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� Abstract
High-dimensional flow cytometry has matured to a level that enables deep phenotyping of
cellular systems at a clinical scale. The resulting high-content data sets allow characterizing
the human immune system at unprecedented single cell resolution. However, the results are
highly dependent on sample preparation andmeasurementsmight drift over time.While var-
ious controls exist for assessment and improvement of data quality in a single sample, the
challenges of cross-sample normalization attempts have been limited to aligning marker dis-
tributions across subjects. These approaches, inspired by bulk genomics and proteomics
assays, ignore the single-cell nature of the data and risk the removal of biologically relevant
signals. This work proposes CytoNorm, a normalization algorithm to ensure internal consis-
tency between clinical samples based on shared controls across various study batches. Data
from the shared controls is used to learn the appropriate transformations for each batch
(e.g., each analysis day). Importantly, some sources of technical variation are strongly
influenced by the amount of protein expressed on specific cell types, requiring several
population-specific transformations to normalize cells from a heterogeneous sample. To
address this, our approach first identifies the overall cellular distribution using a clustering
step, and calculates subset-specific transformations on the control samples by computing
their quantile distributions and aligning them with splines. These transformations are then
applied to all other clinical samples in the batch to remove the batch-specific variations. We
evaluated the algorithm on a customized data set with two shared controls across batches.
One control sample was used for calculation of the normalization transformations and the
second control was used as a blinded test set and evaluated with Earth Mover’s distance.
Additional results are provided using two real-world clinical data sets. Overall, our method
compared favorably to standard normalization procedures. The algorithm is implemented in
the R package “CytoNorm” and available via the following link: www.github.com/saeyslab/
CytoNorm © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of Interna-

tional Society for Advancement of Cytometry.
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High-dimensional flow cytometry technologies, such as mass cytometry, are increasingly
employed in large clinical studies to better understand the biological mechanisms of dis-
eases (1–3). However, when samples are measured at multiple timepoints, technical vari-
ances between experimental batches can influence themeasurements, resulting in so-called
batch effects. Technical variance can have various causes, including differences in sample
collection time, stimulation, freezing, thawing, staining or instrument-dependent effects.

One of the known instrument-dependent issues specific to mass cytometry is
signal fluctuation over time, due to changes in instrument performance. This signal
drift is typically corrected by using polystyrene beads embedded with metals of
known concentration (4). However, these beads will not capture differences due to
experimental variability in sample preparation or changes in channels that are not
represented by the bead signals. Therefore, additional normalization is still needed.

1Department of Applied Mathematics,
Computer Science and Statistics, Ghent
University, Ghent, Belgium
2Data Mining and Modeling for
Biomedicine, VIB Center for
Inflammation Research, Ghent, Belgium
3Department of Anesthesiology,
Perioperative and Pain Medicine,
Stanford University School of Medicine,
Stanford, California
4Department of Biomedical Data
Sciences, Stanford University School of
Medicine, Stanford, California

Received 29 May 2019; Revised 12
September 2019; Accepted 13
September 2019

Grant sponsor: Bill and Melinda Gates
Foundation; Grant sponsor: Burroughs
Wellcome Preterm Birth Initiative; Grant
sponsor: Doris Duke Charitable Founda-
tion; Grant sponsor: Fonds
Wetenschappelijk Onderzoek; Grant
sponsor: March of Dimes Prematurity
Research Center; Grant sponsor: March
of Dimes Prematurity Research Center
of Stanford University; Grant sponsor:
National Institute of Health, Grant
numberR21DE027728-01; Grant sponsor:
Robertson Family Foundation

Additional Supporting Information may
be found in the online version of this
article.
*Correspondence to: Yvan Saeys,
Department of Applied Mathematics,
Computer Science and Statistics, Ghent
University, Ghent, Belgium Email: yvan.
saeys@ugent.be; Nima Aghaeepour,
Department of Anesthesiology, Perioper-
ative and Pain Medicine, Stanford

Cytometry Part A � 97A: 268–278, 2020

ORIGINAL ARTICLE

https://orcid.org/0000-0002-7119-5330
http://www.github.com/saeyslab/CytoNorm
http://www.github.com/saeyslab/CytoNorm
mailto:
mailto:


One solution to reduce batch effects is cellular barcoding
(5,6), an approach in which each individual sample is first
stained with a specific set of tags, allowing unique identifica-
tion of the samples. The samples can then be merged together
and further processed as one, significantly reducing the exper-
imental variability in sample handling, antibody staining and
instrument detector sensitivity. However, the number of sam-
ples that can be uniquely labeled is limited (typically 20 or
96 samples), and clinical data sets may include more samples
than a single barcode scheme can accommodate. Additionally,
not all samples are always available at the same time, which
complicates the barcoding process. Therefore, samples are
often split in multiple groups, each of which are processed in
one barcoded plate. While in this scenario, experimental vari-
ability is limited between samples on the same barcoded plate,
separate plates suffer from similar experimental variability as
two nonbarcoded samples would.

