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Abstract

Background and aim

Lung ultrasound has been used to describe common respiratory diseases both by visual

and computer-assisted gray scale analysis. In the present paper, we compare both methods

in assessing neonatal respiratory status keeping two oxygenation indexes as standards.

Patients and methods

Neonates admitted to the NICU for respiratory distress were enrolled. Two neonatologists

not attending the patients performed a lung scan, built a single frame database and rated

the images with a standardized score. The same dataset was processed using the gray

scale analysis implemented with textural features and machine learning analysis. Both the

oxygenation ratio (PaO2/FiO2) and the alveolar arterial oxygen gradient (A-a) were kept as

reference standards.

Results

Seventy-five neonates with different respiratory status were enrolled in the study and a data-

set of 600 ultrasound frames was built. Visual assessment of respiratory status correlated

significantly with PaO2/FiO2 (r = -0.55; p<0.0001) and the A-a (r = 0.59; p<0.0001) with a

strong interobserver agreement (K = 0.91). A significant correlation was also found between

both oxygenation indexes and the gray scale analysis of lung ultrasound scans using

regions of interest corresponding to 50K (r = -0.42; p<0.002 for PaO2/FiO2; r = 0.46

p<0.001 for A-a) and 100K (r = -0.35 p<0.01 for PaO2/FiO2; r = 0.58 p<0.0001 for A-a) pix-

els regions of interest.

Conclusions

A semi quantitative estimate of the degree of neonatal respiratory distress was demon-

strated both by a validated scoring system and by computer assisted analysis of the

PLOS ONE | https://doi.org/10.1371/journal.pone.0202397 October 18, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Raimondi F, Migliaro F, Verdoliva L,

Gragnaniello D, Poggi G, Kosova R, et al. (2018)

Visual assessment versus computer-assisted gray

scale analysis in the ultrasound evaluation of

neonatal respiratory status. PLoS ONE 13(10):

e0202397. https://doi.org/10.1371/journal.

pone.0202397

Editor: Yu Ru Kou, National Yang-Ming University,

TAIWAN

Received: July 13, 2017

Accepted: August 2, 2018

Published: October 18, 2018

Copyright: © 2018 Raimondi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: No funds were allocated for this clinical

observational study.

Competing interests: The authors declare that no

competing interests exists.

http://orcid.org/0000-0003-3250-1582
https://doi.org/10.1371/journal.pone.0202397
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202397&domain=pdf&date_stamp=2018-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202397&domain=pdf&date_stamp=2018-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202397&domain=pdf&date_stamp=2018-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202397&domain=pdf&date_stamp=2018-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202397&domain=pdf&date_stamp=2018-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202397&domain=pdf&date_stamp=2018-10-18
https://doi.org/10.1371/journal.pone.0202397
https://doi.org/10.1371/journal.pone.0202397
http://creativecommons.org/licenses/by/4.0/


ultrasound scan. This data may help to implement point of care ultrasound diagnostics in the

NICU.

Introduction

Lung ultrasound (LUS) is attracting a growing interest to describe common respiratory dis-

eases [1]. Unlike other organs, LUS relies on both real anatomic structures (e.g. the pleura)

and artifacts (i.e. visual features that do not correspond to true body formations). In the adult

patient with interstitial syndrome, vertical hyperechoic artifacts also known as B-lines can be

demonstrated. It is currently debated whether the number of B lines is related to the severity of

the disease [2]. Neonatologists have used lung ultrasound to characterize meconium aspiration

syndrome [3], pneumothorax [4], transient tachypnea of the neonate or respiratory distress

syndrome [5]. Besides describing diseases, LUS has a potential in the follow-up of neonatal

respiratory distress, though the first attempts in this direction have yielded poor results [6].

Recently, visual scores have been described to correlate ultrasound pictures with the severity of

neonatal respiratory distress [7]. While this approach is clinically useful in predicting the need

of respiratory support [7–9], it has not yet been tested on neonates on prolonged mechanical

ventilation and results may depend on the observer’s expertise. To overcome the latter limita-

tion, quantitation of lung disease severity has been attempted by computer-assisted gray scale

analysis in the adult patient [10]. In the present paper, we compare the latter technology,

improved through the inclusion of textural features and machine learning analysis, to an ultra-

sound visual score in evaluating lung scans of preterm infants with variable respiratory status

as assessed by blood gases indexes.

