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Abstract. To provide a cost-efficient parentage testing kit for red deer (Cervus elaphus), a 63 SNP set has
been developed from a high-density Illumina BovineHD BeadChip containing 777 962 SNPs after filtering of
genotypes of 50 stags. The successful genotyping rate was 38.6 % on the chip. The ratio of polymorphic loci
among effectively genotyped loci was 6.5 %. The selected 63 SNPs have been applied to 960 animals to perform
parentage control. Thirty SNPs out of the 63 had worked on the OpenArray platform. Their combined value of
the probability of identity and exclusion probability was 4.9× 10−11 and 0.99803, respectively.

A search for loci linked with antler quality was also performed on the genotypes of the above-mentioned
stags. Association studies revealed 14 SNPs associated with antler quality, where low-quality antlers with short
and thin main beam antlers had values from 1 to 2, while high-quality antlers with long and strong main beams
had values between 4 and 5. The chance for a stag to be correctly identified as having high-value antlers is
expected to be over 88 %.

1 Introduction

Molecular genetic information was already used successfully
in different species, e.g. for the determination of the origin
of modern cattle (Beja-Pereira et al., 2006), for analysis of
genetic diversity of horses (Aberle et al., 2004), and classifi-
cation purposes in pigs (Zsolnai et al., 2006). Availability of
SNP chip technology triggered its application in population

genetics (Lancioni et al., 2016; Zsolnai et al., 2020a) and in
association studies (Zsolnai et al., 2020b).

In deer, comprehensive studies have been conducted in
search of quantitative trait loci (Slate et al., 2002) and for
the determination of the inbreeding effect on breeding suc-
cess (Slate et al., 2000). Molecular data have helped to con-
firm the genetic integrity of Carpathian red deer (Feulner et
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al., 2004) and were used to seek key genes in antler develop-
ment (Molnár et al., 2007). The mechanism of antler devel-
opment is also described by Gyurján et al. (2007) and Stéger
et al. (2010).

One aspect of methodologies is the application of a pa-
ternity test, which is already routinely implemented for ex-
ample in cattle and sheep (Glowatzki-Mullis et al., 1995,
2007) in many countries. There is an obvious demand from
wildlife management and deer breeders to follow up the lin-
eage, especially when important traits (antler characteristics,
body weight, etc.) are logged in the herd book. The molecu-
lar genetic approach has already been implemented for com-
pleting this task previously. Bonnet et al. (2002) applied 11
microsatellites in three multiplex reactions, and Haanes et
al. (2005) used 25 loci in six reactions for genotyping in deer.

In Hungary, two groups have developed multiplex mi-
crosatellite tests for parentage testing. Zsolnai et al. (2009)
used nine loci in one reaction, and Szabolcsi et al. (2014)
applied 10 loci in two reactions. Their obtained probability
of identity was 1× 10−11 and 1× 10−12, respectively. Since
deer is an attractive game animal and research methodolo-
gies are becoming more advanced, studies – including fitness
variation, performance prediction, or comparative population
analysis – have been performed using Bovine BeadChip on
deer (Kasarda et al., 2014). A total of 136 SNPs selected from
the commercially unavailable Illumina 50K CervusSNP50
chip have already been developed for the New Zealand deer
industry (Rowe et al., 2015). Such chip development or SNP
discovery is on its way in Hungary and can be based on a
genome map of red deer, CerEla1.0 (Bana et al., 2018).

Here, we aimed to select and test markers suitable for
parentage testing in red deer based on Illumina Bovine HD
SNP chip and OpenArray platforms to reduce the costs and
labour of microsatellite genotyping. We also aimed to per-
form a genome-wide association study, to look for loci as-
sociated with antler quality, which can contribute to a more
effective breeding strategy.

The selection of the Illumina Bovine SNP chip was based
on its commercial availability and the high similarity of the
bovine and deer genomes (Bana et al., 2018).