While several additional protocol standardization efforts
are taking place (7), slight differences in sample handling
between multiple batches are unavoidable (8). Computa-
tional techniques to remove this variance postmeasurement
can offer a solution in those cases. A number of techniques
have been proposed to align the distribution of markers
across samples (9–11). However, these methods will align
the distribution of each of the individual samples without
making use of reference controls, which will also remove
potentially biologically relevant differences in the distribu-
tion. In this work, we propose a pipeline for identification
and normalization of technical variations using shared con-
trols across multiple batches. Using control samples allows
us to guarantee that the detected changes are only due to
technical issues. Importantly, here we demonstrate that tech-
nical sources of variation can impact cell types differently, as
was also described in Reference 10. They provided the
option to normalize one marker at the time during the man-
ual gating process, allowing the user to choose for which
subpopulation the normalization is applied. In contrast, to
allow a fully automated procedure, our algorithm first uses a
clustering algorithm for automated cell type identification
prior to normalization.

MATERIALS AND METHODS

Mass Cytometry Data Sets

The main data set used in this study is a previously published
mass cytometry data set immunoprofiling women during
pregnancy (12). This data set included whole blood samples

at four timepoints for 17 patients in the original cohort and
an additional 10 patients in the validation cohort. Each
patient was measured on a separately barcoded plate (includ-
ing all timepoints and multiple stimulations (not used in this
study)). In addition to the actual patient samples, we also
made use of control samples. In the original cohort, blood
from one healthy donor was taken along on every plate, both
unstimulated and stimulated with Interferonα (IFNα) and
Lipopolysaccharide (LPS). In the validation cohort, an addi-
tional healthy donor was taken along across all plates, to be
used as a validation sample for our normalization protocol
(four healthy donor samples per plate). The mass cytometry
cytometry panel included 23 surface markers for cell
phenotyping and 10 markers for functional analysis of the
signaling responses (Supporting Information Table S1).

Proposed Method

A schematic overview of the proposed method is given in
Figure 1. An identical control sample taken at one timepoint
from one healthy control is included in each of the batches. Using
the information from this control sample, our algorithm corrects
for batch-to-batch variability, which might result from sample
thawing, processing, staining and instrument particularities. The
algorithm consists of two main parts: The batch effects are first
modeled using the control sample, and afterward all samples can
be normalized using the resulting models. This results in normal-
ized data that is comparable between plates and can be used for
further analysis.

Modeling the Batch Effects
To model the batch effects, we propose a four-step pipeline
(shown in blue in Fig. 1). First, it clusters the cells of the con-
trol samples to capture the different cell types present in the
data. Next the quantiles are computed to capture the distribu-
tion of the cells over the marker expression values. A goal dis-
tribution is then determined based on the means of the
quantiles. Finally monotone Hermite splines are computed to
translate the original values to new values that follow the goal
distribution.

We used FlowSOM for the automated cell population
identification (13), Step 1 in Figure 1. The FlowSOM algorithm
uses a two-step clustering: The data are first divided in many
more clusters than expected cell populations using a self-
organizing map (SOM) and next the resulting cluster centers are
grouped using a consensus hierarchical clustering, resulting in
the final cluster labels. By using this two-step clustering, the
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FlowSOM algorithm can detect populations of varying sizes and
shapes, without the computational overhead of density-based
clustering algorithms (14). To identify the populations from all
batches, the training samples were first aggregated and the
FlowSOM algorithm was applied to the aggregated sample. To
limit the running time, a random subset was selected from each
sample to use for training (1million cells in total). All 37 markers
were used for FlowSOM clustering. Once the clusters were deter-
mined, all original cells were mapped to their closest SOM-
cluster centers for further analysis.