Patients and methods

This prospective, observational investigation was conducted from May 2016 to May 2017 in a

level III hospital with 2500 total births per year. The present investigation was approved by the

local Institutional Review Board (Comitato Etico "Carlo Romano" presso AOU Federico II),

and all clinical investigation have been conducted according to the principles expressed in the

Declaration of Helsinki; formal consent was obtained from the parents. We enrolled in the

study neonates admitted to the NICU with respiratory distress, defined as tachypnea (i.e. a

respiratory rate above 60/minute), chest retractions, nasal flaring and grunting. Major malfor-

mations (e.g., congenital diaphragmatic hernia, pulmonary adenomatoid malformation) were

considered valid exclusion criteria.

LUS visual score and analysis

A broadband linear transducer (mod L12-5, Philips, Eindhoven, the Netherlands) was used to

obtain short clips in four standard views (emiclavear, anterior axillary, median axillary, poste-

rior axillary) per side. A single stillframe per clip was extracted as uncompressed DICOM for-

mat by a masked operator (D.G.) and eight frames per patient were evaluated by both visual

scoring and gray scale analysis. The former was modified from Brat et al [7] attributing a zero

to three score to each frame as in Fig 1.

Two neonatologists with different degree of experience (F.M. and R.K) in lung ultrasound

and unaware of the patient conditions independently scored the images. A sum value from the

8 scores per patient was used for correlations with oxygenation indexes.

Neonatal lung ultrasound: Man versus machine
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Computer assisted gray scale analysis

The same still frame dataset was independently assessed by a masked operator (L.V.) by a

gray-scale analyzer. To this aim, a dedicated software was developed using the MATLAB1 sci-

entific programming language. In particular, an easy to use graphical interface was built, in

order to carry out the textural analysis. Specifically, the evaluation of statistics could be per-

formed in different modalities: row-wise, column-wise, frame-wise, but also in running-win-

dow modality and finally on a region of interest (ROI) selected by the user using the mouse.

Basic functionalities of MATHLAB were integrated in the developed visualization tool. It is

worth noting that this tool performed the same statistical image analysis than the software

QUANTATM Critical Care, (CAMELOT Biomedical Systems Srl, Genoa, Italy), allowing to

reproduce the same type of experiments carried out by Corradi et al [10,11]. The ROI was

selected as to include the pleural line and the area beneath. We considered two approaches: 1)

a simpler analysis based on the computation of global and local first-order statistics (i.e. gray-

level histogram, mean, variance); and 2) a more advanced analysis accounting for second-

order statistics, based on a set of textural features extracted from the Gray-Level Co-occur-

rence Matrix (GCM) of the data. A first group of 10 such features includes the classical texture

descriptors proposed in [12], like contrast, energy, entropy and homogeneity. A second group

comprises 7 features that are defined by means of the occurrences of the sum or difference

between two gray levels [13,14]. The last group includes 5 correlation-based textural descrip-

tors [12,13]. These features capture the gray-level spatial dependencies among neighboring

pixels and are particularly suited to describe the local micro-pattern and macro-pattern varia-

tions present in the image (the complete list of all the features can be found in the Appendix).

In order to obtain more powerful textural descriptors, the GCM is usually computed along

different directions. In our experiments, we analyzed the co-occurrences of 2-pixel spaced

gray-levels along the horizontal and vertical direction, thus obtaining a 44-dimensional feature

vector.

Fig 1. Representative lung ultrasound images used for scoring. 0 Normal pattern with horizontal reverberation of the pleural line (also

known as A lines). 1 Vertical hyperechoic artifacts (also known as B lines) more than 3 per field, well spaced. Thin, regular pleural image. 2

Coalescent B lines, thick pleural image with or without small subpleural consolidations. 3 Thick and irregular pleural image with evident

subpleural consolidations1.

https://doi.org/10.1371/journal.pone.0202397.g001
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The classification step was performed differently for the two approaches. In particular, the

eight mean intensity values per patient were pooled into an average value, generating a gray-

scale mean intensity score, to be correlated to both oxygenation indexes. Instead, for the tex-

tural features we built a Support Vector Machine regressor properly trained on the dataset and

carried out a leave-one-patient-out cross validation. The ROI upper limit was drawn by hand

following the entire pleural surface. The lateral and bottom sides were then drawn by the com-

puter keeping square angles and constant area of 50 and 100 K pixels, respectively. The ratio-

nale was to gain in both cases the maximal amount of information from the subpleural region

(where the ultrasound penetration is higher). The 50 and 100 K pixels then differed for the

data coming from deeper lung areas. (Fig 2).

