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Studying the sources of errors in memory recall has
proven invaluable for understanding the mechanisms of
working memory (WM). While one-dimensional memory
features (e.g., color, orientation) can be analyzed using
existing mixture modeling toolboxes to separate the
influence of imprecision, guessing, and misbinding (the
tendency to confuse features that belong to different
memoranda), such toolboxes are not currently available
for two-dimensional spatial WM tasks.

Here we present a method to isolate sources of
spatial error in tasks where participants have to report
the spatial location of an item in memory, using
two-dimensional mixture models. The method recovers
simulated parameters well and is robust to the influence
of response distributions and biases, as well as number
of nontargets and trials.

To demonstrate the model, we fit data from a
complex spatial WM task and show the recovered
parameters correspond well with previous spatial WM
findings and with recovered parameters on a

one-dimensional analogue of this task, suggesting
convergent validity for this two-dimensional modeling
approach. Because the extra dimension allows greater
separation of memoranda and responses, spatial tasks
turn out to be much better for separating misbinding
from imprecision and guessing than one-dimensional
tasks.

Code for these models is freely available in the
MemToolbox2D package and is integrated to work with
the commonly used MATLAB package MemToolbox.

Introduction

Working memory (WM) is typically measured by
providing a person with a set of stimuli to remember
and then probing their memory after a delay of a
few seconds. For example, they may be asked which
direction of one of a set of colored arrows pointed.
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The types of errors people make on these tasks provide
important information about the processes involved in
retaining information in WM over and above simply
looking at accuracy or overall error (Ma, Husain, &
Bays, 2014). One type of error occurs when people
remember which features were presented but fail to
remember the way in which they were combined, such as
reporting the orientation of a different-colored arrow.
This might indicate that people misbind the features. A
second type of error involves knowing the features of
an object only approximately, leading to imprecision.
A third type of error arises if everything is forgotten
and responses are essentially guesses. Importantly, these
three types of errors may each reflect distinct processes
affecting WM.

Although these processes can be distinguished when
participants make binary judgments about the items
in memory (Parra et al., 2010; Stark, Yassa, & Stark,
2010), recent studies have allowed greater sensitivity
to these types of error by using continuous report, in
which participants reproduce the feature they had to
remember (Bays, Catalao, & Husain, 2009; Zokaei,
Burnett Heyes, Gorgoraptis, Budhdeo, & Husain,
2015). This data-rich method allows us to separate
the errors people make into their component parts.
The technique of mixture modeling (Bays et al., 2009;
Bays & Husain, 2008; Zhang & Luck, 2008) is now
commonly used if the report domain is one-dimensional
and circular, for example, line orientation or color on a
wheel.

These methods have proven invaluable in
understanding memory mechanisms, demonstrating,
for example, that interstimulus distance affects
misbinding and not precision (Emrich & Ferber, 2012),
increasing set size affects misbinding and precision
more than random guessing (Bays et al., 2009; Pertzov,
Manohar, & Husain, 2017), and decreasing sample
duration increases random guessing but not imprecision
or misbinding (Bays et al., 2009). Importantly, this
has also allowed mechanistic understandings in
clinical populations where the different sources can be
selectively impaired (Rolinski et al., 2016; Zokaei et al.,
2014).

However, many working memory tasks are
two-dimensional (2D; e.g., spatial location; Corsi,
1972), and extending the mixture modeling technique
to work on such 2D data would allow researchers to
decompose errors in their component sources. While
some studies used binary report (Bays & Husain,
2008), continuous-report measures of spatial memory
have emerged more recently, in which participants
move a probe to its original location (Pertzov, Dong,
Peich, & Husain, 2012). This can be accomplished by
participants dragging or pointing to locations on a
touchscreen computer, allowing precise spatial WM
measures in patients with disease (Liang et al., 2016;
Pertzov et al., 2013; Zokaei, Nour, et al., 2019).

To examine the types of errors made, previous
analyses employed simple measures based on the
distance of each response from the other items in
the display (Pertzov et al., 2012). The most basic
method includes all sources of errors, being simply
the mean distance from the true location of the target
to where a participant recalls it to have been. This
distance-to-target can be compared against the distance
from the response to the nearest stimulus that had
appeared in the memory array (nearest-neighbor
distance) (Pertzov et al., 2013). Such a measure
removes the influence of misbinding, giving a measure
of imprecision. However, this metric still conflates
errors of imprecision (i.e., knowing the location only
approximately) with errors due to pure guessing.
Further analysis methods to take guessing into account
(Pertzov et al., 2013) involve counting the number of
responses that occur within a certain distance of a
nontarget (swap errors), but this does not consider a
person’s precision or the distance between the stimuli on
each trial. These simple behavioral metrics each attempt
to separate out different sources of errors, but the
only way to validate them has been by comparison of
results with those from one-dimensional (1D) circular
tasks.

One study has applied mixture modeling to 2D
working memory tasks (Schneegans & Bays, 2016) and
found that misbinding increased with set size, while
random guessing was negligible, and that the pattern
of target errors, nontarget responses, and reaction
times was in keeping with a continuous-resource
model, not a discrete-slot model. They also found that
misbinding, but not random guessing, contributed to
errors, which may highlight an advantage of spatial
data; the extra dimension of separation between items
leads to less overlap in response distributions centered
on the items, giving greater ability to distinguish
error components. This article demonstrated the
usefulness of mixture modeling for spatial tasks, but
to our knowledge, there is no available package for
applying these models to 2D data or an investigation
into the suitability and limitations of such an
approach.

Here, we present 2D mixture models (adapted
from a previous 1D mixture model package
MemToolbox; Suchow, Brady, Fougnie, & Alvarez,
2013; MemToolbox.org) that allow us to fit a person’s
imprecision of location memories, along with the
proportion of random guesses and nontarget responses
(misbinding), taking into account stimulus locations
and any biases in responses that may occur. This article
serves as an introduction to the concepts behind the
models, the practicalities of fitting the models, and
issues that may arise when working with 2D data, and
it provides examples of fitting the models to human
data. The Discussion section provides an overview
of the limitations and advantages of the modeling
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Figure 1. One-dimensional and 2D misbinding models. The top row shows a 1D task. Fictive stimuli and responses are shown (left)
where the target (blue) and nontarget (red) were always shown at the same orientations. The responses column shows sample
responses centered on the target with some imprecision (blue), around the nontarget with the same imprecision (red), and randomly
distributed guesses (green). The PDF of responses (right) shows peaks around those locations with heights proportional to the
number of target and nontarget responses, widths proportional to the imprecision of the memories, and a background guessing rate
proportional to the height of the horizontal line. The bottom row shows a similar setup for a 2D task where the target and nontarget
were always shown in the same location on a 2D screen (left), and the PDF is now 2D (right), which shows peaks of responses (upper
part) around those locations (bottom part) with a 2D width (dashed circle) and uniform guessing across the entire screen (green dots).

approach raised during specific tests in the Results and
Method sections, and readers may consult the Contents
to determine which sections are useful to them when
working with these models. The new MemToolbox2D
is available at https://doi.org/10.5281/zenodo.3752705
(Grogan et al., 2019).