2 Materials and methods

We collected 49 red deer blood samples of stags from 10
places, including Baltacím (46◦14′46′′ N, 17◦49′32′′ E),
Cserhát (46◦14′00′′ N, 17◦48′20′′ E), Égeres (46◦14′34′′ N,
17◦48′59′′ E), Homokos gödör (46◦14′20′′ N, 17◦49′06′′ E),
Koronafürt felső (46◦14′37′′ N, 17◦49′47′′ E), Kuszó
lucerna jobb alsó (46◦14′11′′ N, 17◦48′24′′ E), Kuszó
lucerna jobb felső (46◦14′21′′ N, 17◦48′17′′ E), Szent-
Tamás (46◦14′19′′ N, 17◦48′50′′ E), Templom Dél Kelet
(46◦14′17′′ N, 17◦48′41′′ E), and Templom Dél Nyugat
(46◦14′14′′ N, 17◦48′33′′ E) to perform SNP chip genotyp-
ing on the Illumina BovineHD BeadChip containing 777 962

SNPs. Sampling on different sites offers elimination of
the formation of subgroups due to family structure, and it
decreases the chance of population stratification. Selection
criteria for stags were to represent high or low antler quality
values within each sampled area to search for and elucidate
the difference in antler quality. Sampling was performed
by trained veterinarians during routine sample collection
organized independently from this study. Sampling followed
standard procedures and relevant national guidelines to
ensure appropriate animal care.

Antler quality values were determined by a scoring
method applied in the Bőszénfa deer farm, Hungary. Low-
quality antlers (short and thin main beam antlers) reached a
value from 1 to 2, while high-quality antlers (long and strong
main beam) had values between 4 and 5. The low- and high-
quality groups consisted of 24 and 25 animals, respectively.
The preferred phenotype for the antler is to have long beams,
high mass, and symmetry. Samples were prepared and geno-
typed by Neogen Europe Ltd. (Scotland, UK).

For parentage testing, the hair roots of 960 animals
were collected. DNA from hair root samples was extracted
by the Chelex (Bio-Rad, USA) procedure; 8–12 hair root
samples were immersed into a 100 µL, 5 % Chelex mix-
ture, incubated overnight at 56 ◦C, and treated 10 min at
96 ◦C. The 63 SNPs, selected from BovineHD SNP chip,
were genotyped on the OpenArray (Life Technologies,
USA) platform. The surrounding sequences of the SNPs
used for the design of primers and probes are available
from https://webdata.illumina.com/downloads/productfiles/
bovinehd/bovinehd-b1-annotation-file.zip (last access: 22
July 2022) and available in Supplement Table S1.

After filtering (part a) 777 962 loci – presented on the Il-
lumina BovineHD BeadChip – for a call rate >0.95, there
were two alleles with MAF >0.05. Additional filtering (part
b) was included in the case of selection of SNPs suitable
for parentage testing: Hardy–Weinberg equilibrium p value
higher than 0.001, and MAF had to be over 0.3. For the as-
sociation study, only part a of filtering was applied. The se-
quences of the loci found in GWAS are in Supplement Ta-
ble S2.

Statistical analyses were performed by SVS SNP & Vari-
ation Suite 8.8.1. software (Golden Helix, Bozeman, MT,
USA).

The performance of the SNPs selected for parentage test-
ing was characterized by GenAlEx 6.5 (Peakall et al., 2012).
For correction of population structure, the genomic kinship
matrix was used in a multi-locus mixed model (Segura et al.,
2012). The model was

y = Xβ +Zu+ e, (1)

where y is the antler quality score, X is the matrix of fixed ef-
fects composed of SNPs and covariates (date, place of birth,
and the father), Z is the matrix of random animal effects, e
means the residual effects, and β and u are vectors represent-
ing coefficients of fixed and random effects, respectively.
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SVS and the PLINK software v.1.9 (Purcell et al., 2007)
were used to build a multidimensional scaling (MDS) plot
using a genome-wide identity-by-state pairwise distance ma-
trix (mds-plot 2 and cluster options). Population stratification
was calculated by SVS as described by Price et al. (2006).
Python 3.6 programming language (Van Rossum and Drake,
2009) and the matplotlib 3.2.1 library (Hunter, 2007) were
used for the visualization of PCA data.

Classification procedures were performed by Geneclass2
software (Piry et al., 2004).

3 Results

To achieve the goal to select SNPs suitable for pedigree con-
trol, we tested 777 962 SNPs on 50 red deer stags. After fil-
tering for call rate and minor allele frequency, the number
of retained loci was 103 562 and 25 919, respectively (fil-
tering part a). After additional filtering (filtering part b) for
LD pruning and Hardy–Weinberg equilibrium (7146 and 583
loci, respectively), the SNPs proved to be adequate for statis-
tical analyses.

The genotypic principal component analysis of both
25 919 and 583 SNPs did not reveal population stratification
according to antler quality (Fig. 1a, b, 583 loci). Eigenvalues
of axes 1, 2, and 3 were 5.422, 3.116, and 2.339, respectively.

