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Simple Summary: The coexistence of genetically distinct cancer cell clones, their phenotypic plas-
ticity, and the presence of different constituents of the tumor microenvironment create intra-tumor
heterogeneity, which affects cancer development and its response to therapy. We observed that a
higher degree of phenotypic heterogeneity revealed by mass spectrometry imaging was associated
with a favorable outcome in HER2-positive breast cancer. This phenomenon putatively reflects the
presence of heterotypic components of the microenvironment, which could facilitate the response to
anticancer treatment.

Abstract: Intra-tumor heterogeneity (ITH) results from the coexistence of genetically distinct cancer
cell (sub)populations, their phenotypic plasticity, and the presence of heterotypic components of the
tumor microenvironment (TME). Here we addressed the potential association between phenotypic
ITH revealed by mass spectrometry imaging (MSI) and the prognosis of breast cancer. Tissue
specimens resected from 59 patients treated radically due to the locally advanced HER2-positive
invasive ductal carcinoma were included in the study. After the on-tissue trypsin digestion of cellular
proteins, peptide maps of all cancer regions (about 380,000 spectra in total) were segmented by an
unsupervised approach to reveal their intrinsic heterogeneity. A high degree of similarity between
spectra was observed, which indicated the relative homogeneity of cancer regions. However, when
the number and diversity of the detected clusters of spectra were analyzed, differences between
patient groups were observed. It is noteworthy that a higher degree of heterogeneity was found
in tumors from patients who remained disease-free during a 5-year follow-up (n = 38) compared
to tumors from patients with progressive disease (distant metastases detected during the follow-
up, n = 21). Interestingly, such differences were not observed between patients with a different
status of regional lymph nodes, cancer grade, or expression of estrogen receptor at the time of the
primary treatment. Subsequently, spectral components with different abundance in cancer regions
were detected in patients with different outcomes, and their hypothetical identity was established
by assignment to measured masses of tryptic peptides identified in corresponding tissue lysates.
Such differentiating components were associated with proteins involved in immune regulation and
hemostasis. Further, a positive correlation between the level of tumor-infiltrating lymphocytes and
heterogeneity revealed by MSI was observed. We postulate that a higher heterogeneity of tumors
with a better prognosis could reflect the presence of heterotypic components including infiltrating
immune cells, that facilitated the response to treatment.
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1. Introduction

Genetic alterations gained during cancer development are usually (sub)clonal events,
and therefore solid cancers evolve to mosaic entities composed of a mixture of cells with
different genomes. The resulting repertoire of genetically distinct cancer cell populations
is referred to as intra-tumor heterogeneity (ITH) [1–3]. Genetic and epigenetic ITH could
hypothetically be reflected in all distinguishable phenotypic features, such as cellular mor-
phology, gene and protein expression, metabolism, as well as angiogenic, proliferative,
immunogenic, and metastatic potential. Furthermore, a substantial component of tumor
heterogeneity reflects the differentiation of cancer stem cells (CSC), epidermal to mesenchy-
mal transition (EMT), and the phenotypic plasticity induced by interactions between cancer
cells and different local microenvironments. Moreover, in addition to the “core” ITH char-
acteristics of actual cancer cells (or rather sub-clones of cancer cells), tumor heterogeneity is
further increased by the presence of heterotypic elements of its microenvironment (TME),
including immune cells, connective tissues, microvasculature, etc. [3–5]. ITH facilitates
the natural evolution of cancer that drives the process of tumor progression. Further, ITH
could affect the effectiveness of anti-cancer treatment due to the selection of the resistant
sub-clones initially present in a tumor, or due to the induction of new resistant sub-clones
upon treatment. Despite the fundamental relevance of ITH for cancer progression and
response to treatment, its clinical implications remain loosely defined. Although it has
been hypothesized that ITH would be associated with poorer clinical outcomes in cancer
patients, supportive evidence has long been limited to specific contexts of resistance to
the therapy of metastatic cancers [6–9]. Nevertheless, it is not clear whether ITH might be
a universal and independent determinant of patients’ outcome. A few studies used the
pan-cancer TCGA dataset to show an association between the survival outcome in multiple
cancer types and the degree of genetic ITH that was modeled based on the integration of
the SNP array copy number and SNP mutation data from the whole-exome sequencing
in large cohorts of patients. These reports showed that a high level of genetic ITH was
generally associated with poorer survival across diverse types of cancers [10,11].

