-related transcription factor (MRTF). YAP
activation is mediated via β1 integrin and integrin-linked kinase (ILK), which facilitate the
formation of metastasis-triggering cells [54]. However, it is still unclear why and how L1 is
involved in the development of aggressive tumours on the one hand, and in the normal
functioning of the nervous systems on the other. These lines of thought are mirrored
by studies reporting increased L1 fragments in the cerebrospinal fluid of patients with
Alzheimer’s disease [55].

Figure 1. Structure and ectodomain shedding of L1. (A) Full-length L1 (L1-200) consists of six Ig-like
domains, five FNIII-like repeats, a transmembrane, and an intracellular domain. (B) PC5A cleaves L1-
200 within the third FN repeat to generate a membrane-bound 80 kDa (L1-80) and a soluble 140 kDa
(L1-140) fragment. L1-200 and L1-80 are substrates of the ADAM10 protease, which generates a
membrane-bound 32 kDa (L1-32) and a soluble 180 kDa (L1-180) or a soluble 50 kDa (L1-50) fragment.
L1-32 can be processed by the γ-secretase to an intracellular 28 kDa (L1-28) fragment.

Several proteases are involved in the process of the ectodomain shedding of L1
(Figure 1B); these are mainly members of the ADAM (a disintegrin and metalloproteinase)
family, and include ADAM10, ADAM7, and BACE1 [53,56–58] (for a more detailed review,
see Linneberg et al. [59]). However, serine proteases, such as plasmin [60] can also par-
ticipate. Plasmin and trypsin, as well as the pro-protein convertase 5A (PC5A), cleave L1
within the third FNIII-like repeat [61] to generate transmembrane, intracellular, and soluble
extracellular fragments. Members of the ADAM family also contribute to the formation
of those fragments [53,62,63], releasing the entire ectodomain of L1 [56] (Figure 1B). This
phenomenon has been observed not only during brain development but also in tumour
cells in vitro [64]. Presenilin and beta-secretase generate an intracellular L1 fragment, found
in the nucleus, where it probably influences gene expression [63] (Figure 1B). The proteoly-
sis of L1 contributes to post-translational diversity, which obviously dominates over the
genomic diversity reported for L1CAM so far.

L1 carries the carbohydrate LewisX [65], which is crucial for the development and
further functioning of the nervous system, and particularly for neurite outgrowth and
myelination [66]. LewisX is involved in the processing of L1 by proteases, and myelin
basic protein (MBP) was identified as a serine protease for L1, which interacts with L1 in a
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LewisX-dependent manner [67,68]. MBP is a major myelin constituent and has a clinical
implication in demyelinating diseases, such as multiple sclerosis [69–73]. Shiverer mice,
which are deficient in MBP, show a progressive disorder characterised by tremors and
seizures, leading to early death [69,74]. Surprisingly, neurons show that MBP reactivity
is similar to that of myelin-producing cells [75]. After the L1-specific immunostimulation
of cultured murine cerebellar neurons, MBP is released into the culture medium as a
sumoylated dynamin-containing protein to cleave L1 at R687 (targeted also by trypsin and
plasmin) in the extracellular domain, thus yielding a transmembrane 70 kDa L1 fragment
(L1-70) [61,68]. MBP plays a major role in the generation of this fragment, since it is
abolished when MBP is manipulated in a variety of ways, such as by genetic ablation (in
shiverer mice) or the mutagenesis of the proteolytically active or cleavage sites, as well as
by the application of serine protease inhibitors. The MBP-mediated generation of L1-70
promotes neurite outgrowth and the survival of neurons, as shown in vitro. Interestingly,
in dissociated cerebellar neurons from wild-type and MBP-deficient shiverer mice, and
when cultured in a medium supplemented with the MBP antibody or L1 holding the
MBP cleavage site, the formation of neurites and neuronal survival is hampered [67,68].
The MBP-dependent L1-70 also promotes Schwann cell proliferation and myelination in
cultured dorsal root ganglion neurons. These combined findings provide evidence for
novel functions of the LewisX-based interaction between L1 and MBP in the nervous
system [67,68].