By applying clustering on the original data first, we made
the assumption that while the measurements might have shifted
between the different samples, the differences between the cell
types are still bigger than the shifts caused by the batch effects. If
this is the case, the percentage of cells assigned to each of the clus-
ters should be similar across all control samples. We evaluated
this by computing the percentage of cells assigned to each of the
clusters for each of the samples, and computing the coefficient of
variation for each of the clusters. In the training set, this resulted
in a maximal CV of 0.87 for 25 clusters. Once CV values higher
than two occur (which was the case for 30 or more clusters), it is
likely that some of the clusters are severely impacted by the batch
effects, which renders the clustering step inappropriate as a
preprocessing step before quantile normalization.

Once the FlowSOM algorithm was run, we applied the nor-
malization per cluster. By processing only one cluster at a time,
we assumed no further dependencies between the markers and
normalized each marker separately. To describe the distribution
of the cells for a specific marker, wemade use of quantiles. A qua-
ntile indicates a boundary value for which a certain percentage of
cells is lower, for example the 0.5 quantile corresponds to the
median value, whereas the 0 quantile corresponds to the mini-
mum value and the 1 quantile to the maximum. We computed
101 quantiles, from 0 to 1 in steps of 0.01, and obtained an

overview of the distributions for each control sample per marker,
per cluster (Step 2).

Once the distributions were determined for all control
samples, a goal distribution can either be computed as the
mean value for each of the quantiles over the different control
samples (Step 3), or the result of one of the specific batches
can be picked as the goal distribution.

To model the transformation needed to go from the
actual distribution to the goal distribution, we used mono-
tone hermite spline functions (as implemented in
the monoH.FC method of the stats::splinefun function in
R). A spline is a piece-wise defined function, used to inter-
polate between given points, while still keeping a certain
smoothness at the transitions between the piece-wise
defined functions. For each control sample, we used the
original quantiles as the x-values and the corresponding
quantiles from the goal distribution as the y-values to
define the interpolation points. To avoid spurious extrapo-
lation, we also added (0,0) and (8,8) to the interpolation
points. The resulting spline function was then used to
translate all original marker values to the new values, caus-
ing the data to become close to the goal distribution
(Step 4).

For every control sample, this resulted in one spline for
each pair of clusters and markers.

Normalizing the Data
The precalculated FlowSOM model and the splines were used to
normalize the rest of the samples, as shown in red in Figure 1.
First the new samples were mapped on the given FlowSOM clus-
tering, to assign every cell to a cluster (Step 5). Then, for every
measured value, the corresponding spline function (given the
cluster, the marker and the control sample of relevance) was
applied (Step 6). This way, we adapted the cell expression values

Figure 1. Schematic overview of the proposed workflow. First the batch effects are learned on the control sample (blue part). Afterward,

the other samples can be normalized (red part). When a validation sample is included on the plates, we can evaluate whether these

aliquot measurements become more similar as well, as they should after correct normalization. [Color figure can be viewed at

wileyonlinelibrary.com]
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in the new samples to reverse the shifts detected in the control
samples. The variation left could then be assumed to only repre-
sent the real biological variation (which should be minimal for
the second control sample).

Alternative methods

We compared our proposed method with a few variations.
Instead of using the 101 quantiles, we also tried an approach
using only two quantiles, aligning either theminimum andmaxi-
mum or the 0.001 and 0.999 quantiles. If only two quantiles are
used, a linear function is modelled instead of using a spline func-
tion. Additionally, we also tried these methods either with or
without the clustering step. In all these cases, we learned the
models on the control samples, and afterward applied them on
the validation samples.

xnorm = x – xq0:001
� �

= xq0:999 – xq0:001
� �

Next to these variations, which have been used in
microarray normalization before (15,16), we also compared
our algorithm to GaussNorm (9), a technique previously
proposed for the normalization of cytometry data. This
algorithm does not allow to learn on control samples and
translate the shifts to other samples afterward, so this was
applied immediately on the set of sample of interest. It
takes as input the expected number of peaks for every
marker, which was manually determined by looking at the
density plots. To enable application of a static gating build
on one sample, we computed the landmarks used for align-
ment on one sample, and gave those landmarks as input
for the normalization of all other samples.