Despite the fundamental importance of ITH, surprisingly few experimental data were
collected with direct relevance to this phenomenon. The fact that ITH has been long
under-researched is related to serious limitations of the analytical approaches that could be
implemented in this field of research. Currently, two “omics” approaches could potentially
be used to study this phenomenon in the context of the actual histology of solid cancers.
One of them is spatially resolved transcriptomics, that includes different methods based
on in situ/in-tissue single-cell sequencing [12,13]. This approach, although powerful and
dynamically developing (nominated the “Method of the Year 2020” [14]) is limited to
nucleic acids. On the other hand, mass spectrometry imaging (MSI), which combines the
analytical potential of mass spectrometry with the ability to scan series of pixels across
the surface of tissues, enables the targeting of a wide range of molecules (proteins, lipids,
metabolites, drugs) [15,16]. The mass profiles revealed by MSI can be spatially resolved
and annotated with morphological and histological structures. Therefore, MSI can be
used in studies aimed at the contribution of heterotypic material in solid tumors [17–20].
However, although MSI has been widely used in cancer research within the last decade,
only a few papers refer to its utilization in the study of the phenomenon of ITH. Most of
them were rather methodological and were focused on the development and optimization
of tools used for data analysis [21–24]. In a few papers, MSI-guided microproteomics was
employed to identify proteins characteristic of heterogeneous areas of breast cancers [25,26].
Moreover, an association between the heterogeneity of breast tumors and the presence
of concomitant lymph node metastases was reported using this approach [24]. However,
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MSI has not been employed to analyze ITH in the context of the actual prognosis of breast
cancer. Here we analyzed a set of HER2-positive breast tumors collected during the primary
surgery, aimed at looking for a hypothetical association between phenotypic ITH and a
long-term outcome. The unsupervised segmentation of MSI images was implemented to
reveal the molecular heterogeneity of cancer regions and hypothetical differences between
groups of patients where no evidence of disease or progressive disease was observed
during a five-year follow-up.

2. Materials and Methods
2.1. Clinical Material

Postoperative tissue collected during a mastectomy or a breast-conserving surgery
and stored as formalin-fixed paraffin-embedded material was used (the surgery was
performed in the years 2007–2012). The tissue material was re-inspected and verified by
experienced pathologists before the study. Samples of 59 females (aged from 40 to 78 years,
median 57) with locally advanced HER2-positive invasive ductal carcinoma were included.
Tumors with sizes between 1 cm and 5 cm (T1c and T2) were selected. Twenty-seven
patients had no metastases in regional lymph nodes (N0), while in 32 patients cancer
cells were detected in regional lymph nodes collected during lymphadenectomy (N1-N3).
The majority of patients received adjuvant doxorubicin/cyclophosphamide/taxane-based
chemotherapy supplemented with trastuzumab (hormonotherapy was applied if tumors
had the expression of estrogen or progesterone receptors). No evidence of diseases was
observed in 38 patients during at least a 5-year follow-up (ND group). Distant metastases
were diagnosed in 21 patients during the same follow-up (progressive disease; PD group);
the median time to progression was 35 months (major metastatic sites: lung—8 pts. and
bones—5 pts.). Table 1 presents more detailed information about the compared groups.

Table 1. Clinical characteristics of patients included in the study.

Group ND(N−) ND(N+) PD(N−) PD(N+)

n 19 19 8 13

tumor size
T1c 12 5 3 5
T2 7 14 5 8

lymph node status
N0 19 - 8 -
N1 - 10 - 4
N2 - 3 - 7
N3 - 6 - 2

cancer stage
IA 12 - 3 -
IIA 7 3 4 2
IIB - 8 1 3

IIIA - 2 - 6
IIIC - 6 - 2

tumor grade
G2 5 6 4 6
G3 14 13 4 7

hormone receptor
ER(+)/PR(+) 4 3 4 8
ER(+)/PR(−) 2 4 0 2
ER(−)/PR(−) 13 12 4 3

ND—no evidence of disease; PD—progressive disease; (N0)—without synchronous lymph-node metastases;
(N+)—with synchronous lymph-node metastases; ER—estrogen receptor, PG—progesterone receptor.
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2.2. Tissue Preparation for MALDI MSI