Method

Model

The 1D mixture models split errors into three
components (Bays et al., 2009) (Figure 1). Throughout
the article, we shall focus on this three-component
model (the misbinding model), although the approach is
the same for related models such as the two-component
mixture model (without misbinding; Zhang & Luck,
2008), and all such models have been adapted for 2D.
The misbinding model has three sources of errors:

imprecision, misbinding, and random guessing:

P
(
θ̂

) = αφκ

(
θ̂ − θ

) + β
1
m

m∑

i

φκ

(
θ̂ − ϕi

)

+ γ
1
2π

, (1)

where P(θ̂ ) is the probability of finding a response
orientation θ̂ , θ is the orientation of the target stimulus,
ϕκ is the von Mises distribution (circular analogue
of the Gaussian distribution), φi is the orientation
of the nontarget stimulus i, m is the number of
nontarget stimuli, and guessing is uniform over the
entire circle (2π ). The parameters α, β, γ , and κ
control the proportion of target responding, nontarget
responding, guessing, and the concentration of the
von Mises distribution, respectively. The spread of
the distributions of target and nontarget responses is
assumed to be the same. As α, β, and γ must sum to
1, α is not included as a free parameter in the fitting.

https://doi.org/10.5281/zenodo.3752705
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The three free parameters (β, γ , κ) are estimated using
maximum likelihood methods.

To adapt the model for 2D data, several changes
are needed. First, 2D coordinates are used in place of
angles, which means that the von Mises distribution is
replaced with a bivariate Gaussian distribution ψσ with
standard deviation σ and zero covariance. Second, a
distribution for the random guesses must be chosen.
For simplicity, we begin by assuming that they are
drawn from a uniform distribution over the entire area
of the screen (A). This gives the following response
density function:

P
(
θ̂

)= α ψσ

(
θ̂ − θ

) + β
1
m

m∑

i

ψσ

(
θ̂ − ϕi

)

+ γ
1
A

, (2)

where here, θ and φ are vectors indicating locations on
the screen, and again, α, β, and γ sum to 1, which
together with σ yield three free parameters.

The model will operate in any spatial units, as long as
A is changed to reflect this. For the examples provided
here, we will use 1366*768 as the screen area and pixels
as units. The dimensions of the screen will dictate the
scale of the errors in the task (i.e., on a 40 cm × 30 cm
screen, the errors will be under 50 cm) and thus the scale
of the imprecision parameter σ . The models take in a
dimensions argument, which sets the screen dimensions
for simulations and fitting. In other words, it implicitly
sets the units for the model. Any appropriate scaling
values are possible (e.g., 960*540 pixels, 46*26 cm,
30*17 visual degrees). This allows you to convert data
collected on different screen sizes into standard units
(e.g., visual degrees or percentage of screen size), for
example, to correct for any influence that different
screen sizes may have on the data. A rectangular screen
is assumed, so if a different shape screen is used (e.g., a
circular window on a screen), the model will need to be
modified to account for this. Different dimensions can
be supplied for simulating and fitting the data (e.g., if
the stimuli may not appear too close to the edges of
the screen but possible response locations are not so
constrained). This can also be achieved by using the
method described in the “Effect of stimulus separation
on recovery” section below.

Previous 1D models used a circular space, meaning
that responses wrapped around the domain, without
any edges. In contrast, the 2D spatial tasks involve
a finite space defined by the screen or screen region.
When simulating the model, any responses that fall
outside of the screen when drawn from the normal
distributions are replaced by new samples drawn from
the same distribution.

We use the framework for 1D models provided in
MemToolbox (Suchow et al., 2013; MemToolbox.org)

to provide a new toolbox (MemToolbox2D; Grogan et
al., 2019; https://doi.org/10.5281/zenodo.3752705) for
modeling 2D data that integrates with the existing 1D
MemToolbox. New functions were created to run the
fitting, display plots, correct for biases, and simulate the
models. Thus, MemToolbox2D will not interfere with
the functions of MemToolbox.

Simulations

First, we provide simulations to show the behavior
of the model during fitting and some of the issues
that may impact the quality of the fits, including
true parameter values, number of trials, number of
nontargets, response distributions and biases, stimulus
constraints, and screen edges.

For all simulations, unless otherwise specified, we
simulated a task in which an agent views three stimuli.
The three stimuli were randomly placed on the screen,
and one was randomly chosen to be the “target,” with
the other two being “nontargets.” The agent then
had to place the target stimulus in the location they
remembered it occurring before. This is similar to a
spatial WM task used previously (Pertzov et al., 2013).
We simulated 100 trials. The type of response made
on each trial was determined by the parameters used
for the simulations: γ controlled the proportion of
responses that were random guesses, β the proportion
that were misbinds (centered on a nontarget location),
α (α = 1 – γ – β) the proportion that were target
responses, and σ the imprecision (standard deviation)
of target and misbinding responses. We then fit the
misbinding model to these simulated data to see how
accurately the true parameters could be recovered.

A large sweep of parameters was used for these
simulations, ranging from almost no to almost all
guessing (γ ε [0.01, .98]), almost no misbinding to
almost all misbinding (β ε [0.01, 0.98]), and low to
high imprecision (σ ε [0.1, 100]). Eleven values of each
parameter were chosen, evenly spaced across these
ranges, and all combinations used, with the caveat that
γ and β summed to 1 or less, and we simulated each
parameter combination 100 times. This parameter
sweep was chosen to test how well the model can recover
true parameters across a large range, including values
that represent poor performance due to high guessing,
misbinding, and imprecision, either in isolation or
combination. These values are unlikely to occur in real
data as few people will guess or misbind on all trials.

For each simulation at a particular set of parameters,
the 100 simulated trials were fit by maximum likelihood
estimation. The parameter fits account for the position
of each of the items, as well as the response, on each
trial.

To show the accuracy of parameter recovery, we plot
the difference between recovered and true parameters

https://doi.org/10.5281/zenodo.3752705
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Figure 2. Procedure of the spatial WM task. Participants were presented a pair of test shapes (with a “T” at fixation), which could be
either preceded or followed by a blank screen (Maintain T2 and T1, respectively) or by a second pair of nontest shapes (Update or
Ignore, respectively). They were asked to remember the most recent pair of test shapes. At the test, one test shape and one nontest
shape (novel item or distractor) were shown, and participants chose the item they remembered to have been a test shape and
dragged it to where it appeared previously.

(parameter recovery error) against the values of the true
parameters; zero indicate perfect parameter recovery,
and larger (positive or negative) values indicate poorer
recovery. These recovery errors are plotted for each
parameter, marginalized over the other parameter
values.

When comparing different models or methods, we
use the Bayesian information criterion (BIC; Schwarz,
1978), which adds a penalty for the number of trials
and parameters to the negative log-likelihood of the
model fit; smaller values indicate better-fitting models.

Code for all the simulations here is available from
https://doi.org/10.5281/zenodo.3752763 (Grogan,
2019).