Further studies on the relevance of the proteolytic activity of MBP on L1 in vivo,
in the developing spinal cord, have identified the proteolytically active site in MBP [67].
A serine residue of MBP mutated by a genetic nucleotide exchange disrupted MBP’s
proteolytic activity and abolished the L1-dependent cellular responses when applied to
cultured neurons. The administration of adeno-associated viral particles that encode
proteolytically active MBP into shiverer embryos in utero prevented the manifestation of all
the developmental spinal cord abnormalities mentioned above. However, these parameters
become abnormal after the in utero injection of proteolytically inactive MBP. These findings
suggest that the serine protease MBP acts on L1 to facilitate important morphogenic events
during the early stages of nervous system development [67].

In addition to its essential role in the formation of the nervous system, L1 also stim-
ulates recovery processes in animal models of acute and chronic neurodegenerative en-
tities [76]. Does the proteolysis of L1 affect the regeneration of the nervous system after
acute trauma? Using the spinal cord and femoral nerve injury paradigms of adult mice, it
has been investigated whether MBP, which is proteolytically active on L1 in the third FNIII
domain, would affect regeneration [67,68]. The treatment of the injured spinal cords and
femoral nerves of non-mutant mice with active recombinant MBP leads to the elevation of
L1 levels, the restoration of the structural integrity, and the improvement of functional per-
formances. It is noteworthy that the immunosuppression of MBP with a specific antibody
at the site of the injury leads to impaired regeneration. These opposing effects have also
been achieved by injecting viruses that encoding either proteolytically active or inactive
MBP at the injury area. The results from these experiments reveal that MBP has another
L1-mediated ability, which could be used for the treatment of acute injuries of the nervous
system.

In the search for other early proteases/binding partners that target L1, the extracellular
matrix protein Reelin has been identified as interacting with cell adhesion molecule L1 [77].
Reelin seems to stimulate the underlying neuronal relocation of signalling pathways by
interacting with lipoprotein receptors [78–83], probably acting as a protease [84–86]. Inter-
estingly, Reelin itself is a substrate for metalloproteases [87–91], which cleave the protein
into different fragments [92–94]. Data continue to accumulate regarding the Reelin frag-
ments and their functions, but they remain enigmatic [95–98]. Thus, it has been found that,
in addition to the full-length Reelin, the N-R2 and N-R6 terminal fragments also bind to
L1. However only full-length Reelin and the N-R6 fragment mediate the cleavage of L1
(within the diabasic sequence 858RKHSKR863) and the appearance of an 80 kDa fragment
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(L1-80), and stimulate the migration and axonal outgrowth of dissociated cortical and
cerebellar neurons [77]. Remarkably, in the early stages of brain cortex development, the
expression of the N-R6 fragment parallels the generation of L1-80. Furthermore, because
newly generated neurons migrate toward the Reelin-containing marginal zone, Reelin
has been considered to be a guiding signal [99]. On the other hand, Reelin might be a
stop signal [99], since the migrating neurons in Reelin-deficient (reeler) mice invade the
marginal zone, unlike the cells of the wild-type mice. It is therefore worth mentioning
that the developing L1-deficient cerebral cortex displays morphological abnormalities in
layer formation, partially overlapping with those seen in the cerebral cortices of the reeler
mice. However, in utero electroporetic administration of L1-80 into the cortices of reeler
embryos normalises neuronal migration [77]. These findings point to the significance of
the interaction between L1, Reelin, and the Reelin-mediated formation of L1-80 during the
early stages of brain development. Unlike L1-80, the full-length L1 fails to induce neuronal
migration in Reelin-deficient mutants [77]. Thus, the combined findings reveal that, as
soon as L1 is proteolytically cleaved, cell motility occurs. Moreover, studying L1 fragments
provides deeper insights into the function of the proteases that process L1. These findings
provide evidence that the cleavage of L1 contributes to different L1 functions. How and
when the L1 fragments perform all these functions is still not well understood.