FFPE blocks were cut into 5 µm sections with the use of a rotary microtome (Microm
HM 304E, Microm International GmbH, Walldorf, Germany) and placed onto ITO glass
slides (Bruker Daltonik, Bremen, Germany) coated with poly-L-lysine; additionally, a
subsequent serial section was placed on a regular glass slide and further stained with
hematoxylin and eosin for histopathological evaluation; this serial section was used for the
delineation of the cancer region of interest (ROI). Cancer ROI was marked on a section used
for an MSI measurement after image co-registration (an example of a stained section with
a delineated cancer ROI is illustrated in Supplementary Figure S1). The sections on ITO
slides were left to dry at 37 ◦C overnight and then at 60 ◦C for 1 h, and subjected to paraffin
removal by consecutive washing in a series of solvents, as reported in Supplementary
Protocol 1. Then, the dewaxed sections were subjected to heat-induced antigen retrieval
with the use of the Decloaking Chamber NxGen (Biocare Medical, Pacheco, CA, USA)
according to Supplementary Protocol 2. This step was followed by on-tissue trypsin
digestion. Sequencing grade modified trypsin (Promega, Madison, WI, USA) was deposited
onto a glass slide using a SunCollect device (SunChrom GmbH, Friedrichsdorf, Germany)
operated in the spraying mode, according to Supplementary Protocol 3. The slide was
incubated for 18 h at 37 ◦C in a humid chamber filled with water, then dried in a vacuum
desiccator for 30 min. Next, a solution of α-cyano-4-hydroxycinnamic acid (HCCA) was
sprayed onto the slide with the use of the SunCollect device according to Supplementary
Protocol 3.

2.3. MALDI MSI Measurements

MSI measurements were performed with the use of an ultrafleXtreme MALDI-ToF
mass spectrometer (Bruker Daltonik, Bremen, Germany) according to a previously de-
scribed method [27]. Mass spectra were acquired in the positive reflectron mode within an
m/z range of 600–3500; 400 shots were collected from each ablation position with random
walk activated (40 shots at raster spot). The raster width was set at 100 µm. The tissue
sections were measured individually in random order.

2.4. Spectra Processing

The acquired MSI spectra were preprocessed by applying a series of computational
steps that included mass channels unification, baseline subtraction, outlying spectra identi-
fication, peak alignment, and TIC normalization as described elsewhere [28]. The spectral
components were detected using the Gaussian mixture modeling as described in detail
in [29]. The resulting MSI dataset consisted of 377,310 spectra extracted from all cancer ROIs
(59 imaged tissue specimens), each featuring 2527 components. The detailed procedure of
spectra processing is provided in Supplementary Protocol 4.

2.5. Statistical Analyses

A pairwise similarity index was calculated to assess the similarities between spectra
from each cancer ROI [30]. Computed similarity values were plotted as cumulative dis-
tribution functions to visualize the differences of intra-ROI heterogeneity with relevance
to patients’ groups. The deglomerative divisive iK-means (DivIK) algorithm with region-
driven feature selection was used for unsupervised molecular image segmentation [23,31].
Spectra from all 59 cancer ROIs were analyzed together. The detailed procedure of image
segmentation is provided in Supplementary Protocol 5. Cohen’s [d] effect size analysis was
applied to indicate discriminatory components between pairwise compared sets of spectra
(the [d] value was defined as the difference between the mean abundance of a component
divided by the pooled standard deviation for the two compared groups of spectra [32]).
Simpson’s diversity index [33] defined the probability of two randomly selected spec-
tra from one ROI belonging to different clusters. Due to violations of the assumptions
for the applicability of parametric tests, the nonparametric Wilcoxon rank-sum test, or
the Kruskal–Wallis test were applied to determine differences in the number of clusters,
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Simpson’s diversity index, and cluster sizes if two or four groups were compared, respec-
tively. The Kruskal–Wallis test was followed by the posthoc Conover test for pairwise
comparisons [34]. Moreover, the eta-squared effect size was calculated for Kruskal–Wallis,
and Pallant’s [r] effect size [35] for the Wilcoxon and Conover tests.