Human data

To illustrate how the models work with real human
data and to examine how they cope with more complex
task designs, we fit previously unpublished data
collected from an Ignore/Update spatial WM task (i.e.,
a 2D task) and compared the pattern of recovered
parameters to those found on a 1D orientation analogue
of this task (Fallon, Mattiesing, Dolfen, Manohar,
& Husain, 2018; Fallon, Mattiesing, Muhammed,
Manohar, & Husain, 2017). New data were collected
from 49 healthy older adults (mean age = 71.4 years,
SD = 5.5, 18 females, 31 males). Ethical approval was
granted by South West–Central Bristol NHS REC
(16/SW/0205). Participants gave written informed

consent, and the study was conducted in line with the
Declaration of Helsinki.

In brief, the task involved remembering a pair of
abstract shapes (Figure 2) that were shown with a “T”
cue in the screen center, indicating they were “test
shapes”, one of which would be tested later in the trial.
These could be shown at Time 1 and/or Time 2. On
some trials, nontest shapes (no “T” shown in center)
could be shown either at Time 2, which would not be
tested, and were not to be remembered. Participants
were instructed to remember the most recent test
shapes they saw. They were tested with a test shape
and a nontest shape (either distractor or novel shape)
presented on the screen. Participants were asked first
to select the shape they recalled to be in the (most
recent) test shape pair by touching it, rather than the
nontest shape that was presented with it. Then they
were requested to drag the test shape to where they
remembered it to have been shown originally.

Overall, there were four different conditions, each
occurring with the same frequency (Figure 2):

� Ignore trials: Consisting of test shapes at Time 1
followed by nontest shapes at Time 2

� Maintain long delay trials (T1): Test shapes at Time
1 followed by a long delay

� Update trials: Consisting of test shapes at Time
1 followed by new test shapes at Time 2 (so now
working memory of test shapes at Time 1 had to be
updated to instead store the test shapes at Time 2)

https://doi.org/10.5281/zenodo.3752763
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Model σ α β γ

1D r = .6668*** r = .7831*** r = .7482*** r = .5505***
2D r = .9302*** r = .9758*** r = .9706*** r = .9710***

Table 1. Spearman correlation coefficients between each true parameter and the recovered parameters for the 1D and 2D misbinding
models. ***p < 10−10.

� Maintain short delay trials (T2): Test shapes at Time
2 followed by a short delay.

There were two key factors in this design. First,
there were irrelevant stimuli—either ones that had to
be ignored (Ignore condition) or old items stored in
memory that now had to be displaced by new ones
(Update condition). Then there were two conditions
that controlled for different maintenance durations in
the Ignore and Update conditions, by simply having
either a long (T1) or short (T2) delay.

Note that the ignore and update trials have three
nonprobed items (one nonprobed test shape plus
two distractors), while T1 and T2 trials only have
one nonprobed test shape; the model accounts for
this by averaging the likelihoods of misbinding to
each nonprobed shape together (“m” in Equation 2).
Other models are available that allow for two sets
of nonprobed shapes, for example, with separate
misbinding parameters for the distractors and the
nonprobed test shape.

The task was performed on Dell laptops using a
mouse, at a viewing distance of approximately 40 cm.
After 11 practice trials, there were three blocks of
40 trials, giving 120 trials in total (30 per condition,
random order).

Results

Here we present several simulations showing how 2D
models compare to 1D models and investigating factors
influencing the accuracy of parameter recovery.

Accuracy of recovering simulated parameters

To see what is gained from 2D responses over 1D
responses, we compared how well the fitted parameters
relate to the simulation parameters used to generate
the simulated data. We simulated and fit 1D and 2D
versions of the misbinding model. The 1D models
fit the κ parameter for the von Mises distribution
concentration, which is converted into standard
deviation (σ ) for comparison with the standard
deviation parameter in the 2D models.

Figure 3. Mean difference between recovered and simulated
parameters (parameter recovery error). This is shown for 1D
(top row) and 2D (bottom row) misbinding models. Dashed line
shows the y = 0 line, which is where there is no difference
between the simulation and recovered parameters for any
simulation parameter value. Shaded area shows standard
deviation. Each column shows one parameter value,
marginalized across all other parameters from the parameter
sweep. The 2D model performs better than the 1D model
(t tests: p < 0.0001; see Supplementary Figures S4–S6 for 1D
models).

First, we looked for recovery error and biases,
using 100 iterations across the parameter sweep. Both
models recovered parameters that correlated highly
with the true parameters (Table 1). Figure 3 shows
the difference between simulated (true) parameters
and fitted (recovered) parameters across the parameter
space; the 2D model has smaller deviations from zero,
meaning better parameter recovery (paired-sample t
tests for each parameter, p < 0.0001).

We next performed a parameter sweep over β,
γ , and σ , simulating each parameter set 1,000
times, and plotted the simulated and recovered
parameters at various slices through this parameter
space to see the effect of increasing one source of
error while holding the others equal. The median
recovered parameters are close to the simulated values
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Figure 4. Heatmaps showing the recovered parameter trade-offs within the misbinding model in 1D (top) and 2D (bottom) space. The
plots show the recovered parameter values at 10,000 MCMC posterior samples from fitting the model to simulated data (β = .3, γ =
.3, σ = 30). Guessing correlates negatively with misbinding and imprecision, and misbinding and imprecision are positively correlated
in both 1D and 2D, but in all cases, the correlations are weaker in the 2D model, shown here by more circular, less elliptical, patterns.

(Supplementary Figures S1–S3 for 2D simulations and
S4–S6 for 1D simulations), although there is greater
deviation from the true parameters when the simulated
participant generates more inaccurate responses due to
higher imprecision, guessing, and misbinding.

Parameter trade-offs within the model
The recovered parameters show trade-offs within the

2D model, as there are within the 1D model, because
responses remote from any stimuli can be explained
either as random guesses or by a participant having
very imprecise spatial memory. Thus, the recovered
imprecision and guessing parameters negatively
correlate (Figure 4) as do guessing and misbinding, but
misbinding and imprecision are positively correlated.
These correlations between recovered parameters are
weaker in the 2D model (γ and β: r = –.3817, σ and
γ : r = –.1548, β and σ : r = .1208; all p < 0.000001)
than in the 1D model (γ and β: r = –.6799, γ and
σ : r = –.6563, β and σ : r = .3314; all p < 0.000001).
In the 1D model, imprecise responses are very likely
to run into other nontargets due to the circular 1D
space, whereas in the 2D model, this is less common
because the locations differ in two dimensions, and the
boundaries absorb imprecise responses without them
wrapping around to the other side. Please note these
trade-offs are within the recovered parameters, due to

the dependence of them in the model, and do not mean
there are trade-offs between the “true” imprecision,
misbinding, and guessing that occur within people’s
working memory.

Factors affecting recovery accuracy

Parameter recovery can be affected by several
aspects of the task, and many of these are under the
experimenter’s control. Here we show how factors
such as number of trials, number of nontargets, and
constraints on stimulus placement affect recovery
accuracy from simulations. Experimenters can thus
design tasks taking these factors into account when
considering their model fitting and may find it useful to
simulate their tasks before running them to test their
recovery accuracy.

