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Abstract: Cockayne syndrome (CS) is a rare disease caused by mutations in ERCC6/CSB or ERCC8/
CSA. We report here the clinical, genetic, and functional analyses of three unrelated patients mutated
in ERCC6/CSB with a severe phenotype. After clinical examination, two patients were investigated
via next generation sequencing, targeting seventeen Nucleotide Excision Repair (NER) genes. All
three patients harbored a novel, c.3156dup, homozygous mutation located in exon 18 of ERCC6/CSB
that affects the C-terminal region of the protein. Sanger sequencing confirmed the mutation and the
parental segregation in the three families, and Western blots showed a lack of the full-length protein.
NER functional impairment was shown by reduced recovery of RNA synthesis with proficient
unscheduled DNA synthesis after UV-C radiations in patient-derived fibroblasts. Despite sharing
the same mutation, the clinical spectrum was heterogeneous among the three patients, and only
two patients displayed clinical photosensitivity. This novel ERCC6 variant in Tunisian patients
suggests a founder effect and has implications for setting-up prenatal diagnosis/genetic counselling
in North Africa, where this disease is largely undiagnosed. This study reveals one of the rare cases
of CS clinical heterogeneity despite the same mutation. Moreover, the occurrence of an identical
homozygous mutation, which either results in clinical photosensitivity or does not, strongly suggests
that this classic CS symptom relies on multiple factors.

Keywords: Cockayne syndrome; ERCC6; accelerated aging; neurodegeneration; DNA repair disorder

1. Introduction

Cockayne syndrome (CS) is a rare autosomal recessive disorder. It is a progressively
devastating disease, which displays multiorgan dysfunction. CS is mainly characterized by
psychomotor retardation, cerebral atrophy, microcephaly, mental retardation, sensorineural
hearing loss, and premature aging, along with other defects such as cutaneous photosensi-
tivity, kyphosis, ankylosis, and optic atrophy. In 2010, a study highlighted a broad clinical
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spectrum of 84 cases of CS patients and defined major diagnostic criteria such as micro-
cephaly, as well as minor diagnostic criteria such as photosensitivity [1]. However, these
criteria are neither precocious nor specific to CS [2,3]. In fact, most signs and symptoms
in CS patients, such as cerebral atrophy, are also found in mitochondrial diseases [4,5].
To complicate the situation, the reported clinical and mutation spectrum of CS keeps
expanding [2,6,7].

CS belongs to the family of pathologies related to the NER pathway. NER removes
UVs and chemically induced DNA lesions. It includes two distinct sub-pathways: the
global genome NER (GG-NER) sub-pathway, a system which prevents mutagenesis by
probing the whole genome, and the transcription-coupled NER (TC-NER) which removes
transcription-blocking lesions to permit gene expression [8]. Deficiencies in NER proteins
can cause a variety of diseases, ranging from ultraviolet radiation-sensitive syndrome
(UVSS), to cancer predisposing Xeroderma pigmentosum (XP), to Trichothiodystrophy
(TTD), to a severe premature aging disease such as CS.

In Europe, the incidence of CS is estimated to be 1 case per 200,000 births [9]. Although
the incidence rates of other DNA repair disorders, such as XP have been reported in
Tunisia [10], no epidemiological data are available for CS.

To date, genetic investigations have shown that CS is essentially assigned to mutations
in two genes of the TC-NER pathway: ERCC6 (CSB, OMIM 609413) (NM_000124) and
ERCC8 (CSA, OMIM 609412) (NM_000082.3). Deep clinical and molecular analyses in
a large cohort of patients revealed that phenotype/genotype correlation is difficult to
establish, even with a huge heterogeneity among CS patients (including siblings) [1,11–14].
The most severe cases, CS type II, most often occur due to CSB mutations [15], whereas
CSA mutations are generally associated with the milder form, CS type I [6]. However, this
association is not always straightforward, for instance the mild form can also be due to
CSB mutations. Of note, clinical photosensitivity is detected in only a fraction of patients,
displaying a variety of mutations, and is essentially uncoupled from the severity of the
disease [2,16].

The phenotypic variability represents, therefore, a challenge for establishing a diag-
nosis and supportive treatment, plus patients exhibit a short life span (generally less than
5 years for the severe forms, and 16 years for the moderate phenotypes) [17]. Hence, next
generation sequencing technologies are of particular interest for molecular diagnosis of
such cases [18].