2.6. Protein Identification by LC-MS/MS

The identification of the proteins present in the lysates obtained from the analyzed
tissues was performed with the use of the ultrafleXtreme mass spectrometer and a Proxeon
EASY-nLC nano-liquid chromatograph coupled with a PROTEINEER fcII fraction collec-
tor (Bruker) as described in detail elsewhere [36]. The material included in this analysis
consisted of consecutive FFPE tissue sections (5 × 10 µm) from five randomly selected
patients; the selected tissue contained ca. 50% of cancer cells. The detailed protocol for
the preparation of the tissue lysates is given in the Supplementary Materials (Supple-
mentary Protocol 6). Individual lysates, each containing 10 µg of protein, were merged,
and the obtained mixtures were subjected to in-solution trypsin digestion according to
Supplementary Protocol 7, and subsequently to LC-MALDI MS/MS protein identification
(8 µg of peptides per injection). The tryptophan fluorescence method by Wiśniewski and
Gaugaz [37] was employed for protein/peptide quantitation. The hypothetical identity of
the MSI components was established by the assignment of a component location on the
mass/charge scale for the measured masses of tryptic peptides identified by LC-MS/MS
allowing ±0.05% mass tolerance. Complete LC-MALDI-MS/MS data are available in the
ProteomeXchange/PRIDE repository (dataset ID: PXD027878).

3. Results

This retrospective analysis included tissues resected surgically from 59 patients during
their primary treatment due to a locally advanced HER2-positive invasive ductal carcinoma
of the breast. Two major groups of patients were included: with no evidence of disease
during a 60-month follow-up (ND; n = 38), and with distant metastases (progressive
disease, PD; n = 21). In both groups, patients without synchronous lymph node metastases
(N0) and patients with synchronous lymph-node metastases (N+) were distinguished
(Table 1). Molecular maps of tryptic peptides were registered in sections of FFPE material
by MALDI-MSI in a 600–3500 m/z range; 2527 spectral components were identified, which
represented different peptide species with their isotope envelopes (the average mass
spectrum is illustrated in Supplementary Figure S2). Cancer regions of interest (ROIs) were
delineated by a pathologist in each specimen, and all spectra from these ROIs were used in
further experiments (the size of ROIs ranged from 1768 to 14,327 spectra/pixels). Spectra
from all cancer ROIs (377,310 spectra together) were clustered using the unsupervised
procedure based on the iterative k-means algorithm of clustering with a data-driven
optimization of cluster numbers [23,31]. The first three steps (levels) of such molecular
image segmentation (which generated 7, 43, and 287 clusters, respectively) appeared the
most informative; Figure 1A illustrates the distribution of seven clusters generated at the
first level of the procedure. To assess the heterogeneity of the imaged tissues, we first
analyzed the overall similarity of spectra within the cancer ROI of each patient. Figure 1B
illustrates the cumulative distribution function of the similarity index calculated for cancer
ROIs in each group of patients. We observed a very high level of similarity of spectra
within each ROI (a median similarity index of about 0.98; Supplementary Table S1), which
indicated a generally low heterogeneity of cancer tissue. Nevertheless, a slightly lower
similarity of spectra (i.e., higher intra-ROI heterogeneity) was observed in the ND group
compared to the PD group.