Better estimates with more trials
The more trials available for fitting, the more accurate

the parameter recovery (Figure 5). This was seen for
both 1D and 2D misbinding models (linear regression:
p < 10−10). As it is not always possible to have large
numbers of trials, recovering simulated parameters can
be useful to experimenters for assessing the accuracy of
model fitting in their study.
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Figure 5. The absolute recovery error for different numbers of
trials for 1D (top) and 2D (bottom) misbinding models. More
trials (warmer colors—see color bar) leads to more accurate
parameters (lower absolute recovery errors) in 1D and 2D
models (linear regression: p < 10−10). Shading shows standard
error of the mean.

More nontargets worsen parameter recovery
Including nontarget stimuli is useful to assess

misbinding between stimuli (Bays et al., 2009).
Increasing the number of nontargets (from one to
six, same parameter sweep, 100 iterations) increased
the error in parameter estimation (Figure 6; linear
regression: p < 10−10). These differences are larger in
the 1D model because with more nontargets, imprecise
target responses or random guesses are more likely to
end up close to a nontarget and be classed as misbinds,
which acts to decrease imprecision estimates especially.
In the 2D model, this is less likely as the items are
separated along two dimensions and the responses do
not wrap around the edges, instead being bounded by
the screen edges.

Effect of stimulus separation on recovery
All of the 2D simulations presented here have used

entirely random (uniform) generation of stimulus
locations to match the 1D simulations and many 1D
orientation tasks. However, many spatial WM tasks
constrain the stimuli so that they cannot appear within
a certain distance of other stimuli, the edges of the
screen, or the center of the screen (if probe items are
presented there; e.g., Pertzov et al., 2012).

To examine how such constraints affect parameter
recovery, we simulated two different tasks, one where
stimuli appeared uniformly randomly across the entire

Figure 6. Absolute parameter recovery errors for different
numbers of nontargets. More nontargets (cooler colors) leads
to higher absolute recovery errors in 1D and 2D models (linear
regression: p < 10−10). Shading shows standard error.

screen (no constraints) and one where stimuli were
constrained to not appear within 88 pixels of each other
or the screen center, or 29 pixels from the screen edge.
These distances correspond to 3 and 1 visual degrees,
respectively, assuming a viewing distance of 40 cm and
42 pixels per centimeter. The entire parameter sweep
was simulated 100 times for each task, which were fit
with the misbinding model. The errors in the recovered
parameters from the two tasks are shown in Figure 7.
Paired-sample t tests revealed that parameters α, β,
and γ had significantly smaller recovery errors when
stimulus constraints were used (p < 10−10), while σ
only showed a trend effect (p = 0.0615), but absolute
recovery errors were significantly smaller for σ and γ
(p = 0.0071, p = 9.6457 × 10−8) but not α and β (p
= 0.4405, p = 0.0610). These statistics suggest that
constraining stimuli can improve the recovery accuracy,
although the benefits are not huge. This is likely due
to the constraints reducing overlap of items (and thus
responses) and making distributions centered on items
less likely to be cut off by the screen edges.

Response biases and distributions

When people perform these types of tasks, their
responses may not be uniformly distributed across
the screen for several reasons. First, often the stimuli
themselves may not be uniformly distributed, for
example, if there are areas they cannot appear in (see
stimulus separation section above). Task constraints can
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Figure 7. Parameter recovery errors (top) and absolute recovery
errors (bottom) for the 2D model in simulated tasks with and
without stimulus constraints. Adding in constraints to the
stimulus locations leads to smaller errors in parameter recovery
(orange line; see text for statistics). Shading shows standard
error.

give rise to biased distributions either through veridical
memory or via strategies for guesses. Individuals may
also sometimes show further biases to prefer one side of
the screen, the top or the bottom half, or a radial bias
where responses shrink toward the center of the screen.
Many of these will depend on the experiment and
stimulus characteristics, so here we shall demonstrate
how two kinds of biases (constant and proportional
biases) affect the model and how experimenters may
account for them.

Constant biases
First, we simulated responses that have a constant

directional bias by subtracting a fixed translation (from
20 to 200 pixels, step size = 36) to X- and Y-coordinates
of all responses (and reapplying the screen boundary via
edge constraining). The error of the fitted parameters
rises as this bias increases (Figure 8). MemToolbox
contains a function to correct for biases in 1D models,
which we have adapted to work in 2Dmodels. This fits a
constant translation bias term for X- and Y-dimensions,
thus improving fits as shown by smaller deviations from
the true parameters (Figure 8, paired t tests: p < 10−8).
However, when the bias is sufficiently large, responses
are more likely to hit the edge of the screen (and, in
this case, are edge-constrained to lie on the screen edge
instead), which hinders accurate recovery.

Figure 8. Parameter recovery errors from simulations with a
constant translation bias subtracted (top) and corrected for
(bottom). The color bar shows bias size (from 20 to 200 pixels).
The bias correction works well for biases up to about 150 pixels
in size. Shading shows standard error.

Proportional biases
People may be unlikely to shift all responses in the

same direction by the same amount, especially if this
leads to many responses landing on the screen edges,
so we also simulated a proportional bias toward the
right-hand edge. Here, a bias parameter controls the
proportion of the distance to the edge that responses
are shifted; positive values shift it toward the edge, and
negative values shift away (zero means no shifting). This
is perhaps more likely as a response bias in people and
can also be corrected by the toolbox (Figure 9; paired t
tests: p < 10−15).

Next, we applied a proportional radial bias that
either shrinks all responses toward the screen center
(positive values) or expands them out (negative values)
by a proportion of the distance the response is from the
screen. Biases mainly affect the imprecision parameter
(Figure 10), although the guess parameter is affected by
an expanding radial bias. We adapted the bias function
to account for radial biases, which improves parameter
recovery (paired t tests: p < 10−12), especially for the
imprecision parameter, although does not fully correct
large guess parameters when there is a large expanding
bias.

This function also allows us to test whether there are
radial biases toward points other than the center. For
instance, in trials with a single target and nontarget, it
is possible that rather than the nontarget “swapping”
locations with the target, it exerts a “pull” on the
response locations. Note that this contribution to error
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Figure 9. Difference plot of recovered and simulated parameter
values for different proportional biases toward the right-hand
screen edge. Data with (bottom) and without (top) the bias
correction for different proportional biases (color bar). Positive
biases mean responses move toward the right-hand screen
edge, and negative biases move responses away from this edge
(responses do not move vertically). The bias correction
improves the fits for all parameters. Shading shows standard
error.

Figure 10. Difference plot of recovered and simulated
parameter values for different radial biases. Data with (bottom)
and without (top) the bias correction for different radial biases
(color bar). Positive radial biases mean points move toward the
center of the screen, and negative biases move points away
from the center. The bias correction improves the fits for all
parameters, although large guess rate parameters are not fully
corrected when there is a large expanding bias. Shading shows
standard error.

Figure 11. Parameter recovery errors with a radial bias toward
the nontarget location on each trial. Data shown without (top)
and with (bottom) bias correction. The bias correction reduced
the errors in parameter recovery. This simulation had β = 0
(i.e., no misbinding). Shading shows standard error.

is separable from misbinding, as the responses will be
centered somewhere between targets and nontargets,
rather than being centered on the nontarget in the case
of misbinding. We can test for this by using the radial
bias function and supplying the nontarget location as
the bias coordinate for each trial; if we simulate such
a bias, this function corrects for the bias and gives
much more accurate parameter recovery (Figure 11;
paired t tests: p < 10−15). For this simulation, we used
one nontarget and the standard mixture model (i.e.,
no misbinding). We also fit the misbinding model to
these nontarget-biased data, which did not fit the data
as well as the standard mixture model with the radial
nontarget bias (mean BIC = 2,720 vs. 2,437), suggesting
this pattern of nontarget “pull” is distinguishable from
misbinding in simulated data.