In this respect, it is important to mention that another member of the CAM family,
the neural cell adhesion molecule NCAM, is prone to proteolysis in a similar fashion to
L1. NCAM is crucial not only for the proper development of the nervous system, but also
for maintaining the high cognitive functions of the adult brain (for further details, see [3]).
Similarly to L1, NCAM is proteolytically cleaved by several proteases into extracellular,
transmembrane, and intracellular fragments [100,101]. NCAM is post-translationally modi-
fied to carry the glycan polysialic acid (PSA), which strongly influences the functions of
NCAM. PSA–NCAM is upregulated in tumour cells [102] and has been considered to be
an adverse prognosis factor in glioblastoma [103]. There are fluctuations in the levels of
PSA–NCAM in the suprachiasmatic nucleus [104], and genetic deletions of NCAM and
PSA have been shown to impair circadian functions [105]. Recently, two new PSA-binding
proteins, positive factor 4 (PF4) and cofilin, have been recognised as being responsible
for the nuclear import of PSA-carrying NCAM fragments. PF4 and cofilin are involved
in RNA polymerase II-dependent transcription and, as such, they can modulate gene
expression: the PSA-carrying NCAM fragment increases mRNA and protein expression
of the nuclear receptor subfamily 2 group F member 6, whereas the PSA-lacking NCAM
fragment increases low density lipoprotein-receptor-related protein 2 and α-synuclein [106].
These combined data produce a two-sided story, revealing that CAM cleavage and post-
translational modifications play an important role in the proper development of the nervous
system, but that, when out of control, they are also a hallmark of pathological change. The
types of proteases involved hereby determine what kind of molecular fragments will be
generated, and what their destiny will be, thus modulating a plethora of intra- and ex-
tracellular events. Therefore, we can speculate that proteolysis is a key mechanism in
the production of significant functional diversity amongst the members of the adhesion
molecule family.

4. Stimulation of Proteolysis and the Intracellular Trafficking of Proteolytic Fragments

The homophilic and heterophilic interactions of L1 can stimulate signal transduction
pathways, generating cellular responses. As shown previously [107], the stimulation of
signalling by function-triggering L1 antibodies or by the ectodomain of L1 fused with the
Fc part of human IgG1 activates the cleavage of L1 by a serine protease at the plasmalemma.
This yields a sumoylated transmembrane L1 part of approximately 70 kDa (see [61,107]),
which harbours the intracellular and transmembrane domains, as well as part of the
extracellular domain (Figure 2).
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Figure 2. The formation, internalization, and intracellular pathways of L1-70. (1) Full-length L1
(L1-200) is cleaved by (serine) proteases into a membrane-bound 70 kDa L1 fragment (L1-70) and
a soluble 135 kDa fragment (L1–135). (2,3) Via endocytosis, L1-70 enters the cytosol and it is then
transported either to the endosomes or to the endoplasmic reticulum (3a, 3b). L1-70 is distributed
to the endoplasmic reticulum, the sorting endosomes, and the late endosomes. (3c) L1-70 is loaded
onto multivesicular bodies (mvb). (4) Once released from the endosomes, a process that depends
on the ESCRTIII proteins Alix, Vps4, and CHMP1, and on a conjugation with CHMP1, L1-70 is
translocated into the nucleus and associates with the chromatin (5). (6) Another possible direction for
L1-70 trafficking is via exocytosis (7).

After generation, this transmembrane fragment is internalised to a late endosomal area,
then further shifted consecutively to the cytoplasm and the nucleus. Having been released
from the endosomal membranes into the cytoplasm, the fragment is then further transferred
to the nucleus under the control of importin and chromatin-modifying protein 1. There are
two motifs in L1 that are crucial for this process: a sumoylation site at K1172 and a nuclear
localisation signal related to K1147. When both are mutated, the L1-stimulated generation
and nuclear import of the 70 kDa fragment is abolished. It has been found that the nuclear
70 kDa L1 fragment is associated with the chromatin-rich nuclear fraction of neurons,
implying that the nuclear import of the fragment, and hence, the possible association of
the fragment with DNA, may affect gene expression. Furthermore, the expression of this
70 kDa L1 fragment varies over the course of the formation of the nervous system, as
well as when acute and chronic injuries are sustained in adulthood [55]; the fragment
has been suggested to be a key player in those processes [108,109]. Moreover, it can be
speculated that the fragment might also take part in tumorigenesis, because proteases
are also adversely upregulated in many tumours [43]. Interestingly, the generation of
L1-70 in the plasma membrane is accompanied with the shedding of a soluble form of
approximately 135 kDa (L1-135) into the extracellular space (see [61,107], Figure 2). The
functions of this fragment are still unknown.