We selected 63 SNPs for parentage testing. The proba-
bility level for the identity of this set was 7× 10−24. The
surrounding sequence of selected SNPs was used to de-
sign primers and probes by OpenArray Product Configurator
(Life Technologies, USA) for genotyping 960 samples on the
OpenArray platform (Life Technologies, USA). The callable
30 SNPs (Supplement Table S1) out of the selected 63 SNPs
reached the 4.9× 10−11 value of the probability of identity
on 960 animals.

In GWAS analysis date and place of birth and the father of
the animal were included in the model. A genomic kinship
matrix was used to correct possible relatedness, and 14 SNPs
(Supplement Table S2) out of 25 919 displayed significant
differentiation between the two groups (high and low antler
quality). Eigenvalues of PCA coordinates were 9.857, 5.637,
and 5.004 for axes 1, 2, and 3. The selected SNPs were able to
position high- and low-antler-value animals into two distinct
groups (Fig. 2a, b).

Depending on the algorithm chosen within GeneClass2
software (Piry et al., 2004) the number of misclassified ani-
mals (from the low-value group) ranged from 3 to 6, which
is 6 %–12 % of the total number of individuals.

4 Discussion

Haynes and Latch (2012) have achieved a 38.7 % success-
ful genotyping rate on Odocoileus hemionus and Odocoileus
virginianus using Illumina Bovine BeadChip and they found
5 % polymorphic loci among the successfully genotyped

SNPs on the Bovine BeadChip. In our case on Cervus ela-
phus, 13.3 % of the genotyped loci were effective, while the
ratio of polymorphic loci among effectively genotyped loci
was 6.5 %. The selected 63 SNPs for parentage testing had
an identity value (7× 10−24) that was similar to the value of
SNP sets used in white pigs (Rohrer et al., 2007) or in Man-
galitza pigs (Zsolnai et al., 2013) (1× 10−23). Genotyping
960 animals on the OpenArray platform, only 30 SNPs out of
63 were callable. The 4.9×10−11 value of the probability of
identity of these 30 SNPs is similar to the previous 1×10−11

(Zsolnai et al., 2009) or 1× 10−12 values (Szabolcsi et al.,
2014) of deer microsatellite sets. The exclusion probability
of the reported 30 SNPs is 0.99803. As for microsatellite
sets, this value is slightly better than the previously reported
0.99630 (Zsolnai et al., 2009) and lower than 0.99999 (Sz-
abolcsi et al., 2014). The price of typing 63 SNPs was about
a third of the price of microsatellite genotyping and required
less working time. By switching from OpenArray (Life Tech-
nologies, USA) to another genotyping platform, the number
of callable SNPs and the exclusion probability value could
be increased to 0.99999.

For the genome-wide association study, we used data ac-
quired from 50 animals where antler quality was known.
The genotypic principal component analysis of 583 SNPs
did not divide the population by antler quality (Fig. 1a, b).
The lambda value calculated by SVS was 1.02, indicating
that there was no hidden population stratification among the
sampled animals.

After filtering (part a) we found 14 SNPs that are as-
sociated with antler values (Supplement Table S2). Previ-
ously such a GWA-aided search was successfully applied in
the case of Mangalitza pigs to find trait-associated loci for
checking quality and quantity parameters in the meat indus-
try (Szántó-Egész et al., 2013, 2016).

Evaluating our 14 SNPs on red deer by PCA (Fig. 2) and
classification algorithms implemented in GeneClass2 soft-
ware (Piry et al., 2004), we have found that animals with a
high antler value have never fallen into the low-value group.
However, several animals (4 %–10 %) from the low-value
group have been assigned to the high-value group.

Several candidate genes have been found in the close
vicinity of the antler-quality-associated markers (Supple-
ment Table S2). Among the candidate genes, we are men-
tioning those where bone- or antler-related functions are
known. Sentrin-specific protease 1 (SENP1) markedly en-
hances androgen-receptor-mediated transcription in males,
mediates cell growth and differentiation, and maintains male
reproductive functions (Cheng et al., 2004). Collagen alpha-
1(II) chain (COL2A1) has key roles in chondrogenesis and
osteogenesis (Jia et al., 2021); it is upregulated in the main
beams of antlers (Yao et al., 2020). Vitamin D receptor
(VDR) alleles are associated with postmenopausal osteoporo-
sis susceptibility and bone mineral density (Zhang et al.,
2018). Dynamin 1 like (DNM1L) belongs to a superfam-
ily of GTPases, which are related to osteoclast differentia-
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Figure 1. Principal component analysis of 49 stags based on their 583 loci. The blue circle shows animals with low antler quality, and the
red triangle shows animals with high antler quality. Eigenvalues of axes C1 and C2 are 5.422 and 3.116, respectively.