Blood gases indexes were:

1. Oxygenation ratio i.e. PaO2 to FiO2;

2. Alveolar-arterial oxygen gradient i.e. A-a gradient = PA − PaO2, where PA indicates alveo-

lar partial pressure and is given by (FiO2 × [760 − 47]) − (PaCO2/0.8);

The purpose of the study was to comparatively correlate the LUS score and the mean gray-

scale intensity with the oxygenation indexes.

Statistics

All variables were expressed as mean± standard deviation (SD) or percentage (%). The nor-

mality of sample distribution was verified by applying Shapiro-Wilk test. Concordance

between operators was analyzed by Cohen test. Correlation between the LUS score or the

Fig 2. First-order statistics analysis showing ROI distributions (upper panels) and the calculated intensity histograms (lower panels).

https://doi.org/10.1371/journal.pone.0202397.g002

Neonatal lung ultrasound: Man versus machine
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mean echo intensity (gray units) and the oxygenation indexes was evaluated with Spearman

rank test. Statistical significance was assumed with two-tailed P values< .05. Statistical analysis

was carried out using SPSS version20.0 (SPSS Inc., Chicago, IL).

Results

A total of 600 frames were recorded from 75 patients with variable respiratory status whose

demographics are shown in Table 1.

The visual LUS score significantly correlated with PaO2/FiO2(r = -0.55; 95% C.I. = -0.68

to -0.35; p<0.0001) and with the A-a gradient (r = 0.59; 95% C.I. = 0.41 to 0.69; p<0.0001)

(Fig 3).

The gray scale analysis also correlated with the PaO2/FiO2 ratio and with the A-a gradient

(Fig 4) considering a 50k pixel region of interest. When the latter was increased to 100 K pixel,

the correlation was significant for both the PaO2/FiO2 ratio and the A-a gradient with compa-

rable strength (Fig 5).

In order to better understand the importance of the textural features, we analyzed the

behavior of the three groups of features. In Table 2 we report the results in terms of AUC sepa-

rately for each group of features and for the whole set of 44 features. Using all features guaran-

tees the best performance in most of the cases, but not always. For example, on the A-a

gradient, group 2 provides the best performance with the small ROI, and group 3 with the

large ROI. Nonetheless, no single group is uniformly better, and using all features appears to

be the most robust choice. As for the impact of the ROI on performance, the correlation with

alveolar gradient improves when a larger ROI is adopted, while the correlation with the oxy-

genation ratio seems to be less sensitive to the ROI size.

To investigate the effects of feature reduction, we carried out the Principal Component

Analysis (PCA) of all the features, with the aim to keep only most important in the feature vec-

tor. In Fig 6 we show the AUC as a function of the number of principal components (sorted by

descending variance) kept in the feature vector. In all cases, the best performance is obtained

using only a few principal components, no more than 11. On the other hand, these compo-

nents account for almost all the variance of the feature vector as shown in Fig 7. For example,

the first 3 components explain the 95% of the total variance, and the first 10 reach the 99%

Table 1. Main demographic variables of the study cohort.

N = 75

Birthweight (grams) 1380 ±681

Gestational age (weeks) 31± 3

Gender 42 F/33M

Antenatal Steroids 41

Patients on mechanical ventilation 49

Patients on invasive support 14

Other or no respiratory support 3

PaO2/FiO2 214 ± 108

Arterial-alveolar gradient (mmHg) 98.5 ± 84.4

RDS 66

TTN 5

EOS 1

Bronchiolitis 2

RDS respiratory distress syndrome; TTN transient tachypnea of the neonate

EOS early onset sepsis

https://doi.org/10.1371/journal.pone.0202397.t001
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Discussion

Our results show that a visual assessment and the gray scale analysis of a lung ultrasound data-

base have a significant linear correlation with the oxygenation status in our population of neo-

nates with a variable degree of respiratory distress of diverse origin. An ultrasound score is an

appealing tool to monitor the course of significant respiratory distress. Brat et al. had previ-

ously described a correlation between lung ultrasound scores and oxygenation status in a

cohort of preterm babies mostly on non-invasive respiratory support [7]. They divided each

lung in three sections (upper anterior, lower anterior and lateral) using a linear microprobe.

We present a modified score using a high frequency, full size, linear transducer that grants at a

glance a complete sagittal scan of the neonatal lung. We also extended the investigation to

include mostly infants on mechanical ventilation, a population that would greatly benefit from

a novel monitoring technique. Both studies agree on the very limited interobserver variability;

the different degree of experience of our operators reaffirms the steep learning curve already

described by other investigators [15].