Further studies of intracellular L1-fragments have reported that the administration of a
function-triggering L1 antibody to dissociated cerebellar neurons initiates the formation of a
sumoylated 30 kDa L1 fragment (L1-30) by cathepsin E [110]. L1-30 enters the nucleus [110]
(Figure 3).
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Figure 3. The formation and intracellular pathways of L1-30. (1) After generation from full-length L1
(L1-200), L1-70 is sumoylated by sumo-2 and/or sumo-3, and becomes a substrate for the enzyme
cathepsin E, (2a) which cleaves L1 at E1167. As a result, two new fragments are generated: a soluble
L1-30 fragment (2b) and L1-55 (2c). (3) Once discharged into the cytoplasm, L1-30 enters the nucleus.
(4, 5) L1-55 remains bound to the plasmalemma, and from there it is directed to the late endosomes (6).
In the endosomes, L1-55 is embedded into multivesicular bodies (mvb) and subjected to exocytosis
into the ECM (7) by exosomes (8).

Modification of the sumoylation site at K1172, or the cathepsin E cleavage site at
E1167, eradicates the formation of L1-30, whereas alteration of the nuclear localisation
signal at K1147 averts the nuclear internalisation of the fragment, but not its generation.
Additionally, L1-30 production can be blocked by pepstatin, an aspartyl protease inhibitor,
which also inhibits the L1-induced migration of cerebellar neurons and Schwann cells in
dorsal root ganglia, thus impairing axonal myelination [110]. However, the application of
L1 agonists has a stimulatory effect on both neural cell types [111,112]. Mutation of the
cathepsin E cleavage site of HEK293 cells obstructs their L1-stimulated migration. However,
migration is abolished upon silencing of cathepsin E, and enhanced by overexpression of
the enzyme [110]. These observations are indicative of the importance of L1-30 for proper
cell migration and axonal myelination.

When serine proteases and cathepsin E cleave L1 at the plasma membrane, another
membrane-bound fragment of approximately 55 kDa (L1-55) is generated [110]: see Figure 3.
L1-55 is directed to the late endosomes, then embedded into multivesicular bodies and
released into the ECM by exosomes (Figure 3). The functions of L1-55, similarly to those of
L1-135, need further experimental attention.

5. Sumoylation of L1 Affects the Generation of Proteolytic Fragments

Interestingly, the post-translational modification of L1 may determine which fragments
can be proteolytically generated [68,110]. In a controlled fashion, homophilic interactions
trigger the generation of a transmembrane 70 kDa and an intracellular 30 kDa L1 fragment.
Notably, sumoylation regulates the direction of proteolysis of L1: only the sumo-2/3-
modified 70 kDa fragment could be cleaved by cathepsin E to a 30 kDa portion (Figure 3).
Although sumoylation bears a resemblance to ubiquitination, the processes are not identi-
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cal [113]. Even though sumo-1 and sumo-2/3 activate the same enzymatic conjugation [114],
they have different roles, because they interact with diverse target proteins and conjugate
them with different isoforms [115,116]. Sumoylation orchestrates a broad spectrum of
processes related to the target proteins, both under normal conditions and in response
to a variety of pathologies: protein activity, degradation, interactions and localisation,
nucleo-cytoplasmic trafficking, DNA repair, and transcription [117–119]. Sumoylation is
also crucial for the control of neuronal motility and axonal guidance during development,
as well as for the normal functioning of the nervous system [120–122]. L1-70 and L1-30
follow different intracellular routes: L1-70 enters the nucleus via the endosomes–cytosol
path, whereas L1-30 is directed into the cytosol after its generation (Figures 2 and 3).
These findings indicate that sumoylation can modify the intracellular destiny of proteolytic
fragments; moreover, if sumoylation is abolished, the nuclear import of the fragments is
impaired as well. As mentioned above, the 30 kDa L1 fragment is implicated in neuronal
migration [110], while the 70 kDa fragment stimulates neuritogenesis and is associated
with development, regeneration, and plasticity in the nervous system. Additionally, their
occurrence in the nucleus suggests that they have an effector role in nuclear events. As
recently shown in vivo, by cleaving L1CAM and producing L1-70, MBP triggers a cascade
that suppresses neuron-differentiation-associated gene expression and activates Erk1/2 by
PPARγ2 [123]. This novel pathway, described by Yan et al., promotes axonal outgrowth
and significantly ameliorates functional recovery from spinal cord injury [123].