Evaluation

A first evaluation of CytoNorm was applied on the validation
samples included in the second cohort of the pregnancy
study. We used the control samples of the first healthy donor
to train a model and then normalized the validation samples
from the second healthy donor. We tested whether known
populations (as defined by a manually adapted gating) aligned
better after normalization. To quantify this alignment, we
made use of the Earth Movers Distance (EMD,(17)). EMD is
a distance measure specifically developed to compare distribu-
tions. To describe the distributions, we binned the data in
bins of size 0.1 for every marker (on transformed data). For
every manually gated cell population p and every marker m,
we computed the pairwise EMDs across all the batches and
took the maximum value. This indicates the maximum dis-
tances between two plates occurring in this data set. The
lower this value is, the better. To evaluate how these distances
change after normalization, we compute the EMDs for both
the original data set and the normalized data sets. This allows
us to compute the reduction in EMD, the percentage of the
original distance that is eliminated by the normalization. To
capture all this information in one number, we did not take
into account the population-marker pairs where both the
original and normalized EMD values where lower than 2 (thus
not impacted by the batch effects or the normalization) and

compute the average over all other population-marker pairs
as a final score.

EMDp,m = max
i, j2validation samples

EMD datai p,m½ �,dataj p,m½ �� �

Reductionp,m =
original EMDp,m−normalized EMDp,m

original EMDp,m

Reduction= mean
p2 populations

m2markers

EMDp,m > 2

Reductionp,m

Additionally, we evaluate the normalization procedure
on the patient samples of the pregnancy study. For this pur-
pose, we make use of a manual gating defined on one con-
trol sample, and apply this as a static gating on all files. In
contrast, we also have the population frequencies of the
original publication, where all gates were adapted as needed
on the individual files. We show that on a normalized data
set, time and effort can be saved by getting relevant results
without having to manually adapt all gates.

Availability

This proposed algorithm is implemented in the R package
“CytoNorm” and available on github at www.github.com/
saeyslab/CytoNorm. As input, the user needs to provide
the fcs files from the control samples, the fcs files that
need to be normalized and labels indicating the batch ori-
gin for each file. Optionally, parameter settings for the
FlowSOM algorithm and the number of quantiles can be
chosen. In the end, a new set of fcs files is generated with
normalized values. The pipeline used to generate the results
described in this manuscript is available at www.github.
com/saeyslab/CytoNorm_Figures. The fcs files and manual
gating from the control samples from the original preg-
nancy cohort are available at flow repository ID FR-FCM-
Z246. The fcs files and manual gatings from the validation
pregnancy cohort are available at flow repository ID FR-
FCM-Z247.

RESULTS

Batch Effects Are Nonlinear and Can Be Cell-Type

Specific

Before applying the CytoNorm method, we characterized the
marker distributions of the control and validation samples
(Fig. 2). While some small aliquot-specific differences
occurred, the main differences were caused by batch effects:
the control and validation samples on the same plate had
undergone similar changes in distribution compared to the
other plates. When comparing a marker’s median values of
the 10 plates between the control and validation samples,
there was an average correlation of 0.92 (� 0.10) for the
unstimulated samples and an average correlation of 0.85
(� 0.15) for the stimulated samples. From this observation,
we extrapolated that all samples on one barcoded plate had
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undergone similar changes. Learning these shifts based on
one control sample taken along on all the plates should give
us sufficient information to correct for the technical variabil-
ity caused by the batch effects. As demonstrated with CD15
and CD66 in Figure 2, the batch effects can differ between
the different markers, indicating that using beads in only a

few channels would be insufficient to correct all batch
effects.

Another important characteristic of the batch effects is
shown in Figure 2: The shifts were dependent on the level
of a marker’s expression. Often the lines indicating the
25% quantiles followed a different pattern than the lines
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Figure 3. Aliquots of blood samples from two healthy volunteers were measured on 10 separately barcoded plates. We focused on the

HLADR intensities for manually gated B cells and monocytes (gated as resp. CD45 + CD66-CD3-CD7-CD11c-CD123- and CD45

+ CD66-CD3-CD7-CD11c + CD123-CD11b + CD33 + CD14+). Even on the same intensity level, these cells underwent different shifts, while

similar effects were still occurring between the different samples (note the stronger shift in HLADR signal for PTLG033 and PTLG034 for

the monocytes vs. the B cells). The correlations between the median expression values per cell type were resp. 0.99 and 0.97, while

across the two cell types, these correlations dropped to 0.79 and 0.86. This indicated that the batch effects were cell-type specific and a

one-dimensional approach would not be sufficient to remove them. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 2. Overview of CD15 and CD66 expression of four samples, replicated across 10 plates (ordered by time of measurement). It is

notable that all samples from the same plate had similar shifts in comparison to the other plates, which indicates that these shifts were

caused by batch effects. The density plots show the arcsinh-transformed expression values (cofactor 5). The red line represents the

median value, the full grey lines represent the 0.25 and 0.75 quantiles and the dashed gray lines represent the 0.05 and 0.95 quantiles. For