To date, approximately 65% of CS patients have been linked to mutations in ERCC6
and 35% to mutation in ERCC8 [15]. Interestingly, CS patients in Tunisia and other Arab
countries carry mutations predominantly in ERCC8. Several studies have suggested that
the relatively larger proportion of ERCC8 defects in these areas is attributed to founder
effects amplified by high frequencies of consanguineous unions [1,2]. For instance, a high
carrier frequency of the p.Tyr322* CS-disease-causing variation in ERCC8 was reported
among Christian Arabs in northern Israel, which is considered as an ancient founder
mutation that may have originated in the Christian Lebanese community [19].

To date, seventeen CS patients have been reported in the Tunisian population: two
siblings with an independent mutation (c.400-2A>G) in ERCC8/CSA [20] and two other
siblings with the recurrent mutation (c.598_600delins) ERCC8/CSA [21]. Five more CS
patients have been clinically and biochemically characterized, but the mutation has not
been identified [16,22]. Recently, we reported a detailed clinical characterization of eight
CS-A patients. In that cohort, we showed that siblings carrying either the c.843+1G>C or
the c. 598_600delinsAA mutations display remarkable phenotypic differences [23].

In the present study, we describe a novel ERCC6 mutation in three CS patients belong-
ing to independent families that originate from northwestern Tunisia. The targeted gene
sequencing showed a homozygous variation in all cases. We showed its deleterious effect
on the CSB protein by Western blots and defective repair of UV-induced DNA damage in
CS patient cells.
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2. Materials and Methods
2.1. Patients

Three patients were recruited from the Department of Child Neurology (National
Institute Mongi Ben Hmida of Tunis) in 2018–2019, where they had undergone neurological
and general examination routine since 2017. Blood tests, metabolic tests, and CT scans
and/or brain MRIs and electrophysiological studies, as well as genetic tests, have been
completed for these patients. After obtaining written informed consent from the families of
the patients (as these CS patients were minors), blood, skin biopsies, and genealogical data
were collected. The present study was conducted in accordance with Helsinki principles
and approved by Institute Pasteur Ethics Committee in Tunisia under the ethical accord
number (reference 2017/31/I/LR16IPT05/V2).

2.2. DNA Extraction, Quantification, and Quality Control

Genomic DNAs (gDNA) was isolated from whole blood samples of patients and their
parents, using a FlexiGene kit (Qiagen) in accordance with the instructions of the manufac-
turer. DNA concentration and quality were assessed using a Nanodrop Spectrophotometer
(Thermo Scientific, Wilmington, NC, USA). The required DNA concentration for NGS
analysis was adjusted to 5 µg.

2.3. gDNA Sequencing

Genetic studies were started by screening for the recurrent ERCC8 pathogenic varia-
tion, already described in North African CS patients (NM_000082.3 c. 598_600delinsAA
p.Tyr200Lysfs*12) using Sanger sequencing. ERCC8 exon 7 was amplified with the follow-
ing primers set (F: 5′ CCCTTTGAACTTATCACCTG 3′ R: 5′ CCTCTGTGTCCCTAGCA-
CAAT 3′) and sequenced using the ABI 3130 Genetic Analyzer (Applied Biosystems).

2.3.1. Targeted Next Generation Sequencing

In absence of the recurrent variation, molecular screening of two patients was con-
tinued by a next generation sequencing (NGS) assay, targeting 17 genes involved in the
NER pathway (DDB2, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, ERCC8, GTF2H5,
MPLKIP, PCNA, POLH, RNF113A, SMARCAL1, UVSSA, XPA, XPC) adapted from [18].
Regions of interest (exons and flanking intronic sequences) were captured using Sure-
Select QXT Agilent probes, and libraries were sequenced on a NextSeq550 Illumina
platform. Single nucleotide variants (SNVs) and indels calling were performed with
the Genome Analysis Toolkit v.3.4.46 with the help of an in-house pipeline (STARK,
https://github.com/bioinfo-chru-strasbourg/STARK, accessed on 19 May 2019) and fol-
lowing the GATK best practice. Annotation and ranking of SNVs and indels were per-
formed by VaRank [24]. Copy number variants (CNVs) were called using the CANOES
program [25] and annotated with AnnotSV [26].