Fig 3. Correlation of visual LUS score with the PaO2/FiO2 ratio (3A); its ROC curve for a cut off value of less than 200 gave an AUC = 0.83 (3C). The correlation

of visual LUS score with alveolar arterial gradient is shown in panel 3B; its ROC curve for a cut-off value of more than 150, shown in panel 3D, gave an AUC = 0.844.

https://doi.org/10.1371/journal.pone.0202397.g003
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The present study is also the first endeavor to quantify neonatal lung ultrasound with a

computer assisted technique. In the fetus, a similar strategy has been described by Bonet Carne

et with quantitative texture analysis of lung ultrasound images. They conclude that their prena-

tal estimate of lung maturity by this technique is able to predict neonatal respiratory morbidity

with an accuracy comparable to that of validated amniotic fluid tests [16]. In the adult, com-

puter assisted ultrasound quantification has been described for a wide array of pulmonary

diagnoses. Raso et al graded pulmonary fibrosis and lung edema by computer analysis in two

sets of patients who had been preselected by an expert in lung ultrasound [17]. Corradi et al

found that the mean gray scale intensity was more accurate than visual ultrasound assessment

in the diagnosis of community acquired pneumonia [10]. The same group later showed that

mean intensity correlated with the degree of pulmonary edema in mechanically ventilated car-

diac surgery patients [11]. In all adult studies a low frequency sector probe (2.5–3.5 MHz) with

a focus in the parenchymal region was used to scan a wide region of interest. In our setting,

computer assisted gray scale analysis on first-order statistics per se had a poor performance

(data not shown) that was significantly improved including textural features and machine

learning analysis. Since the width of the region of interest did not significantly modify the

Fig 4. Gray scale analysis results for small region of interest (50K pixels). Correlation of the gray scale analysis with the PaO2/FiO2 ratio (3A); its ROC curve for a cut

off value of less than 200 had an AUC = 0.71 (3C). The correlation of the gray scale analysis with the alveolar arterial gradient is shown in panel 3B; its ROC curve for a

cut-off value of more than 150, shown in panel 3D, resulted in an AUC = 0.55.

https://doi.org/10.1371/journal.pone.0202397.g004
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results, we speculate that the most superficial sections of the lung- and the pleural line in par-

ticular- might be critical for the computer aided analysis. Unlike the artifacts generated in the

deep regions of the lung, the pleura is a real anatomic structure. Because of its superficial posi-

tion in the neonatal chest with thin subcutaneous tissue, the pleura can be studied in good

detail with a high frequency transducer. An irregular pleural image is a mandatory ultrasound

sign in infants with respiratory distress syndrome [18]. The importance of the pleura was also

recently highlighted by Cisneros-Velarde et al assessing the performance of computer-aided

diagnosis of pediatric pneumonia [19]. In the future, better results may be achieved with more

Fig 5. Gray scale analysis results for large region of interest (100K pixels). Correlation of the gray scale analysis score with the PaO2/FiO2 ratio (3A); its ROC curve

for a cut off value of less than 200 had an AUC = 0.72 (3C). The correlation of the gray scale analysis with the alveolar arterial gradient is shown in panel 3B; its ROC

curve for a cut-off value of more than 150, shown in panel 3D, gave an AUC = 0.66.

https://doi.org/10.1371/journal.pone.0202397.g005

Table 2. Performance (AUC) for selected groups of features with small and large ROI.

AUC 50k pixel ROI 100k pixel ROI

Feature group PaO2/FiO2 A-a gradient PaO2/FiO2 A-a gradient

1 0.575 0.614 0.724 0.586

2 0.647 0.652 0.710 0.538

3 0.663 0.538 0.626 0.695

All 0.716 0.552 0.718 0.652

https://doi.org/10.1371/journal.pone.0202397.t002
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sophisticated computer assisted study of the pleura. Recently, Veeramani and Muthusamy pro-

posed a classification system of neonatal respiratory disease based on local feature extraction

and multi-level relevance vector machine classifier [20].

We acknowledge some limitations to the present pilot study. First, the relatively small num-

ber of enrolled newborns with a different origin of respiratory distress and a variable postnatal

age led to a wide distribution of the experimental points. A larger dataset with more homoge-

neous patients may obviate this problem. Second, the study was conducted on a single ultra-

sound machine by operators working in the same neonatal intensive care unit. Extending the

study to a multicenter collaboration may strengthen our results.