CD15 the negative peak (in this case represented by the 0.05 and 0.25 quantiles) was quite stable, but the positive peak shifted between

the plates. For CD66, especially the negative peak was impacted, although the positive peak also underwent slight shifts. [Color figure can

be viewed at wileyonlinelibrary.com]
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indicating the 75% quantiles. Therefore, applying a linear
transformation to all cells would not remove the batch
effect correctly. The proposed method utilizes spline func-
tions, which can model nonlinear patterns across the
expression range.

In addition, we noted that some technical variations affected
different cell types at different rates. An example is shown in
Figure 3, where cells from two distinct populations had similar
expression values for the HLA-DR marker, but showed different
patterns depending on other markers (gated as B cells [CD45 +
CD66-CD3-CD7-CD11c-CD123-] or monocytes [CD45 +
CD66-CD3-CD7-CD11c + CD123-CD11b + CD33 + CD14+]).
To handle these cell-type specific batch effects, we applied a rough
clustering on the cytometry data to detect themain cell populations
before normalization.

FlowSOM Metaclusters Are Minimally Effected by

Batch Effects

One strong assumption made by the CytoNorm pipeline is that
the clusters which are normalized separately, are themselves not
affected by the batch effects. We evaluated the proposal of using
25 final clusters on a FlowSOM result based on a 15 × 15 grid.
Maximum CV between replicates was 0.87, indicating that on
this level, little to no batch effects were influencing the results.

We tested multiple numbers of final clusters (going from 3 to
50), and computed the coefficient of variation for the percentage
of each of the control samples assigned to the cluster, as shown in
Figure 4. Once CV values higher than 2 occur (which is the case
for 30 or more clusters), it is likely that some of the clusters are
severely impacted by the batch effects, which renders the cluster-
ing step inappropriate as a preprocessing step before quantile
normalization.

CytoNorm Aligns Populations between Validation

Controls

We applied the CytoNorm method to normalize the signal vari-
ability across the samples. We used either the unstimulated or
the stimulated samples of one of the volunteers to learn the batch
effects and applied the resulting model to the corresponding
samples from the other volunteer. We modeled the batch effects
using a FlowSOM grid with 10 × 10 nodes and 25 final clusters,
and modeled the splines using 101 quantiles. The new distribu-
tion of the data is shown in Figure 5A, analogous to Figure 2
before normalization. Additionally, we computed the EMD
values for every marker per cell type, using a manual gating of
the data set (see Supporting Information Fig. S1). We applied
this measurement on both the original and the normalized
samples and plotted those EMD values against each other. A
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representative result of one experiment for our proposed method
is shown in Figure 5B, while Supporting Information Figure S5
gives the full overview of the different samples and methods we
tested. In these figures, points on the black diagonal line have the
same EMD value before and after normalization. The points
above the black line have smaller distances after normalization,
while the points below the diagonal have an increased EMD. We
conclude that most distances decreased, indicating a reduction in
overall batch effect. The average percentage of decrease in dis-
tance over the four different testing setups was 0.61 (� 0.39), not
taking distances smaller than two into account. In all four of the
setups, the EMDs significantly decreased after normalization.

We compared our proposed method with three alternatives:
quantile normalization without clustering and approximate min-
max normalization with or without clustering. We compared the
results from the approaches with clustering to the results without,
as shown in Table 1. When we computed the reduction compared
to the original distances, the quantile normalization algorithm
resulted in a reduction of only 0.21 (� 1.62). Approximate min-
max normalization applied on clustered cells resulted in a reduc-
tion of 0.21 (� 0.62), while approximate min-max normalization
without clustering had a negative average score. Plots comparing
the EMDs before and after normalization for all methods are
given in Supporting Information Figure S2.
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Figure 5. (A) Overview of the density distributions of the validation samples after normalization (trained on the control samples). The

distributions align much better than before, indicating the removal of the batch effects. (B) Comparison of the original distances between

unstimulated samples measured for Volunteer 2, versus the distances after normalization using the batch effect model of Volunteer

1. Every dot represents one specific population-marker combination (36 markers × 10 manually gated cell types = 360 dots). The thick

black line indicates the diagonal, all values above this line have decreased after normalization. Dots situated more to the left indicate

better results. Red dots indicate values with a bigger distance after normalization than before. Values in the grey area had distances

smaller than two before and after normalization, indicating they were not affected by the batch effects and were ignored in the evaluation.