2.3.2. Targeted Sanger Sequencing

The polymerase chain reaction (PCR) was performed using primer pair covering exon
18 of ERCC6 (F: 5’ CTGCAAGACCTGGGAGATT 3’ R: 5’ CAGGGTCTCTTTCAAAGGA
3’). PCR products were sequenced on automated ABI3130 (Applied Biosystems, Waltham,
MA, USA) using the ABI Prism BigDye Terminator V3.1 Cycle Sequencing Kit.

2.4. DNA Repair Assay in Primary Dermal Fibroblasts

Dermal fibroblasts were obtained from skin biopsies of two patients (CS10 and CS14).
Cells were grown at 37 ◦C in 5% CO2 humidified atmosphere in Dulbecco’s Modified Eagle
Medium (DMEM) (1 g/L glucose) with GLUTAMAX (Life Technologies (Gibco) supple-
mented with 10% of fetal calf serum (Gibco) and 1% penicillin/streptomycin (Gibco). All
primary fibroblast cultures were assessed at the same passage number, PN (PN 3 to 4). The
activity of the NER system following UV irradiations was measured via unscheduled DNA
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synthesis (UDS) and recovery of RNA synthesis (RRS) after DNA damaging. These two
assays are standard tests for the clinical diagnosis of DNA repair-related diseases [27–29].

Briefly, fibroblasts were plated on coverslips in 6-well plates and exposed to UV-C
doses at 0, 5, 10, and 15 J/m2. DNA de novo synthesis was evaluated via the incorporation
of 5-ethynyl-2′-deoxyuridine (5-EdU) in CS10 and CS14 patient cells, in a healthy donor
(negative control), and in an XPF and a CS donor (positive controls). Similarly, and, after
24 h, primary fibroblasts irradiated with UV-C doses (0, 6, 12, and 20 J/m2), underwent the
RRS assay. The RNA synthesis was performed by evaluating the incorporation of 5-ethynyl
uridine (5-EU). The images were analyzed with Image J for 50 randomly selected cells,
originating from three independent experiments, and the average nuclear fluorescence
intensity was calculated.

2.5. Western Blotting

Cells in culture were pelleted and lysed with lysis buffer (50 mM Tris-HCl pH 7.5,
150 mM NaCl, 1% Triton X-100, 0.1% SDS, 1 mM EDTA), and protease/phosphatase
inhibitor mixture (Roche, Basel, Switzerland)). Lysed cells were not centrifuged, and
the whole extract was subjected to sonication (Bioruptor, Diagenode, Liège, Belgium).
The protein content was determined with the Bradford assay, and 15 µg of protein were
boiled in the presence of Laemmli Sample Buffer (#161-0737, Bio-Rad, Hercules, CA, USA)
containing 2.5% of 2-mercaptoethanol (#M3148, Sigma-Aldrich, St. Louis, MO, USA) at
95 ◦C for 5 min, run for SDS-PAGE (4–15% Mini-PROTEAN TGX gel, #4568083, Bio-Rad,
Hercules, CA, USA), and transferred onto a nitrocellulose transfer membrane (Trans-Blot
Turbo, #1704158, Bio-Rad, Hercules, CA, USA).

The membrane was then blocked with 5% milk in phosphate buffer saline (PBS)-0.1%
Tween20 (#P1379, Sigma-Aldrich, St. Louis, MO, USA) for 1 h at room temperature (RT) and
probed with a specific primary antibody, either rabbit polyclonal α-CSB (1:1000, #ab96089,
Abcam, Cambridge, UK) that recognizes aa 300–750 or rabbit polyclonal α-CSB (1:2000,
#A301-345A, Bethyl, Montgomery, TX, USA) that recognizes aa 1–50, overnight at 4 ◦C.
After five washes in PBS containing 0.1% Tween20, the membrane was incubated with
HRP-conjugated secondary antibody (1:10,000, Thermo Fisher Scientific, Waltham, MA,
USA), as well as α-GAPDH (1:5000, #12004168, Bio-Rad, Hercules, CA, USA) human Fab
fragments for 1h at RT, revealed by chemiluminescence and fluorescence, respectively.
Detection was performed using ChemiDoc MP Imaging System (Bio-Rad, Hercules, CA,
USA). Staining with ATX Ponceau S Red (#09189, Sigma-Aldrich, St. Louis, MO, USA) was
used as a further marker of protein content. Uncropped and unprocessed scans of all the
blots can be provided upon request.