Response sampling for guess distributions
People may not (and indeed probably do not) have

a uniform guess rate in these tasks but instead may
have complex distributions that include some of the
biases mentioned above but may have others we have
not thought of. One way of dealing with this is to
use the participants’ own responses to determine the
“guessing” distribution. To achieve this, a probability
density function (PDF) can be built from all of a
participant’s response locations over an experiment
(across all conditions for a participant’s data). Drawing
from this distribution samples a response taken from
a random trial, which, if the trials are independent,
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should be unrelated to the current trial’s stimuli and
thus can constitute a random guess constrained by the
person’s own response biases.

We implemented this in a model that uses a kernel
smoothing density function to build a PDF of the
person’s responses over all trials, which is then used to
estimate the probability of each trial’s response over the
entire experiment. MATLAB’s ksdensity function
was used to build the response PDF, which estimates
the default bandwidth of the smoothing function from
the data using Scott’s rule. The default bandwidth can
be optionally overridden to supply your own bandwidth
in the response sampling function.

This model cannot easily be tested with simulations
as people have nonrandom distributions of responses
that we cannot predict, so we tested this model using
cross-validation from the healthy participants’ data
fitting (see later section or the Method section for
details). We fit 90% of all the trials (combining all
conditions) with the misbinding model with and
without response sampling and then generated the
likelihood of the responses for the remaining 10%
of trials using the fitted parameters. We repeated
this 100 times for each person and took the mean
likelihood for each person. Crucially, the response
sampling only included the 90% of training trials, not
the 10% of validation trials. If the response sampling
model accounts for people’s response distributions
and therefore gives better fits, it should lead to larger
likelihoods for the out-of-sample validation trials than
the uniform guessing model, whereas if it is instead
simply overfitting the participants’ responses, then
out-of-sample probabilities will be lower than the
uniform guessing model. The response sampling model
gave higher likelihoods than the uniform guessing
model for the validation trials (t test: p = 4.8265 ×
10−10), suggesting it is not simply overfitting the data
but that drawing guesses from the distribution of all
responses can give more accurate estimates of guess
rates.

Change detection

The models are also able to fit data from change
detection tasks similar to a two-alternative forced-
choice (2AFC) paradigm. Change detection tasks probe
the ability to detect changes to stimuli’s features, such
as location. A stimulus is probed, shown displaced from
its original location by some distance, and participants
must decide if the location is the same or different. The
paradigm is different from many 2AFC tasks used for
signal detection, because often all probes have some
displacement, however small, and the task is used
not to measure people’s ability to separate changed
from unchanged items but to measure the minimum
detectable changes in feature memory. These tasks give

much less information on each trial about the source of
error, but with sufficient data, corresponding models
can still be fit. These models are adapted from the
2AFC models in the original 1DMemToolbox (Suchow
et al., 2013).

The model is based on assumptions about the spatial
pattern of erroneous acceptances of a displaced probe
caused by the different underlying error sources. A
person with perfect memory would reject all displaced
probes, but as the error sources increase, they give
different patterns of acceptances. Imprecision will
increase acceptance closer to the target, misbinding
will increase acceptance close to the nontargets, and
guessing will increase acceptance uniformly. We also
assume that if someone incorrectly accepts a probe
of a certain displacement as unchanged, they would
also have accepted smaller displacements on that
particular trial. Taken together, these assumptions
lead to us integrating over the continuous probability
density function to estimate the probability of correctly
rejecting a displaced probe, which we calculate as the
probability of generating a response that is closer
to the target than the current probe is. Note that
this approach assumes a nonzero displacement of
each item; otherwise, this integration will be affected
mainly by the area on the far side of the target to the
probe.

Figure 12 shows, when a range of different probe
(and nontarget) distances is considered, different
patterns of acceptance are seen: Increasing imprecision
increases the acceptance of probes closer to the
target, increasing guessing increases acceptance
similarly across the entire circle, and increasing
misbinding increases acceptance closer to non
targets.

Radial and translation biases can be included in the
models as in the continuous case. As the task is change
detection rather than a signal detection task (as the
probe is not the same as the target, and even if it were
would likely not be perceived so due to memory decay),
the aim is not to measure a person’s ability to separate
out signals from nonsignals but rather to estimate these
underlying error sources. The estimates of imprecision,
guessing, and misbinding are based on the effect of
probe distance on acceptance of changes. Under this
framework, a person who accepts probes closer to the
target does so because of less imprecise memory, and a
person who accepts more probes regardless of distance
does so because of increased guessing, not because of
a greater propensity to accept changes. It is possible to
estimate a response bias separately by averaging the
proportion of acceptances.

We ran simulations and fittings for 1D and 2D
versions of this. The standard mixture model (without
misbinding) was used because fitting 2AFC data is slow
due to the more complex probability density taking into
account the nontarget locations for each trial.
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Figure 12. Illustrative examples of mixture modeling approach
to change detection. We show 1D examples for ease, although
the same principles apply for 2D (see Supplementary Figure
S10). The top row shows how each error component affects the
proportion of generative responses that would fall at or beyond
a probed distance of 60 degrees (arbitrary y-units). The second
row shows the values of the parameters used for those
simulations, along with the summed probabilities of all
responses that occur at ≥ 60 degrees from the target.
Increasing each parameter increases the probability of
incorrectly accepting this probe as unchanged. The bottom row
shows the probability of accepting a probe as unchanged as a
function of the probe distance (or probe-nontarget distance for
misbinding). This shows that increasing imprecision increases
the spread of these same responses around the target,
increasing guessing affects all orientations similarly, and
increasing misbinding affects responses in relation to their
distance to the distractor (if we plotted probe-targ for
misbinding, it would look like the guessing panel).

The parameter recovery works well in comparison
to the 1D model (Figure 13), especially at higher
imprecision values, but as expected is considerably less
accurate than the continuous report fitting (Figure 3).

Additional models and functions

We have developed further models, including one
with a covariance parameter for the imprecision, one
with separate precision parameters for targets and
nontarget responses, and one with separate parameters
for misbinding to two types of nontargets (e.g., the
other test shape that was not probed and the nontest
shapes). The latter can also be used to assess misbinding
toward previous targets/responses if desired. We
have also adapted all the other models present in
MemToolbox (Suchow et al., 2013), including the

Figure 13. Parameter recovery errors for the 1D and 2D
two-alternative forced-choice simulations. The 2D model
(bottom) is more accurate than the 1D model (top), although
both are far less accurate than with continuous report data
(see Figure 3). Shading shows the standard error of the mean.

variable precision models (Fougnie, Suchow, & Alvarez,
2012; van den Berg, Shin, Chou, George, & Ma, 2012),
ensemble integration model (Brady & Alvarez, 2011),
continuous resource model (Wilken & Ma, 2004),
exponential decay model (Zhang & Luck, 2009), and
slot model (Zhang & Luck, 2008).