6. Nuclear Binding Partners of L1

The nuclear presence of L1 fragments implies possible interactions with other molecules.
In the search for motifs in L1 that are known to mediate possible interactions between L1
and nuclear molecules, Kraus et al. [124] identified one LXXLL motif (L1136LILL) in the
transmembrane domain and one FXXLF motif (F1046HILF) in the fifth FNIII-like sequence
of L1. L1136LILL is also present in the co-regulators (co-activators and co-repressors) of nu-
clear receptors, which are DNA-binding transcription factors essential for the development,
differentiation, and metabolism of the eukaryotic cells [125–127]. The transcription factors
are further categorised as follows: Class I, comprising the steroid receptor family, i.e., recep-
tors for progesterone, estrogens, androgen, glucocorticoid, and mineralocorticoid; Class II,
which includes receptors of the thyroid/retinoid group (peroxisome proliferator-activated
receptors, receptors for thyroid hormones, vitamins D and A); and Class III, represented by
the orphan receptors. There is a significant similarity between the two motifs FXXLF and
LXXLL, and they probably contribute to the stabilisation of the ligand–nuclear receptor
complex [128–132]. L1-70 contains both the LXXLL and FXXLF motifs; therefore, studies
have investigated whether these motifs are involved in the interaction with the nuclear
receptors. Indeed, both motifs in the extracellular and transmembrane domain of this L1
fragment facilitate interactions with the nuclear estrogen receptors α and β, peroxisome
proliferator-activated receptor γ, and retinoid X receptor β [124]. Alterations in LXXLL and
FXXLF disturb the interaction between L1 and the nuclear receptors. Indeed, the introduc-
tion of the mutated forms into embryonic mice cerebella in utero resulted in compromised
motor coordination and motor learning. Additionally, this impaired synaptic functioning
very much resembles the impairment typical of L1-deficient mouse [27]. Therefore, we can
conclude that synaptogenesis and synaptic plasticity depend on the interaction between
nuclear L1 and distinct nuclear receptors.

Recently, a new potential binding partner of the intracellular L1 domain has been
identified (included into the previously mentioned fragment L1-55) [133]. L1-55 binds
directly to methyl CpG binding protein 2 (MeCP2) via the sequence motif KDET, and,
thus, MeCP2 regulates some L1-dependent processes, including neurite outgrowth and
neuronal migration. These combined observations are in agreement with the previously
reported nuclear localisation of other receptor molecules. Already in 1993, a proposed
cleavage model for Notch was shown to be essential for underlying Notch signalling
upon activation by ligands [134–136]. After that, several other transmembrane proteins,
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such as receptor tyrosine kinases [137–139] and fibrocystin [140,141], were shown to be
proteolytically cleaved, thus giving rise to nuclear fragments, which convey receptor
signalling to the nucleus. CD146 (also known as cell surface glycoprotein MUC18 and
the melanoma-associated cell adhesion molecule) has been observed in the cytosol and
nucleus of endothelial progenitors and neuroblastoma cells [142,143]. Unlike the long
CD146 isoform, which is found predominantly in the cytosol, the short CD146 isoform is
primarily translocated to the nucleus [142,144]. Such a difference in the localisation of the
two CD146 isoforms is indicative of their specific functions; the proliferation and migration
of epithelial progenitor cells is promoted by the short CD146 fragment, while the long
CD146 fragment leads to the later stabilisation of capillaries [144–146].