For those values affected by the batch effects, normalization with our proposed method resulted in an average decrease of 0.6623 for the

unstimulated samples from Volunteer 2, trained on the unstimulated samples from Volunteer 1. [Color figure can be viewed at

wileyonlinelibrary.com]
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CytoNorm Allows Better Alignment in Dimensionality

Reduction Figures

To have another look at the data, we applied tSNE dimen-
sionality reduction (perplexity 30) on 10.000 cells sampled
from the 10 unstimulated validation samples, either of the
original data or the data after normalization. When using
the original validation samples as input for a tSNE dimen-
sionality reduction, we noticed a batch effect where the
location of the cells was impacted by their measurement
plate. After normalization, the populations were better
aligned, and fewer batch specific regions could be identi-
fied (Fig. 6)

Control Samples Should Span the Full Data Range

It is important that the control samples encompass the whole
range of expression values. To demonstrate this, we combined
the unstimulated control samples with the stimulated control
samples. The cells in these stimulated samples contained
intracellular signaling responses that were not present in the
unstimulated samples.

We explored three different settings: training on an
aggregate of stimulated and unstimulated control samples,
training on only the unstimulated control samples or training
on only the stimulated control samples. The results on the
unstimulated and stimulated validation samples are shown in
Figure 7.

When we trained only on the unstimulated sample from
Volunteer 1 (middle column), we estimated the batch effects
correctly for the unstimulated samples of Volunteer 2: Almost
all distances became smaller (top row, middle), as shown in
the previous section. However, when we used this model on
the stimulated samples, many distances became larger instead
of smaller (bottom row, middle, contains many dots under
the diagonal in the figure, colored in red). This confirmed
that the batch effects were not linear over the range of the
expression values. As we could only train on cells where the
expression values were low, the model had no information
about the batch effects for high expression and made mistakes
when extrapolating (example of such a spline given in
Supporting Information Fig. S3).

Table 1. Overview of the average reduction of all different methods, over all experiments and per individual experiment setup (V1,V2:

volunteer used for training, stim,unstim: stimulation of samples used)

101 QUANTILES (0, 0.01, 0.02, …, 1) 2 QUANTILES (0.001, 0.999)

WITH CLUSTERING “CYTONORM” WITHOUT CLUSTERING WITH CLUSTERING WITHOUT CLUSTERING

Overall score 0.62 (�0.43) 0.21 (�1.62) 0.21 (�0.62) −0.12 (�0.74)
V1, unstim 0.65 (�0.34) 0.20 (�0.80) 0.26 (�0.46) −0.10 (�0.69)
V1, stim 0.58 (�0.48) 0.16 (�0.71) 0.21 (�0.58) −0.30 (�1.04)
V2, unstim 0.69 (�0.41) 0.36 (�0.66) 0.22 (�0.38) 0.05 (�0.47)
V2, stim 0.56 (�0.46) 0.13 (�2.94) 0.15 (�0.90) −0.09 (�0.57)

Figure 6. tSNE dimensionality reduction of 10.000 cells sampled from the 10 validation samples (1,000 cells each). Colored by sample

(= batch). [Color figure can be viewed at wileyonlinelibrary.com]
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When we trained on the stimulated samples (right col-
umn), this problem was resolved and the stimulated samples
were correctly normalized (bottom row, right). However, in
this case, the unstimulated samples caused a problem because
the negative populations were not always represented well in
the stimulated samples (top row, right).

The optimal solution was to make sure that the training
samples included the whole marker expression range, which was
the case when the model was built using both stimulated and
unstimulated controls (left column). This model worked well for
both the stimulated and unstimulated samples of Volunteer
2 and few red dots appear in either the top or the bottom plot.