3. Results
3.1. Clinical Features of CS-B Patients

Clinical, imaging, and genetic characterization of the three patients are summarized
in Table 1.

Table 1. Clinical, biological, imaging, and genetic findings of patients with the novel CSB variant.

Family CS10 CS12 CD14

Sex M F M
Reference sequence NM_000124.3 NM_000124.3 NM_000124.3

Homozygous ERCC6 mutation c.3156dup c.3156dup c.3156dup
Protein modification p.(Arg1053Thr*8) p.(Arg1053Thr*8) p.(Arg1053Thr*8)

Geographic origin Northwest Northwest Northwest

Consanguinity/Endogamy Consanguineous Consanguineous Consanguineous

Range age at diagnosis (years) 2–5 6–8 6–8
Age at first symptoms(months) Birth Birth 9 months

First symptoms Growth delay Growth delay Psychomotor delay
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Table 1. Cont.

Family CS10 CS12 CD14

Prenatal abnormalities
IUGR NA NA NA

Microcephaly + + +
Cerebellar hypoplasia NA NA NA

Oligoamnios NA NA NA

Birth findings
Birth weight (g) 2550 2300 2950

Birth height (cm) 45 45 48
Head circumference at birth (cm) 33 32 32

Postnatally findings (years) 2–5 6–8 −8
Weight (kg) 6 (−3 SD) 8 (−4 SD) 8 (−3 SD)
Height (cm) 70 (−2 SD) 82 (−6 SD) 76 (−3 SD)

Head circumference (cm) 41 (−2 SD) 40 (−8.5 SD) 42 (−3 SD)

Dysmorphism
Enophtalmia + + +

Thin skin − + +
Bird-like nose + + +

Neurological findings
Microcephaly + + +

Psychomotor delay + + +
Independent sitting (months) 8 5 Not acquired
Independent walking (years) 1.5 4 Not acquired

Mental retardation + + +
Limb spasticity + + +

Retractions − + +
Pyramidal signs + + +

Neurogenic signs − + +
Ataxia + + −

Extrapyramidal signs − − −
Epilepsy − − −

Behavioral abnormalities − − −
Ophthalmological findings + − −

Cataract − − +
Optic atrophy − + −

Pigmentary retinopathy

Otolaryngological findings
Sensorineural deafness + + +

Auditory evoked response 60/70 dB 60 dB (right ear)/no
response for the left ear NA

Dermatological findings
Photosensitivity + + −

Eczema − − −
Thin skin − + −

Pigmentation abnormalities − − +
Hair abnormalities − − −
Nail abnormalities − − −

Dental abnormalities
Caries + + +

Tooth enamel abnormalities − + +
Morphological teeth abnormalities − + +

Laboratory findings
AST (NV < 40 U/L) 65 108 45
ALT (NV < 40 U/L) 77 180 80

Creatinine (NV50-110 µmol/L) 22 20 31
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Table 1. Cont.

Family CS10 CS12 CD14

Imaging findings
Calcifications + + +

Hypomyelination + − +
Cerebellar atrophy + + +
Brainstem atrophy + + +

Nerve conduction velocities NA (SPE. D) 23.5 m/s
slowed (SPE. D) 16 m/s slowed

Neurophysiological findings (ENMG Test) NA
Sensory and motor

demyelinating
polyneuropathy

Sensory and motor
demyelinating

polyneuropathy

Others Findings
Cryptorchidia,

toxoplasmosis during
pregnancy

− Cryptorchidia,
kyphosis

3.1.1. General Presentation of the Patients

This cohort includes two males (CS10 and CS14, aged 2 and 6 years, respectively) and
one female (CS12, aged 7 years) from three unrelated Tunisian families. All patients were
born from first-degree consanguineous parents, who originated from northwestern Tunisia
(Figure 1).
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Figure 1. Pedigree of three unrelated Tunisian families. (A) pedigree of the CS10 family (B) pedigree
of the CS12 family (C) pedigree of the CS14 family. The studied proband is indicated with an arrow.