In the next step, we looked at the number and diversity of clusters generated by the
unsupervised procedure that were present in the cancer ROI of each sample. In general, a
positive correlation between the size of an ROI (i.e., the number of spectra) and the number
of clusters was observed (Supplementary Figure S3A). Importantly, however, in all groups
of patient sizes the ROIs were similar (Supplementary Figure S3B), and the comparison of
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the number of clusters between groups was credible. Figure 1C compares the number of
clusters observed in the ND and PD samples after the first three steps of image segmentation
(further levels of image segmentation are illustrated in Supplementary Figure S4A). We
observed that at each segmentation level the number of clusters was generally higher in
cancer ROIs from the ND group; this difference was statistically significant (p = 0.024) when
the second level of image segmentation was analyzed.
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Figure 1. Heterogeneity of cancer ROI revealed by MALDI-MSI in breast cancer. Panel (A)—the
distribution of 7 clusters (artificially color-coded) defined at the first level of unsupervised segmenta-
tion of cancer ROIs from 59 tissue specimens analyzed together; patient groups: ND—no evidence
of disease, PD—progressive disease, cancer-free and cancer-containing lymph nodes marked with
(N−) and (N+), respectively. Panel (B)—the cumulative distribution function of the spectra similarity
index analyzed within each cancer ROI. Panel (C)—the number of clusters generated at the first
three levels of image segmentation in samples from the ND and PD groups. Simpson’s diversity
index computed for the first level of image segmentation in samples from the ND and PD groups
(Panel (D)), samples from the patients’ subgroups with different lymph node status (Panel (E)), and
samples of cancer with different pathological grades (G2 vs. G3) and expression of estrogen receptors
(Panel (F)). Boxplots represent minimum, maximum, lower and upper quartile, and median. The
p-value of differences between two groups (panels (C,D,F)) and [r] effect size for multiple pairwise
comparisons of four groups is shown (panel (E); differences with at least a medium effect size are
shown). * p < 0.05 is marked with asterisks.
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To further compare the heterogeneity of cancer ROIs between the ND and PD groups,
we took into account not only the number of clusters but also the size of each cluster.
Simpson’s diversity index was applied, which estimates the probability that two pixels
belong to different clusters; a higher index reflects a lower probability of co-clustering,
which indicates a higher heterogeneity. Figure 1D compares Simpson’s diversity index
calculated for the ND and PD samples after the first step (level) of image segmentation
(further levels of image segmentation are illustrated in Supplementary Figure S4B). The
diversity index was generally higher in cancer ROIs from the ND group (this difference
was statistically significant at the first level of image segmentation, p = 0.008), which
confirmed a higher level of intra-ROI heterogeneity in the ND group compared to the
PD group. To further analyze this phenomenon, we compared subgroups of patients
with different regional lymph node status; both the number of clusters and the diversity
index were analyzed. Figure 1E compares the diversity index calculated for each patient
subgroup at the first level of image segmentation (the relevant number of clusters at
different segmentation levels is presented in Supplementary Figure S5A). It is noteworthy
that the heterogeneity of cancers with and without simultaneous lymph node metastases,
i.e., ND(N−) vs. ND(N+) and PD(N−) vs. PD(N+), was similar, and hence the difference
between patients with a different outcome (i.e., ND vs. PD) remained the major observed
effect. Finally, we also compared the heterogeneity of cancer ROIs in samples from patients
with different cancer stages at the time of the initial diagnosis and treatment. Figure 1F
shows that the diversity index was comparable in samples with a pathological grade G2
and G3. Moreover, differences in heterogeneity were not observed between specimens with
different clinical cancer stages (Supplementary Figure S5B). Furthermore, the observed
heterogeneity was not associated with the expression of estrogen receptors (Figure 1F).
Therefore, in contrast to the long-term outcome, the initial stage and status of cancer were
not associated with the heterogeneity revealed by MALDI-MSI (which in part reflected
the rather high uniformity of cancer cases selected for the study). We also found that
in the analyzed group neither the clinical cancer stage nor the pathological grade were
associated with a long-term outcome. On the other hand, we observed a higher contribution
of ER-positive cases in the PD group (p = 0.028). However, since the estrogen receptor
status and the ITH level revealed by MSI did not correlate, both parameters seemed to be
independently associated with a long-term outcome.

To further characterize the differences between the tumor samples collected before the
treatment from patients who finally had a different outcome, we compared the structure
of clusters distinguished by MALDI-MSI in the ND and PD groups. First, we analyzed
the relative contribution of different clusters in cancer ROIs and found that cluster #2
(level 1 of the segmentation) had a significantly higher contribution in the cancer ROI of
the ND samples than in that of the PD samples (Figure 2A). Then, we identified spectral
components that showed a significantly different abundance between clusters (the Cohen’s
effect size was used to determine the significance, which helps to overcome statistical
problems potentially related to a very large number of analyzed spectra)—the number of
differentiating components is illustrated in Figure 2B.