Figure 2. Principal component analysis of 49 stags based on their 14 loci selected to differentiate by antler quality. The blue circle shows
animals with low antler quality, and the red triangle shows animals with high antler quality. Eigenvalues of axes C1 and C2 are 9.857 and
5.637, respectively.

tion and bone loss (Jeong et al., 2021). Tyrosyl-TRNA syn-
thetase 2 (YARS2) is coupled with the impaired ability of the
bone marrow to produce normal red blood cells (Riley et al.,
2013). Plakophilin 2 (PKP2) overexpression was able to stop
the proliferation of osteosarcoma (He et al., 2021). Zinc fin-
ger protein 518B (ZNF518B) is a putative ageing modula-
tor (Sleiman et al., 2020). WD repeat-containing protein 1
(WDR1) is part of a deer antler extract (Yao et al., 2019). So-
lute carrier family 2 member 9 (SLC2A9) plays a role in gout,
a form of rheumatic arthritis (Merriman and Dalbeth, 2011),
and has a significant role in glucose homeostasis. Among the
enriched targets of miRNAs there is zinc finger and BTB do-
main containing 49 (ZBTB49) after a growth factor-beta 1
stimulation (Ong et al., 2017). The latter compound has a
high impact on bone formation and resorption (Bonewald et

al., 1990). Molybdenum cofactor sulfurase (MOCOS) is in-
volved in purine metabolism (Kurzawski et al., 2012), and
extracellular purine is vital for bone homeostasis (Agrawal
and Jørgensen, 2021). Elongation protein 2 (ELP2) has a
role in osteogenesis and osteogenic differentiation (Wu et al.,
2021). Exocyst complex component 6B (EXOC6B) is asso-
ciated with joint dislocation syndrome (Girisha et al., 2016).
Nucleoporin 58 (NUP58) mediates molecular trafficking to
and from the nucleus and can be tied to delayed abscission
during mitosis (Hartono et al., 2019). Spermatogenesis as-
sociated 13 (SPATA13) can weaken the migration of type I
collagen via activation of GTPase (Jean et al., 2013). Zinc
finger homeobox 4 (ZFHX4) orchestrates endochondral bone
formation (Nakamura et al., 2021). Lysine demethylase 4C
(KDM4C) regulates condensin-dependent heterochromatin
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reorganization and is connected with deterioration and pre-
mature bone ageing (Huang et al., 2019). Glycine decarboxy-
lase (GLDC) locus is associated with overall survival in pa-
tients with osteosarcoma (Lin et al., 2020). Glutathione per-
oxidase (GPX) level is higher at the upper sections of the vel-
vet antler and associated with lower Ca content (Cheng et al.,
2017). SMAD family member 7 (SMAD7) directly interacts
with microtubule actin crosslinking factor 1, initiating down-
stream osteogenic pathways (Zhao et al., 2020). Dymeclin
(DYM) is an important part of the extracellular matrix and
has a role in bone development (Denais et al., 2011). Among
the differentially abundant metabolites of ageing bone mar-
row mesenchymal stem cells, acetyl-CoA acyltransferase 2
(ACAA2) is related to senescence and lipid metabolism (Yu
et al., 2022).

The approach for finding selection markers for antler qual-
ity can be enhanced by (i) incorporating more animals into
the study, (ii) development of a deer SNP chip based on red
deer populations existing in Hungary and on existing whole-
genome sequencing (Bana et al., 2018), and (iii) collecting
blood at different stages of antler development and merging
genotypic, phenotypic, and blood-metabolite data for deeper
analysis.

As for parentage testing, the identified 30 SNPs produce
similar discriminating power to that of a microsatellite set
(Zsolnai et al., 2009). The advantage of SNP typing lays in
its cost-effectiveness compared to microsatellites.

As for antler quality predictions, the listed 14 SNPs cou-
pled with antler quality can be used to identify those animals
at birth that are supposed to develop good-quality antlers in
their life. The chance that an animal (preselected by SNP typ-
ing) has a desirable high-valued antler is expected to be over
88 %.
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