3.1.2. Pre- and Post-Natal Abnormalities

The reported patients were born at term. Prenatal microcephaly was detected in all
three patients through ultrasound screening (Table 1). Postnatally, birth weight was within
the normal low range for all patients (mean birth weight of CS patients was 2600 g, ranging
from 2300 g to 2950 g); birth height was also normal, whereas the head circumference
values were under the normal range (mean head circumference of CS patients was 32.3 cm,
with the normal average of the head circumference of a newborn estimated as 35 cm). All
three patients developed severe growth failure and microcephaly (mean weight −7 SD,
mean head circumference −7.3 SD) (Table 1, and Supplementary Figure S1).
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3.1.3. Behavioral Abnormalities, and Muscular, Neurological, and Neurosensory Problems

All patients arrived in our department for examination displaying a psychomotor
delay. Two patients (CS10 and CS12) were able to sit independently at a mean age of
6.5 months, whereas CS14 was unable to do so. Independent walking was acquired late for
two patients (CS10 and CS12, at the age of 1.5 and 4 years, respectively) whereas patient
CS14 could not walk independently.

As a general observation, the three patients had no language skills. However, they
were interactive. Behavioral disturbances due to irritability and sleep disorders were not
reported. Neurological examination showed a spasticity of limbs with predominance in
lower limbs in all patients, leading to a progressive flexion retraction and neurological
abnormalities in two patients (CS12 and CS14). Ataxia was observed in two cases (CS10 and
CS12) and a kyphosis in patient CS14. No patient developed extrapyramidal symptoms.

Sensorineural deafness was detected in all cases. Ophthalmological examination
revealed bilateral cataract for CS10, who underwent eye surgery at the age of 8 months.
Pigmentary retinopathy was observed in the CS12 patient and optic atrophy in the CS14
patient (the most severe case). We also reported cryptorchidism in CS10 and CS14 (Table 1).

3.1.4. Facial, Dental, and Skin Anomalies

All patients displayed the typical CS appearance, with enophtalmia, large ears, thin
skin, and a bird-like nose. In addition, teeth caries were reported in all patients, and
anomalies in tooth shape, size, and number were reported in CS12 and CS14 (CS10 was too
young for assessing these parameters).

Clinical photosensitivity was observed in CS10 and CS12, whereas pigmentation
abnormalities were observed in patient CS14 (Table 1).

3.1.5. Laboratory Investigations

The biochemical analysis of AST/ALT showed hepatic cytolysis for all three patients,
with the corresponding values of 65/77 for patient CS10 at the age of 2 years, 108/180
for patient CS12 at the age of 7 years, and 45/80 for patient CS14 at the age of 8 years
(Table 1). A mild serum creatinine decrease was also noted in all cases (CS10: 22 µmol/L;
CS12: 20 µmol/L; CS14: 31 µmol/L), compared to healthy controls (mean secretion level:
80 µmol/L ranging from 50 µmol/L to 110 µmol/L).

3.1.6. Neuroimaging Analysis

Magnetic resonance imaging (MRI) showed hypomyelination in two patients (CS10,
CS14) but not in CS12 (Figure 2).Genes 2021, 12, x FOR PEER REVIEW 8 of 16 
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Figure 2. MRI images of patient CS10. (A) Axial T1-weighted image, (B,C) axial T2-weighted images,
and (D,E) axial FLAIR-weighted images, showing isointensity of periventricular white matter on
T1 and hyperintensity on T2. FLAIR suggestive of hypomyelinating leukodystrophy (red arrows).
(F) CT scan shows lenticular calcifications (green arrow).
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Cerebellar atrophy and brainstem atrophy were observed in all cases. Two out of three
patients (CS10, CS14) showed the full table of the features of neurological impairment,
typical of CS (Table 1).

3.1.7. Neurophysiological Studies

Electroneuromyography (ENMG) was performed in two patients (CS12 and CS14).
Results were compatible with a sensory-motor polyneuropathy of a demyelinating mech-
anism [30]. Nerve conduction velocities were studied in two patients (CS12 and CS14),
resulting in slow values in both cases (23.5 m/s and 16 m/s, respectively) (Table 1).