All these observations raise the question of whether the cleavage and nuclear translo-
cation of fragments can be seen also for other L1 family members. Notably, NCAM is
proteolytically cleaved by matrix metalloproteases at the plasma membrane [147,148].
When the function-triggering NCAM antibody and a peptide comprising the effector do-
main of myristoylated alanine-rich C kinase substrate are administered, their interaction
with PSA leads to generation of the subsequent fragment at the plasmalemma and their
translocation into the nucleus [149]. Similarly to the fragments of L1, the transmembrane
NCAM fragment loaded with PSA moves into the nucleus when neurons are stimulated
with surrogate NCAM ligands in vitro [147]. The enhancement of this process is linked to
mutations in the clock-related genes, after the PSA deprivation of the dissociated neurons
by specific enzymes. There is a circadian oscillation of the nuclear PSA levels in different
brain regions, and these changes influence clock-related gene expression, as shown in vivo
in the mouse cerebellum and suprachiasmatic nucleus [147]. These studies suggest that
not only the protein backbone of the NCAM fragment but also attached carbohydrates
co-entering the cell nucleus contribute to specific functions of the carrier protein [106]. Do
carbohydrates on L1 also contribute to L1 proteolysis and the functions of the resulting
fragments?

7. The Proteolysis of L1, and the Application of L1 Mimetics Stimulating Proteolysis,
Contribute to the Regeneration of the Injured Nervous System

Another provocative question is whether the third FNIII-like domain of L1, which is a
target of many proteases, can be used as a potential therapeutic stimulator of L1-specific
functions. To answer this question, Schulz et al. [150] used a 22-mer murine L1 peptide
from the third FNIII-like domain for a covalent conjugation to gold nanoparticles (AuNPs).
The authors aimed to obtain functionalised particles that trigger homophilically cognate
and beneficial L1-mediated functions. The peptide–AuNP conjugate was achieved by
combination of two cysteine-terminated forms of FNIII peptide: a derivate of L1, and
small thiolated poly(ethylene) glycol (PEG) ligands that reacted with citrate stabilised
AuNPs of 14 and 40 nm in diameter. The layer composition of the functionalised AuNPs
was optimised by adjusting the proportions of the mixed components for the induction
of homophilic interactions. These optimised peptide/PEG–AuNPs were kept stable in
artificial cerebrospinal fluid over the course of 30 days, and were able to interact with the
extracellular part of L1 on both neuronal and Schwann cells, as observed in L1-deficient and
non-mutant mice by means of different cell-based assays. In vitro, the L1-functionalised
particles had a stimulating effect on Schwan cells and neurons [150]. These findings raised
confidence that AuNPs functionalised with the peptides from the third FNIII-like domain of
L1, which is a target of various proteases, have the potential to increase the effectiveness of
the other therapeutic strategies for the treatment of nervous system injuries. Nevertheless,
further experiments should aim to minimize the biological stimulus size of applicable L1
towards the size of small molecules, which are bound to diffuse better in injured tissue
than nanoparticles.

Kataria et al. [111] identified eight small molecule L1 agonists that enhance the pro-
teolysis of L1, and thus, levels of membrane-bound proteolytic and nuclear L1 fragments
in cell-based assays and in vivo. These agonists stimulated all the processes mediated by
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L1 [111]; for instance, severed femoral nerves remyelinated and regenerated rapidly when
those molecules were applied. In particular, in a murine model of spinal cord injuries,
a restoration of the monoaminergic innervation and suppression of astrogliosis and mi-
croglia activity was observed [111]. Such improvements are correlated with the enhanced
expression of L1-proteolytic fragments after treatment with L1 agonists, compared with
non-treated or mock-treated injured spinal cords [111]. Small organic compounds that bind
to L1 and stimulate beneficial homophilic L1 functions seem to increase L1 proteolysis, thus
opening another window to novel strategies in the treatment of injured nervous systems.

8. Conclusions

Experimental evidence gathered in recent years sheds light on the great functional
diversity of L1 and its fragments that emerge in the process of proteolysis. L1 not only
mediates adhesion between cells, but can also promote cell motility when cleaved into
fragments by several proteases. Now, it is clear that proteolysis is not a sign of degradation;
rather, it contributes to the functional heterogeneity of L1, together with distinct post-
translational modifications of the cleaved fragments. Carbohydrates attached to the protein
backbone and co-entering the cell nucleus contribute to specific functions of the carrier
molecule/fragment. Moreover, carbohydrates can affect sumoylation and the intracellular
fate of proteolytic fragments, and shape morphogenic events that are required not only for
proper development but also for the regeneration of the nervous system. Taken together,
these data indicate that targeting the proteolysis of cell adhesion molecules is a promising
tool for therapy of the acute or chronically injured nervous system.
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