We have presented only the maximum likelihood
fits here, but MemToolbox2D also contains adapted
functions for performing Bayesian model fitting using
the Markov chain Monte Carlo (MCMC) method.
These fits take longer to run, which is why we used
maximum likelihood for the analyses presented here.
This method also allows hierarchical model fitting
across participants.

We have also adapted several other functions from
MemToolbox (Suchow et al., 2013) such as the plotting
functions for visualizing the data and results of the fits.

Empirical data fitting

The 2D models can be fit to simple spatial WM tasks
(e.g., Pertzov et al., 2012, 2013) but can also be used
for more complex tasks to compare between multiple
conditions. Here we fit the models to data collected
from people performing a spatial ignore/update WM
task (see “Human data” section for details) to show how
the models can be useful for more complex experimental
designs too.
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Figure 14. Histograms of the recovered parameters from the
ignore/update task, across all conditions.

People show biases and nonuniform guesses
To see which model fit the data best, we fit several

models to the behavioral data (all conditions). First,
we fit the misbinding model and the standard mixture
model (no misbinding), and the misbinding model fit
best (BIC: 2,984 vs. 3,051). Next we looked at whether
the bias functions improved the fit by including each
bias in the misbinding model. The constant bias did
not improve the fit (BIC = 2,984), while the radial
bias did (BIC = 2,966). Adding response sampling
improved the misbinding model (BIC = 2,974), as did
combining the misbinding model with the radial bias
(BIC = 2,958). Therefore, the misbinding model with a
radial bias and response sampling was the best-fitting
model. The parameters from this fitting are shown
in the Supplementary Materials and Supplementary
Figure S7 and show that most participants were biased
away from the screen center and that these biases were
consistent within people across conditions (Pearson
correlations: ρ > .65, p < 0.0001).

Convergent validity of parameter recovery
To compare convergent validity between the 1D

and 2D modeling approaches, we compared the fitted
parameters from the 2D misbinding model to those
reported on the 1D version of this task (Fallon et al.,
2018). Histograms of the recovered parameters are
shown in Figure 14 and show that while imprecision
is approximately normally distributed, the other
parameters are skewed, being bounded by 0 and 1. We
did not logit transform the α, β, and γ parameters for
the comparison to the 1D task as the 1D analysis did
not transform parameters (Fallon et al., 2018).

Figure 15. Mean fitted parameter values for each trial type from
the healthy participants. Delay increased imprecision (σ ; top
left; blue vs. orange; see Figure 2 for task explanation), guessing
(γ ), and misbinding (β; see text for stats); irrelevant stimuli
increased misbinding and guessing but not imprecision (ignore
and update vs. T1 and T2); and there was an interaction of delay
and irrelevant stimuli only for guessing. Standard error bars.

Repeated-measures analysis of variance (ANOVA)
with delay and irrelevant stimuli as factors and a
random effect of participant were used to analyze the
fitted parameters (Figure 15). The analyses showed the
following:

� Delay duration increased the imprecision (F(1, 144)
= 53.7751, p = 1.4959 × 10−11), guessing (F(1, 144)
= 14.4042, p = 2.1660 × 10−4), and misbinding
(F(1, 144) = 3.9560, p = 0.0486).

� Irrelevant stimuli increased misbinding (F(1, 144)
= 19.9033, p = 1.6302 × 10−5) and guessing (F(1,
144) = 19.8437, p = 1.6755 × 10−5) but did not
affect imprecision (F(1, 144) = 1.3353, p = 0.2498).

� There was a significant interaction of delay and
irrelevant information for guessing (F(1, 144) =
4.0163, p = 0.0469), although it was only weakly
significant and was due to greater guessing in the
ignore condition.

� There were no other interactions (p > .1),
suggesting that ignore and update trials both
affected imprecision and misbinding similarly.

These main effects are similar to the orientation
version of this task, although they differ regarding the
interaction of delay and irrelevant information. The 1D
version found such an interaction in misbinding (Fallon
et al., 2018), while here we found it for guessing; in both
tasks, the errors were highest in the ignore condition.
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Potential reasons for this will be discussed later. The
similarity in the rest of these results suggests convergent
validity of the 2D modeling technique for real human
data.

To establish whether the different results in 1D and
2D tasks are due to differences in the modeling, we
examined how well each model can distinguish the
parameters for the different conditions. We simulated
1D and 2D versions of the task using the mean
recovered parameters of each condition from the 1D
task (Fallon et al., 2018) and fit the misbinding models
using fmincon and inverted the Hessian matrices to
get the covariance between parameters. We then used
MATLAB’s linear hypothesis test to examine whether
the recovered parameters for the different conditions
were actually from different distributions of parameters
(alternate hypothesis) or from the same distribution
(null hypothesis).

We performed 1,000 iterations of this and counted
how often the 1D and 2D models returned p ≤ .05.
If the 2D model is better at distinguishing between
parameters due to the lower covariance between them,
it will be more likely to return p ≤ .05 in these linear
hypothesis tests. The 2D model found a significant
difference between the conditions more often (mean =
29.1% vs. 19.2%). This suggests that these parameters
are less confusable (i.e., more distinguishable) in the
2D model than the 1D model. The 2D model was
particularly better than the 1Dmodel for comparing the
ignore condition with update and T2 conditions, which
could mean that the 1D task confused parameters
between these conditions, leading to a different
interaction being found in the orientation task.

To illustrate this, we generated posterior MCMC
samples from fitting to data simulated using the mean
parameters from the 1D orientation task and plotted
the parameters against each other (Figure 16). There
was greater separation between the parameters of the
different conditions in the 2Dmodel than the 1Dmodel,
suggesting that the 2D model is better at distinguishing
between parameters of different conditions, within the
range recovered from human data.

Validating the behavioral metrics
We wanted to see whether the behavioral metrics

were actually measuring the types of errors purported.
We calculated those behavioral metrics on simulated
data and looked at which metrics correlated with the
true parameters and compared this against the accuracy
of parameter recovery. These simulations used the same
stimulus separation constraints as in the “Stimulus
separation” section to match the experiments that
commonly use these metrics, although running them
without such constraints did not change the pattern of
results.

Figure 16. Heatmaps showing the posterior MCMC samples for
recovering the mean parameters from Fallon et al. (2018). Each
color is a different condition (see legend; Ig = ignore, T1 = long
delay, Up = update, T2 = long delay), and the rows show 1D
and 2D models, respectively. The γ and β parameters have
been arcsine transformed. Both models were simulated using
the same parameters. The 2D model has better separation of
the different conditions’ parameters, as shown by less overlap
between the colors.