3.2. Genetic and Biochemical Analyses
3.2.1. Sanger Sequencing for Recurrent Mutations

Clinical presentation of the three patients (CS10, CS12 and CS14) suggested Cockayne
syndrome diagnosis. Molecular investigations have been started by screening the recur-
rent ERCC8 mutation c.598_600delinsAA using targeted Sanger sequencing. Indeed, this
frameshift variant, introducing a premature stop codon resulting in a truncated protein, has
been previously described in seven Tunisian families [21]. This variant was not found in the
patients, and, therefore, samples from two patients underwent targeted gene sequencing
covering exons of the 17 genes involved in the NER pathway.

3.2.2. Targeted Gene Sequencing Finding and Sanger Sequencing Validation for the
Novel Variant

Targeted gene sequencing in two patients (CS10, CS14) identified a novel homozygous
variation in exon 18 of the ERCC6 gene (NM_000124.3). The identified frameshift variation
c.3156dup p. (Arg1053Thrfs*8) was then confirmed by Sanger sequencing in the three CS
patients (Figure 3A, only patient CS12 is shown). The Sanger sequencing also confirmed
the heterozygous carrier status of their respective parents (parents of CS10 and CS14,
mother of CS12). This variation has been described only once at the heterozygous state
in the gnomAD control database (allele frequency: 0.000003981). This variation causes a
reading frameshift and a premature stop codon after eight codons. At the protein level, it
could modify the protein sequence at p. (Arg1053Thrfs*8), resulting in a truncated protein
(Figure 3B).

3.3. Western Blot Validation of Protein Alteration

Because of the insertion of a PGBD3 piggyBac transposon into ERCC6 intron 5, alter-
native splicing of the human ERCC6 gene results in the CSB full-length protein (1493 aa) as
well as a CSB-PGBD3 fusion protein that joins the N-terminal CSB domain to the C-terminal
PGBD3 transposase domain (1061 aa) [31]. Western blot analysis using a CSB antibody that
targets aa 300–750, as well as an antibody that targets the N-terminal portion of the protein
(aa 1–50), did not show the full-length protein in CS10 and CS14, whereas it was present
in control fibroblasts from a healthy donor (Figure 4A,B). The truncated protein resulting
from the mutation has an expected length of 1061 aa, and is, therefore, indistinguishable
from the CSB PGBD3 fusion protein, also of 1061 aa in length (Figure 4C,D)
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(lower panel). The inverted red triangle represents the frameshift mutation and the red arrow the
stop codon 8 aa downstream.
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Figure 4. Western blot of CSB. (A,C) α-CSB rabbit polyclonal Abcam. (B,D) α-CSB rabbit polyclonal
Bethyl. (A,B): the full-length form of the CSB protein is absent from CS10 and CS14 fibroblasts
whereas it is present in a healthy control. (C,D): larger-sized Western blots at a lower exposure than
in (A,B); arrows indicate the expected position of the CSB-piggyBac fusion protein (which is more
abundant than the full-length CSB); hatched rectangles correspond to the part of the blot shown in
(A,B). Lower panels: immunoblot of the loading control GAPDH.

3.4. Cellular Response to UV in CS Patients

UV radiation assays tested on fibroblasts derived from CS10 and CS14 patients showed
reduced response to UV, compared to healthy controls. The response to increasing doses
(0–15 J/m2) of UV-C radiation was first assessed by the RRS assay, which showed reduced
RNA synthesis in CS10 and CS14 fibroblasts, compared to the healthy control. As expected
for CS, unscheduled DNA synthesis UDS levels were normal in CS10 and CS14 fibroblasts.
Altogether, these results indicate a defective capacity to repair UV-induced DNA damage
on the transcribed strand in two CS patients, including CS14, who does not display clinical
hypersensitivity to sunlight (Figure 5).Genes 2021, 12, x FOR PEER REVIEW 11 of 16 
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Figure 5. Response to UV radiation in fibroblasts. CS10 and CS14 fibroblasts compared to multiple
CS, a XPF, and a healthy control. (A) RRS 24h after UV irradiation expressed in percentage of recovery
after 5-EU incorporation, showing the defect of RNA Synthesis after UV exposure in CS fibroblasts.
(B) UDS expressed in arbitrary units (a.u.) of 5-EdU fluorescence intensity. Differently from XP, CS
patients show normal levels of unscheduled DNA synthesis.
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4. Discussion
4.1. Common Mutation in Three CS Patients

Cockayne syndrome is a rare autosomal recessive disorder, which is caused by a defect
in proteins (CSA or CSB) that are notably involved in the DNA repair system TC-NER. CS,
as a form of segmental progeria, recapitulates normal human aging in many of its aspects
including cognitive dysfunction, high tone hearing loss, and cataracts [32]. Many autoso-
mal recessive diseases are caused by consanguineous marriages. Due to traditional and
cultural customs that incite consanguineous marriages (38% consanguinity), the Tunisian
population displays a high frequency of autosomal recessive genetic transmitted patholo-
gies [33]. Indeed, a recent study has identified more than 547 genetic diseases in Tunisia,
60% of which are due to recessive mutations in autosomal genes [34].