In general, we found numerous components whose abundance was markedly dif-
ferent between clusters (details in Supplementary Table S2). Cluster #2 (level 1 of the
segmentation) had the most distinct characteristics: about 80% of all detected components
showed significant differences in abundance (at least medium effect size) when compared
to spectra from all other clusters together, which is illustrated in Figure 2C. On the other
hand, if spectra from the overall cancer ROI were compared between the ND and PD
samples, only a few components showed significant differences between groups (about 6%
of the detected components had a small or medium effect size); Figure 2B,C. Therefore, to
strengthen the information about components that indeed differentiated both groups of
patients, we searched for components that simultaneously showed differences between
cluster #2 and other clusters (at least medium effect size) and between the ND and PD
groups (at least small effect size). This analysis revealed 120 spectral components (Supple-
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mentary Table S2) which corresponded to tryptic peptides that had a putatively different
abundance in the tumor tissue between the ND and PD groups.
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Figure 2. Components that differentiated samples of patients with a different outcome. Panel (A)—
the relative contribution [%] of cluster #2 in the cancer ROI of samples from the ND and PD groups
(cluster #2 is marked in brown, all other clusters are shown in grey). * p < 0.05 is marked with
asterisks. Panel (B)—the number of spectral components with a different Cohen’s [d] effect size
between the ND and PD groups as well as between a specific cluster (7 clusters from the first level of
segmentation) and spectra from all other clusters together. Panel (C)—spectral components that had
a different abundance between the ND and the PD groups (upper graph) and between cluster #2 and
all other clusters (bottom graph); the graphs illustrate the molecular size (m/z) and the significance
of the differences ([d] effect size; positive and negative values reflect the relative upregulation and
downregulation). Panel (D)—the network of interactions between 45 proteins, the tryptic fragments
of which were putatively identified as spectral components with different abundance between the ND
and PD groups; interaction between proteins and over-represented biological functions associated
with these proteins according to an analysis using the STRING toolbox [38]. Panel (E)—correlation
between the level of tumor-infiltrating lymphocytes (TILs; shown as a percentage of the cancer area)
and ITH revealed by MSI (Simpson’s diversity index at level 1 of image segmentation); the image
shows the regression line with 95% confidence interval.
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To extend this observation, a hypothetical identity of MSI components was established
by attributing masses (m/z values) of spectral components (i.e., tryptic peptides) to the
measured masses of peptides identified by the LC-MS/MS technique in lysates from can-
cerous tissue; the lists of the identified peptides and corresponding proteins are provided
in Supplementary Tables S3 and S4, respectively. The matches between the identified
peptides and the MSI components are presented in Supplementary Table S5; one should be
aware, however, that this type of annotation is not unique, and more than one identified
peptide could be matched to certain MSI components due to the relatively low resolution
of MALDI-ToF MSI. Nevertheless, spectral components that could be considered as differ-
entiating between cancer ROIs of the ND and the PD samples were putatively associated
with 45 proteins (Supplementary Table S5), the potential functional network of which
is illustrated in Figure 2D. It is noteworthy that among the overrepresented biological
functions associated with this set of proteins there were immune-related processes and
hemostasis (Figure 2D), which putatively reflected the presence of blood and immune cells
in the component that differentiated tumors with different outcomes. This observation
was followed with an additional analysis performed using information about the level of
tumor-infiltrating lymphocytes (TILs), which was available for a subset of patients from
the analyzed group (n = 33). A significant positive correlation between the level of TILs
and the level of ITH assessed by MALDI-MSI was found (Figure 2E and Supplementary
Figure S6A). Moreover, the level of TILs was higher in the ND group than in the PD group
(medium effect size; Supplementary Figure S6B).

4. Discussion

The intra-tumor heterogeneity has been widely described in breast cancer [39,40].
This heterogeneity has been evidenced by next-generation sequencing at the level of tu-
mor genome, which revealed clonal evolution and the co-existence of genetically distinct
subclones of cancer cells [41–44]. Molecular ITH determined by genetic and epigenetic
alterations is mirrored at the level of the phenotype of breast cancer cells, which is ex-
emplified by the heterogeneity in the expression of the HER2 receptor caused by the
heterogeneous distribution of HER2 gene amplification [45,46]. However, with a marked
exception of triple-negative breast cancers (TNBC) [44,47], the ITH observed in breast
cancer is relatively low when compared to other cancers. For example, breast cancer was
the least heterogenic in a set of nine cancer types when genetic ITH was estimated based
on mathematical modeling of mutational datasets [11]. Interestingly, we found a high
homogeneity of MALDI-MSI maps, which indicated a generally low heterogeneity in the
analyzed group of HER2-positive tumors (the intra-tumor similarity of MSI spectra was
higher than in previously analyzed thyroid cancers [48]). Though the majority of reports
indicate that high genetic ITH is associated with a worse prognosis of breast cancer, it was
also suggested that the prognostic value of tumor heterogeneity could be compromised by
comorbidities present in elderly patients [49]. Nevertheless, according to the international
guidelines for breast cancer treatment, the heterogeneity of the expression of diagnostic
markers (e.g., HER2 or Ki67) should be taken into consideration when therapeutic decisions
are made [50,51].