We examined several commonly used behavioral
metrics. Target distance is the Euclidean distance from
responses to targets, while nearest-neighbor distance
is the Euclidean distance from responses to their
nearest stimulus (Pertzov et al., 2013). The former
will contain imprecision, guessing, and misbinding
influences, while the latter has attempted to remove the
influence of misbinding and thus should contain mainly
imprecision and guessing. The difference between these
two represents the influence of misbinding. A further
measure to capture misbinding, termed swap errors
(Pertzov et al., 2012), is the proportion of responses
occurring within a certain fixed distance (1.5 visual
degrees) of a nontarget location. This measure is also
confounded by imprecision since imprecise responses to
the target location are more likely to end up close to a
nontarget by chance, compared to precise responses.
We can correct for this by calculating the proportion of
possible locations with that specific distance from the
target that would have been classed as “swap errors”
and subtracting that. Swap errors can also be calculated
using the mean target distance as the threshold,
effectively scaling the criterion by a participant’s average
accuracy. This measure can likewise be corrected for
chance in the same way.

We correlated the mean values of each of
these metrics for simulated data with each of the
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Figure 17. Relationship between the true parameters (x-axis)
and the best behavioral metrics (top) and recovered
parameters (bottom). All correlations were significant (p <

10−10). Two metrics were compared against the imprecision (σ )
parameter. The recovered parameters had stronger correlations
than the best behavioral metrics (see text for statistics).

true parameters (parameter sweep from previous
simulations, 10 iterations). All the metrics correlated
with multiple true parameters, so we present here only
the metric most strongly correlated with each parameter
(see Supplementary Figure S9 and Supplementary
Table S1 for full correlation matrix between metrics and
parameters).

Target distance correlated strongly and negatively
with the proportion of target responding (Figure
17; Spearman correlations: r = –.9687, p < 10−10),
nearest-neighbor distance positively with guess rate (r
= .9279, p < 10−10), and the difference between these
positively with misbinding (r = .8589, p < 10−10).
There were no metrics that correlated strongly with
imprecision, although swap errors (fixed threshold) had
a medium negative correlation (r = –.5519, p < 10−10)
while the nearest-neighbor distance (assumed to be
a good measure of imprecision) had a weak positive
correlation with it (r = .2931, p < 10−10), so both of
these are presented. These metrics were all less strongly
correlated with the true parameters than the recovered
parameters were, although this may be an artifact of
recovering the parameters with the same model used
for simulation, as this makes it unlikely the behavioral
metrics can perform better.

To investigate this idea, we compared the split-half
reliability of these four behavioral metrics and the
recovered parameters for these behavioral data (pooling

across all four conditions, 100 iterations of random
splitting). All measures showed significant split-half
reliability (Spearman correlations: p < 0.0001) with
varying strengths. The swap errors metric was only
weakly correlated with itself (ρ = 0.2068), while the
imprecision parameter was strongly correlated (ρ =
0.7160). Target distance was slightly more reliable
(ρ = 0.7955) than the recovered α parameter (ρ =
0.7811), but nearest-neighbor distance (ρ = 0.8196) and
target minus nearest-neighbor distance (ρ = 0.7450)
were better than γ (ρ = 0.3347) and β (ρ = 0.6278).
This suggests that some of the behavioral metrics
have good split-half reliability, and these are the ones
that are most strongly correlated with the true α, β,
and γ parameters in the simulations above. However,
these simulations and correlations suggest none of the
behavioral metrics currently used are good estimators
of memory imprecision, and the ones currently available
have low reliability. They also suggest that guessing and
misbinding estimation in the model has poor split-half
reliability, which could be due to the low guessing
and misbinding parameters used for these simulations
(recovered from the behavioral data), meaning few
trials contain a guess or misbind, which leads to poorer
estimation in the split-halves.

We can also look at convergent validity by comparing
the outputs of ANOVA on the behavioral metrics in
the 2D human data to those previously reported on
the 1D circular analogue task, as we did earlier with
the 2D modeling outputs. These showed that delay
increased target distance (p < 0.0001), nearest-neighbor
distance (p < 0.0001), and the difference between these
two (p = 0.0077), while irrelevant distractors increased
swap errors (p = 0.0001), target distance (p < 0.0001),
and target minus nearest-neighbor distance (p <
0.0001)—but not the nearest-neighbor distance itself (p
= 0.6066). There were no interactions (p > 0.1). While
target distance and target minus nearest-neighbor
distance patterns are similar to α and β (in the
1D data and our 2D data), the nearest-neighbor
distance effects (delay but not irrelevance) were more
similar to that seen in imprecision than guessing.
This may not be surprising as the correlations
(Figure 17) showed nearest-neighbor distance was
correlated with both imprecision and guessing. This
suggests that while nearest-neighbor distance is
reliable, it is not a pure measure of one type of error
source.

Discussion

We have developed a 2D mixture modeling toolbox
for tasks such as spatial WM tasks. The models are
able to recover parameters from simulations with good
accuracy across a large parameter space (Figure 3) in



Journal of Vision (2020) 20(13):6, 1–19 Grogan et al. 16

line with the standard 1D mixture models and have less
interdependent parameters (Figure 4). The accuracy
rises as the number of trials increases (Figure 5) or the
number of nontargets decreases (Figure 6). Behavioral
data from a complex spatial WM task showed a similar
pattern of results to a 1D orientation analogue of the
2D task, giving convergent validity (Figure 15). The 2D
modeling provided a better estimate of true parameters
of simulations than commonly used behavioral metrics
(Figure 17). This suggests that the 2D mixture modeling
approach is valid for analysis of data from complex
spatial WM tasks and is more sensitive than previously
available behavioral metrics. The models are provided
in the MemToolbox2D package (Grogan et al., 2019;
https://doi.org/10.5281/zenodo.3752705), compatible
with the MemToolbox package for modeling 1D tasks
(Suchow et al., 2013; MemToolbox.org).

The fact that the 2D models outperform 1D models
in the simulations can be understood when examining
the correlations of the different parameters from
the posterior samples (Figure 4). The 2D model’s
parameters are less strongly (albeit still significantly)
associated with each other than the 1D model’s
parameters. Mixture modeling can give accurate and
reliable estimation of parameters in 1D tasks, helped by
the fact that responses are often tightly clustered around
stimuli locations (i.e., low imprecision). However, as
imprecision increases, responses become more and
more likely to land near other stimuli and be classed
as misbinds; due to the circular space, if you move far
enough away from a target, you will hit a nontarget. In
the 2D task, while increasing imprecision does increase
the chance of hitting a nontarget, this is overall much
lower as there are two uncorrelated dimensions of
separation between stimuli, and the responses do not
wrap around the screen edges, instead being contained
by them. This means that you are not guaranteed to
hit a nontarget as you move further from a target,
unlike in the circular task—sometimes you will hit
a screen edge instead. These factors mean that the
2D models are better able to distinguish imprecision,
guessing, and misbinding; these differences are due to
differences in the task setup rather than the models
themselves.

The simulations presented here used uniformly
random item locations and performed well, but adding
in stimulus constraints such as minimum distances to
other items, screen edges, and screen center improved
the parameter recovery, particularly for guessing and
misbinding. Such constraints mean that the probability
density functions for target and misbinding responses
have less overlap and are cut off less by the screen edges,
leading to better estimation of the probabilities of each
type of response. This analysis also demonstrates how
important simulation can be in task design, allowing the
experimenter to try out different stimulus constraints,
number of trials, and numbers of nontargets to

optimize their task for the recovery of parameters of
interest.