To date, 17 CS patients have been reported in the Tunisian population [2,16,20–22], and
the majority of the reported cases (at least 12/17) display genetic defects in the ERCC8 gene.
The relatively larger proportion of ERCC8 defects in Tunisian patients can be attributed to
a probable founder mutation c.598_600delinsAA carrier effect [23].

With this cohort we describe the first ERCC6/CSB mutants in the Tunisian population.
We reveal a novel frameshift variation c.3156dup, located in exon 18, within three unrelated
families belonging to a close geographic area (in northwestern Tunisia). This occurrence
suggests a common ancestor, and, therefore, a founder effect, since the three patients
were born from first-degree consanguineous parents and exhibited close geographical
distribution.

Further investigations, including haplotype analysis, are required to verify a founder
mutation in this area.

4.2. The Mutated CSB Protein

The CSB protein has two major domains: a central ATPase domain, which is composed
of an helicase ATP-binding domain spanning from amino acids 519 to 695, and an helicase
C-terminal domain, which spans from amino acids 843 to 1002, flanked by N-terminal and
C-terminal regions [35].

In addition to its involvement in the TC-NER pathway, the CSB protein, in synergy
with CSA, is involved in other cellular processes. Several studies showed the implica-
tion of CSB and CSA in the control of p53 levels during genotoxic stress [36], ribosomal
biogenesis, [37] proteostasis, cytokinesis [38], mitochondrial DNA repair, [39] and ATF3
degradation [40,41]. Moreover, recent data have shown that CSB plays a master role in
replicative senescence of human fibroblasts by unmasking the p21waf1 promoter [42]. CSB
is also thought to promote p21 degradation through ubiquitylation, due to its E3 ligase
activity [43].

A further critical role of CSB C-terminal region in other aspects of the DNA repair
process has been highlighted, namely, interaction with RNA polymerase II, translocation
of the CSA protein to the nuclear matrix, and association of CSB with chromatin after UV
irradiation [44–47].

In the present study, the frameshift variation p.(Arg1053Thrfs*8) was located within
the C-terminal region of the CSB protein that interacts with RNA pol II, possibly altering
CSB-related transcription. The insertion of an adenosine changed the reading frame and,
thereby, the amino acid sequence of the CSB protein. A premature stop codon should
then appear eight amino acids from the insertion site, causing the loss of three important
regions englobing the C-terminal region that likely contribute to the biological activity of
this protein (Figure 3B). The loss of the TC-NER activity was confirmed by reduced RRS
and unaffected UDS, upon UV irradiation in two patients, as in standard experiments that
demonstrate CSB impairment.
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4.3. Remarkable Clinical Features and Presence or Absence of Clinical Photosensitivity

The clinical features of CSB patients in the cohort described here tend to be more
severe than those reported in North Africa and Middle East, who displayed predominantly
mutations in ERCC8/CSA.

Patients in this study were born at term with weight within the low normal range, but
showed microcephaly at birth and postnatally. Of note, postnatal height and weight in these
patients were lower than those reported in patients with CSA mutations at comparable
ages and in the same geographical area. For instance, the CS10 patient at 2 years weighted
6 kg and had a height of a 70 cm, which are much lower values than the CS6EA2 patient
(CSA mutation), namely a weight of 11 kg weight, and a height of 83 cm [23].