In conclusion, our data show that visual assessment and the gray scale analysis correlate

with the respiratory status in a population of sick neonates. These novel techniques offer a

non-invasive, radiation-free approach to monitoring neonatal lung disease.

Appendix

Given a gray-scale image quantized with L gray levels, the gray-level co-occurrence distribu-

tion for a given offset among pixel pairs, is given by:

Pij ¼
Nij

PL
i;j¼1

Nij

;

Fig 6. Performance (AUC) for both indexes and ROI sizes as a function of the number of principal components kept in the feature vector. Components are sorted

by descending variance.

https://doi.org/10.1371/journal.pone.0202397.g006
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where i and j are two gray-levels, L is the number of gray-levels, and Nij is the number of pixels

displaced by the given offset whose gray-levels are respectively i and j.
Entropy:

H ¼ �
X

i;j

PijlogPij

Inverse difference:

INV ¼
X

i;j

Pij

1þ ji � jj

Homogeneity:

HO ¼
X

i;j

Pij

1þ ði � jÞ2

Fig 7. Fraction of the total variance of the full feature vector explained by the first principal components. Components are sorted by descending variance.

https://doi.org/10.1371/journal.pone.0202397.g007

Neonatal lung ultrasound: Man versus machine

PLOS ONE | https://doi.org/10.1371/journal.pone.0202397 October 18, 2018 10 / 14

https://doi.org/10.1371/journal.pone.0202397.g007
https://doi.org/10.1371/journal.pone.0202397


Dissimilarity:

D ¼
X

i;j

ji � jjPij

Cluster shade:

CS ¼
X

i;j

ðiþ j � mx � myÞ
3Pij

Cluster prominence:

CP ¼
X

i;j

ðiþ j � mx � myÞ
4Pij

Correlation:

C1 ¼
X

i;j

ði � mxÞðj � myÞPij

sxsy

C2 ¼
X

i;j

ðijÞPij � mxmy

sxsy

Note that μ and σ are respectively the mean and the standard deviation of the rows (μx,σx)
and the columns (μy,σy) of the marginal distributions of Pij.

Autocorrelation:

AC ¼
X

i;j

ðijÞPij

Contrast:

CO1 ¼
XL� 1

n¼0

n2
XL

i; j ¼ 1

ji � jj ¼ n

Pij

CO2 ¼
X

i;j

ði � jÞ2Pij

Energy (or Uniformity or Angular second moment):

A ¼
X

i;j

Pij
2

Variance (or Sum of squares):

V ¼
X

i;j

ði � mÞ2Pij
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Sum of average:

SA ¼
X2L

n¼2

n
XL

i; j ¼ 1

iþ j ¼ n

Pij

Sum of entropy:

SH ¼ �
X2L

n¼2

XL

i; j ¼ 1

iþ j ¼ n

Pij log
XL

i; j ¼ 1

iþ j ¼ n

Pij

0

B
B
B
@

1

C
C
C
A

Difference of entropy:

DH ¼ �
XL� 1

n¼0

XL

i; j ¼ 1

ji � jj ¼ n

Pij log
XL

i; j ¼ 1

ji � jj ¼ n

Pij

0

B
B
B
@

1

C
C
C
A

Sum of variance:

SV ¼
X2L

n¼2

ðn � SHÞ2
XL

i; j ¼ 1

iþ j ¼ n

Pij

Difference of variance:

DV ¼ var

(
XL

i; j ¼ 1

ji � jj ¼ n

Pij

)

Maximum probability:

M ¼ max
i;j

Pij

Maximal Correlation Coefficient:

MCC ¼ 2ndeigfQg

where

Q ¼
P

kPikPjk
P

jPij

P
iPik

and 2nd eig refers to the second eigenvalue of Q.
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Information measures of correlation

IC1 ¼
H � H1XY

maxfHX;HXg

IC2 ¼ ð1 � expð� 2ðH2XY � HÞÞÞ2

where

HX ¼ �
X

i

X

j

Pij

� �
log

X

j

Pij

� �

HY ¼ �
X

j

X

i

Pij

� �
log

X

i

Pij

� �

H1XY ¼ �
X

i;j

Pijlog
X

i

Pij

X

j

Pij

� �

H2XY ¼ �
X

i;j

X

i

Pij

X

j

Pij

� �
log

X

i

Pij

X

j

Pij

� �
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