We applied the models developed here to behavioral
data from healthy older adults on a complex
ignore/update spatial WM task, a spatial version of a
previously used orientation task (Fallon et al., 2018).
The misbinding model fit the data well and analysis
of the parameters revealed that delays increased
imprecision, guessing, and misbinding, while irrelevant
stimuli increased guessing and misbinding but not
imprecision. This pattern is similar to that reported in
the 1D orientation version, although here we found
an interaction of delay and irrelevant stimuli on
guessing—not misbinding as previously reported for
the orientation WM task (Fallon et al., 2018). In that
paradigm, there was much more misbinding when
participants had to ignore distracting stimuli than when
they had to update the items in WM or simply maintain
them over delays, whereas in our 2D data, this pattern
was observed for guessing. This difference could be
due to methodological differences, such as the smaller
sample with older participants used here (older adults
have worse WM; McNab et al., 2015; Pertzov, Heider,
Liang, & Husain, 2015), or other differences in the task
such as the minimum stimulus distance constraints in
the 2D task. Importantly, before the location-memory
test, the participants had to choose which of two items
was a target (the other being a novel foil or a distractor
from that trial); this stage was not present in the 1D
version of the task and could have contributed to the
differences here. However, analyzing only those trials
that were correctly identified at this stage did not change
the pattern of results recovered (see Supplementary
Figure S8).

Alternatively, the 2D modeling was shown to be
more sensitive during simulations and to have less
interdependent parameters (i.e., weaker correlations
between recovered parameters) than the 1D modeling,
and simulations from the fitted parameters showed
the 2D model was better at distinguishing between
parameters from different conditions. The different
pattern of responses could therefore be due to more
accurate parameter recovery in 2D tasks. Finally,
and most interestingly, it is possible that the different
results reflect differences between the way locations and
orientations are processed in WM. There is a proposal
that location plays a fundamentally distinct role in WM,
such that all other features of an item (e.g., orientation,
color, shape) are bound to location (Schneegans & Bays,
2017). It is possible that orientations are misbound
more when distracting information is to be ignored, but
locations are not as they are the feature to which others
are bound.

Other spatial WM tasks have reported an interaction
of delay and number of items (Pertzov et al., 2012),
which was present in the overall target distance but not
in the nearest-neighbor distance (i.e., when controlling

https://doi.org/10.5281/zenodo.3752705
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for misbinding). This was taken to mean that larger
memory loads for longer durations lead to more
misbinding errors but did not affect the imprecision of
the memory. These behavioral metrics have been used
in many spatial WM tasks (Liang et al., 2016; Pertzov
et al., 2013; Zokaei, Nour, et al., 2019) and the current
modeling approach provides a way to examine the
validity of those metrics for estimating different sources
of error.

Comparing the true parameters of simulations
against traditional behavioral measures for this
task gave a sensible pattern of results. Mean target
distance was associated with imprecision, guessing, and
misbinding. Nearest-neighbor distance (which removes
the influence of misbinding to give a better estimate of
imprecision) had no association with misbinding but
instead associated mainly with guessing and a little with
imprecision. The difference between these two was a
good estimate of misbinding. These relationships were
all expected and assumed in previous studies relying on
them (Pertzov et al., 2012, 2013).

However, imprecision was not strongly associated
with any behavioral metric, suggesting it independently
quantifies a new aspect of performance that is not well
captured by existing measures. Imprecision had medium
and weak associations with the proportion of swap
errors and nearest-neighbor distance, respectively. The
behavioral measures were less strongly correlated with
“true” parameters used for simulations than recovered
parameters were, but this is not surprising as the same
model was used for simulation and fitting. While the
simulations here show that the models can accurately
recover simulated parameters, people likely use a range
of behavioral heuristics not captured by the models
and functions provided here. Split-half reliability and
convergent validity checks showed that while target
selection and imprecision could be reliably measured by
the metrics, the metrics associated with misbinding and
guessing were less reliable and valid measures.

Two-dimensional mixture modeling has been used
previously (Schneegans & Bays, 2016) on a task in
which stimuli appeared within an annulus of 5° width,
thus having two dimensions, in contrast to tasks where
stimuli locations appear on a ring (i.e., with no width)
(Rajsic & Wilson, 2014; Schneegans & Bays, 2018),
meaning the 2D coordinate data can be treated as a 1D
orientation and modeled with the existing 1D model
toolboxes (Suchow, Brady, Fougnie, & Alvarez, 2013).
To account for this spatial constraint, the authors built
in priors to their model, such that the bivariate normal
distributions around targets and nontargets and the
uniform distribution were convolved with an estimated
distribution of their response eccentricities (which
closely matched the annulus location and width). This
method illustrates the flexibility of mixture modeling
for 2D tasks with stimuli or response constraints, as
well as the usefulness of incorporating priors into

the model. This method also bears similarity to the
response sampling method presented here, although
applied to not only the guessing distribution but also
the target and nontarget distributions, which could be
useful for future researchers—the toolbox provided
here is adaptable, and an example model outline is
provided to show how new or modified models may be
created.

There are some limitations with adapting the models
to two dimensions. Previous 1D tasks often use a
circular space (e.g., orientation or color), and this
unbounded space works well because of the lack of
edge effects. In contrast, 2D tasks using screens for
stimuli presentation have a bounded space, meaning
that responses do not “wrap around” as they do in a
circular space. In this case, assumptions must be made
regarding behavior close to the boundary and in the
generative models that may place items outside of
the boundaries. The generative models implemented
here are likely not the true process that occurs when
people recall items near the edge of the display, but it
seems a reasonable simplification that still produces a
well-fitting model.

In reality, people may have repelling biases away from
edges or anchoring or landmark effects close to them.
The bias functions in the MemToolbox2D package can
test for some of these, and more complicated models
can be developed that include these, and other, effects.
We also provide a “response sampling” method that
builds a response density function over all the responses
from a person and can be used to sample the guesses
from. This is an alternative to assuming a uniform
guessing distribution. There are myriad potential biases
and guessing distributions, and the MemToolbox2D
package is provided with a permissive license to allow
modification of the code here, as was the original
MemToolbox package (Suchow et al., 2013).

While these models were designed for WM tasks,
they can be used for other types of tasks, including
long-term memory tasks for spatial locations (e.g.,
Zokaei, Čepukaitytė, et al., 2019). There is also no
reason why the models cannot be extended into the
third dimension, should experiments require it, for
example, in virtual reality navigation tasks.

MemToolbox2D is provided as free code available
from https://doi.org/10.5281/zenodo.3752705 (Grogan
et al., 2019).

Conclusion

We provide here a new toolbox (MemToolbox2D;
Grogan et al., 2019; https://doi.org/10.5281/zenodo.
3752705) for analyzing 2D spatial WM tasks.
Simulations showed it is accurate at recovering

https://doi.org/10.5281/zenodo.3752705
https://doi.org/10.5281/zenodo.3752705
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parameters over a wide range of values, number of
trials, and number of nontargets and can take into
account response distributions and biases. It provides a
more accurate measure of true parameter values than
previously used behavioral metrics on such tasks and
may be better at separating out codependent parameter
values because of the second dimension of separation
present in the data.

Keywords: visual working memory, mixture models
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