Improved Results for Static Gatings on Clinical

Data Set

Finally, we applied CytoNorm on the 27 unstimulated
patient samples of the pregnancy study (both the original
and the validation cohort). The model was trained on the
unstimulated control samples, with a FlowSOM grid of
15 by 15 and a final number of 5 clusters (as we saw some
increased CV values for 10 clusters, Supporting Informa-
tion Fig. S4). The goal quantiles were set to be those of the

first control sample, rather than the average overall. We then
normalized all unstimulated patient samples, and applied a
static gating (defined on this first control sample) to all the
samples. We compared these static gating results to the man-
ually adapted gating results as reported in the original publi-
cation. Results are shown in Figure 8A. It is clear that the
validation cohort (blue dots) underwent a big batch effect,
strongly skewing the static gating on the original files. While
gaussNorm improved the samples, CytoNorm gained results
closest to the frequency of the manually adapted gates (closest
to the diagonal). When we checked the main parameter that
was of relevance in the original paper, we could confirm that
the normalization procedure helps to align the data points
from the two cohorts better, whereas gaussNorm seemed to
have over-normalized and removed some of the actual biolog-
ical variation between the samples.

DISCUSSION

We developed and evaluated CytoNorm, a new normaliza-
tion method for cytometry data applicable to large clinical
studies. We demonstrate that CytoNorm allows reducing
mass cytometry signal variability across multiple batches of
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Figure 7. Effect of different stimulations between the training and normalization data set. When the necessary range was not present in

the reference samples, extrapolation of the splines introduced wrong transformations, indicated by dots below the diagonal line. [Color

figure can be viewed at wileyonlinelibrary.com]
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barcoded samples. However, the algorithm is not limited to
mass cytometry data, but could also be applied to other data
sets that contain multiple batches, if a reference sample was
used and subset-specific effects are suspected. Notably,
CytoNorm could be applied to fluorescence flow cytometry
data sets, because many of the causes of technical variance
will be the same as for mass cytometry data (e.g., sample
preparation happens in a similar manner).

The main requirement for a successful application is that
the individual sample variation should be limited compared to
the batch-to-batch variation. We proposed the CV of the clus-
ter percentages to validate this requirement. It is also important
that the reference samples span the full expression range of the
samples of interest and consist of cell types that are similar to
the ones in the samples of interest. To ensure that the full
expression range is captured, it might be necessary to include
multiple control samples (e.g., with different stimulations),
which can be synthetically combined to learn the batch effects.

To evaluate the strength of the normalization procedure
in new settings, it is highly recommended to take two control
samples along. Only this way a correct estimation of the
impact of the model can be made. In cases where the changes
to the control samples are not corresponding to the changes
in the other samples, the model might incorrectly transform
the data. If taking two controls along with all the batches
would not be feasible, it might be useful to at least run a pre-
liminary study with two control samples to test if the same
conclusions hold. In this case, it would be recommended to
have one control sample from an easily accessible source,
which can be taken along on all other batches as the

references, and one which is as close to the real samples of
interest as possible (same tissue, stimulation, etc.) to test
whether the control sample is sufficient to estimate the batch
effects on the real samples.

A limitation of our pipeline is the assumption that the
batch effects are small enough that the clustering result is
minimally impacted. In experiments where large batch effects
occur, biologically similar cells might be split in different clus-
ters, which will thus not be aligned. Future research could
optimize the clustering step included in the algorithm to
avoid these issues. Additionally, it might be difficult to ensure
that the control samples span the same expression range as
the samples of interest. Future research could optimize the
splines to not deviate too far from the identity function in
case of extrapolation to avoid spurious artefacts.

In summary, we proposed a normalization strategy for
batch effect removal that enables mass cytometry analysis of
large clinical cohorts. Importantly, to avoid accidental
removal of biologically relevant signals, the algorithm makes
no assumptions about the distributions of the clinical samples
and relies on the consistency of cellular barcoding and control
samples. Also, the algorithm uses a multilayer learning strat-
egy to account for cell-type specific technical variations. The
results demonstrated significant improvements in the quality
of primary clinical samples, by reducing the technical vari-
ability between the samples.
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Figure 8. Results on the patient files from the pregnancy study. Red dots: values from original cohort, Blue dots: values from the

validation cohort. Top row: comparison of population frequencies acquired by manually adapted gates (x-axis) and static gating (y-axis).

Applied on files before or after normalization (gaussNorm/CytoNorm). Bottom row: STAT5 MFI values for statically gated CD4+ Naïve T

cells. [Color figure can be viewed at wileyonlinelibrary.com]
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