Although harboring the same mutation, patients in this study display distinct clinical
features of particular interest: one out of three patients in this cohort was not clinically
photosensitive. Previous studies reported distinct CS patients that do not present clinical
photosensitivity, as in Tunisian, Turkish, Italian, and Moroccan populations, despite the
cells of these patients being defective in TC-NER repair [2,16,48,49]. Due to these numerous
cases, cutaneous photosensitivity has been classified and is maintained as a minor criterion
in the diagnosis of CS. Indeed, several studies have investigated such photosensitivity. It
appears in 47% to 76% of cases, with no significant difference between CS patients mutated
in ERCC6 or ERCC8 [2,3]. As in the previous studies, patients with and without clinical
photosensitivity (CS10 and CS14, respectively) displayed impaired RRS and unaffected
UDS. These tests confirm that the UV-repair mechanism is indeed impaired in both patients.
For this reason, RRS following UV damage remains a useful analysis to confirm the
diagnosis and is complementary to genetic investigations.

Pairs of a photosensitive and a non-photosensitive CS patient sharing the same ho-
mozygous mutations have been described for the less severe form (type I) for ERCC6/CSB
(CS22PV/CS28PV) [2] and in our previous study for ERCC8/CSA (CS11/CS16) [23] (Sup-
plementary Table S1). Here, we describe one patient associated with the severe CS type II
form without photosensitivity (CS14) and two cases (CS10 and CS12) associated with the
CS type I form with photosensitivity. Altogether, these data support the notion that clinical
photosensitivity requires additional components than the CSA or CSB mutation. This is
probably also the case for other highly heterogeneous CS clinical defects.

4.4. Severe Characteristics of the Tunisian CSB Cohort

This cohort displays a certain level of heterogeneity, beyond clinical photosensitivity.
For instance, ataxia, cataract, thin skin, pigmentary retinopathy, contractures, neurogenic
signs, and teeth abnormalities were alternatively present only in one out the three patients.
More specifically, patient CS14 was characterized by severe neuromotor dysfunction, with
psychomotor delay as first symptom (at 9 months), and failure to acquire independent sit-
ting and walking capacities. This patient, however did not show ataxia. Patient CS14, who
was not clinically photosensitive, displayed pigmentation abnormalities and neurological
signs, plus was the only one in this cohort to suffer from optic atrophy.

Patients CS10 and CS12 displayed growth delay as a first symptom, but the former,
differently from the latter, did not display contractures, neurological signs, pigmental
retinopathy, dental abnormalities, or thin skin. Conversely, patient CS12 displayed nei-
ther hypomyelination (similarly to patients CS10 and CS14), nor cataracts (similarly to
patient CS10).

All three CSB patients reported here suffered from lenticular calcifications, brain
atrophy, and brainstem, while also showing decreased levels of creatinine in mild serum.
A progressive decrease in serum creatinine was reported in the elderly and was suggestive
of chronic kidney disease [50]. In addition, all these patients displayed sensory-motor
polyneuropathy with a demyelinating mechanism, which involves severe symptoms. More-
over, hearing loss was detected in all reported patients (not shown). In fact, CS is typically
associated with prominent sensorineural hearing loss, which is also a frequent age-related
condition [37].
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To date, neither the type of variation nor its position in the protein have been clearly
associated with a specific clinical severity of CS, indicating that underlying mechanisms
remain to be elucidated. This situation highlights the requirement of a complete clinical
examination, accompanied by genetic analyses, to elucidate complex syndromes such as
CS. Several studies have suggested the implication of other mechanisms that may explain
specific features of the severe phenotypes, such as neurodegeneration observed in CS
patients; for instance, defective transcription of ATF3 responsive genes upon genotoxic
stress [41], or alteration of mitochondrial function due to mismanaged oxidative stress [50].

5. Conclusions

We identified here a novel homozygous CSB frameshift variation that enlarges the
mutational and pathological spectra of CS. Patients with this mutation not only display very
severe symptoms but also a remarkable level of clinical heterogeneity. In particular, they
display (or not) clinical photosensitivity, indicating that this frequent CS defect requires
additional factors than the CSB mutation to occur. We propose to add this variation to
the molecular standard diagnosis of patient clinical features suggestive of CS phenotype,
especially for patients originating from northwestern Tunisia and from the North African
region.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12121922/s1, Supplementary Table S1. Presence or absence of clinical photosensitivity
in CS patients with the same mutation. Supplementary Figure S1. Growth charts for CS-B patients
(0–8 years), compared to the WHO reference charts (mean, 3rd, and 97th percentile). (A) Weight, (B)
Height, and (C) Occipital frontal circumference (OFC).
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