In this communication, we noted that a higher degree of intra-tumor heterogeneity was
associated with a better prognosis in breast cancer. This observation was in marked contrast
to the data presented by Morris et al. [11], who reported that a high degree of hypothetical
genetic ITH modeled using the TCGA dataset was associated with an increased risk of
reduced overall survival. However, a few important aspects of this particular observation
should be noted. The large cohort of breast cancer patients included in that modeling-
based study (n = 878) involved different histological and molecular subtypes of breast
cancer (which was generally described as “breast invasive carcinoma”), and the majority of
tumors (63%) had low heterogeneity (i.e., one dominant clonal population). The above-
mentioned low-ITH cancers most probably comprise luminal A and B carcinomas, which
constitute about 60–70% of all breast carcinomas that have a relatively favorable prognosis



Cancers 2021, 13, 4349 10 of 14

and are characterized by a rather low frequency of mutations [52]. On the other hand,
high-ITH cancers might correspond to TNBC (with basal-like carcinomas as one of its
subtypes) that have a much worse prognosis and are characterized by a significantly higher
frequency of genetic aberrations and pathogenic single nucleotide mutations (BRCA1/2,
TP53) than other types of breast carcinomas [40,44,53,54]. On the contrary, we analyzed
only one breast cancer subtype (HER2-overexpressing) and selected only early breast
cancer patients to whom radical local therapy was applied, followed by trastuzumab and
chemotherapy/hormonotherapy in the adjuvant setting, which is linked with a relatively
good overall prognosis [55,56].

Due to the analytical properties of MALDI-MSI, only the phenotypical heterogeneity
of the tumor was studied, which reflected different phenomena if compared to the genetic
heterogeneity of breast cancer addressed by the studies mentioned above. A tumor mass
represents a complex network of genetically different (sub)clones of neoplastic cells (i.e.,
the source of genetic ITH), immune cells, vasculature cells, stromal cells, and an extracellu-
lar matrix, which together constitute the tumor microenvironment (TME) [5,57,58]. As a
consequence, the morphological ITH of breast cancer results from different compositions
of tumor stroma and/or different tumor/stroma ratios [59]. Therefore, clusters of these
heterotypic components of TME could be revealed by MALDI-MSI. The immune system
plays an important role in cancer progression, either by eliminating cancer cells or by
stimulating tumor growth [60,61]. It is noteworthy that tumor infiltration by lymphocytes
indicated an antitumor response of breast cancer, and the level of tumor-infiltrating lym-
phocytes (TILs) was associated with a better outcome in HER2-positive cancers [62,63].
Moreover, tumor infiltration by lymphocytes and other components of the immune sys-
tem could have heterogeneous patterns, and the diffuse distribution of TILs could be a
marker for better prognosis [64,65]. This particular aspect of intratumor heterogeneity
was analyzed previously at a single-cell level using different multiplex antibody-based
targeted approaches [66]. For example, it was shown that different spatial patterns of
immune cell populations in the TME were associated with different outcomes in TNBC [67].
More recently, the heterogeneity of cancer- and immune-related proteins was compared in
pre-treatment and on-treatment biopsy samples from HER2-positive cancers undergoing
neoadjuvant HER2-targeting treatment, which revealed that the increased heterogeneity of
immune-related proteins (e.g., pan-leukocyte marker CD45) after a single cycle of HER2-
targeting agents was associated with a complete response [68]. Here we showed that a
high level of TILs present in cancer was associated with a high degree of heterogeneity
revealed by MALDI-MSI. Therefore, considering the supporting data from the literature,
we hypothesized that the heterogeneity linked to the tumor infiltration by immune cells
with anti-cancer activities could explain the observed correlation between a higher pheno-
typic ITH and a better outcome in a group of patients with HER2-positive breast cancers.
Moreover, because a subset of proteins that putatively differentiated tumors with better
and worse prognoses was associated with hemostasis, differential microvasculature could
further contribute to the observed heterogeneity, providing another putative cause of
different responses to treatment.

5. Conclusions

We unexpectedly noted that the higher degree of phenotypic heterogeneity revealed
by mass spectrometry imaging in resected tumor tissue was associated with a favor-
able outcome in patients with locally advanced HER2-positive breast cancer treated with
trastuzumab. Proteins involved in immune processes and hemostasis were putatively
associated with the observed heterogeneity. Moreover, the observed heterogeneity corre-
lated with the level of tumor-infiltrating lymphocytes. On the other hand, the detected
heterogeneity was associated neither with tumor stage nor with lymph node status, patho-
logical grade, or the expression of estrogen receptors. Therefore, we propose that a higher
heterogeneity of tumors with a better prognosis could reflect the presence of heterotypic
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components in the tumor microenvironment, including infiltrating immune cells, that
facilitated the response to treatment.
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