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ABSTRACT: A method formulated within the polarizable continuum model
of the solvent and a quantum Monte Carlo treatment of the electronic states
of the solute molecule is presented for the calculation of the solute−solvent
dispersion contribution to the electronic excitation energy in solution.
Variational quantum Monte Carlo is exploited to measure the fluctuations of
the electronic electric field of the solute molecule to compute the London’s
dispersion forces with the solvent. The method previously applied to the
ground state of the solute is here extended to excited states. To perform the
Casimir−Polder integration, we introduce a positive parameter Ω whose
value is properly chosen for this purpose. We derive a general expression that
for Ω = 0 reduces to that already proposed for the ground state. For an
excited state, Ω must be less than the first transition electronic energy of the
solvent molecule but greater than the transition energy from the ground to excited electronic state of the solute molecule.
Benchmark calculations were performed on the n → π* transition for formaldehyde, acrolein, and acetone in six solvents, including
water, ethanol, cyclohexane, chloroform, carbon tetrachloride, and toluene, and the π → π* transition of acrolein in cyclohexane.
Solvents are characterized by their ionization potential and the refractive index at frequency Ω. In all cases, we found that the
dispersion solute−solvent interaction stabilizes the excited state of the solutes leading to red (negative) solvatochromic shifts.

1. INTRODUCTION
The motion of the electrons of interacting systems, such as
atoms or molecules, is mutually correlated by the respective
instantaneous fluctuations of the charge density linked to the
motion of the electrons themselves. For the dimer in the
ground state, these effects produce forces of an always
attractive nature between the systems in question. A clear
interpretation of these was given by London in 1930.1 The
nature of these weak forces is exclusively quantum, and their
treatment, from a computational point of view, requires very
accurate methods which go beyond the medium field
approximation. From a formal point of view, the dispersion
energy, that is, the interaction energy due to such fluctuations,
is a small contribution to the dynamic electronic correlation
energy.2

In complex systems, this interaction is present for every pair
of molecules and therefore should be considered in the study
of processes involving a system of interest, molecule, or
aggregate in a complicated environment. Since this treatment is
already relatively heavy on a pair of isolated molecules, it is
rather difficult to include it in calculations on complex systems.
For this reason, simplified approaches are generally used.
The most widely used approach to include these types of

interactions is based on techniques that refer to dispersion
corrected energy density functionals. Following these method-
ologies, the dispersion energy is added by an atom−atom
damped R−6 potential in which the atom−atom C6 coefficients

are directly related to atomic properties.3,4 The damping
function is introduced to avoid short-range singularities.
One of the most popular approaches of this kind is given by

Tkatchenko and Scheffler.5 In this case, the C6 coefficients are
formulated in terms of homonuclear parameters and atomic
static polarizabilities. Such parameters and properties are then
explicitly written in terms of the electronic density and, for this
reason, appropriate contributions are derived to include
dispersion interactions in the quantum mechanical (QM)
Hamiltonian. On this basis, density functional theory (DFT)
and time-dependent DFT (TDDFT) calculations, which
include dispersion, are then achievable at a pure QM level.
For the cases in which one of the two interacting parts, namely,
the complex environment, needs to be treated at a lower level
of description, some modification of the Tkatchenko and
Scheffler approach has been proposed to perform the
computation at a QM/molecular mechanical (MM) level.6,7

In a further simplification of the description of the
environment, a continuum model can be used. In this type

Received: June 22, 2022
Published: October 3, 2022

Articlepubs.acs.org/JCTC

© 2022 The Authors. Published by
American Chemical Society

6816
https://doi.org/10.1021/acs.jctc.2c00652

J. Chem. Theory Comput. 2022, 18, 6816−6825

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Claudio+Amovilli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Franca+Maria+Floris"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.2c00652&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00652?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00652?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00652?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00652?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00652?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jctcce/18/11?ref=pdf
https://pubs.acs.org/toc/jctcce/18/11?ref=pdf
https://pubs.acs.org/toc/jctcce/18/11?ref=pdf
https://pubs.acs.org/toc/jctcce/18/11?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00652?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


of calculation, the system of interest, to be studied at a QM
level, is placed in a cavity of a given volume and shape created
in the continuum medium representing the environment.
Among these kind of approaches, it is worth mentioning that
the method introduced by Marenich et al.8 combines the static
polarizability of the solute and the solvent refractive index and
can be applied also to excited states. In a more refined
polarizable continuum model (PCM), the medium is
responsible for the so-called reaction field acting on the
system of interest and enters the QM Hamiltonian. A very
thorough PCM treatment, which includes a significant part of
the solute−solvent dispersion interaction, was recently
proposed by Guido et al.9 The method is based on the
Open Quantum System Theory. In this theory, the system of
interest treated at the quantum level is immersed in a
polarizable medium (the bath). In this context, the environ-
ment responds both in a delayed way and through its
fluctuations to the polarization of the system. The authors,
in this work, have developed a specific time-dependent
Schrödinger equation, thus also obtaining information on the
electronic states of the system of interest. The dispersion
contribution is contained in the model, but the stochastic term
accounting for solvent fluctuations is missing.9

In the past, a reliable reaction field for dispersion
interactions was introduced by Amovilli and Mennucci for
the process of solvation.10 This approach has been
implemented subsequently in a TDDFT context by Cupellini
et al.11 in order to extend the applicability to electronic vertical
excitations.
Many recent developments have in common the extension

to TDDFT of a model of dispersion interactions which comes
essentially from a ground-state theory. When one of the
interacting systems is in an excited state, also de-excitations
contribute to the sum that gives the total dispersion energy.
The effect of these contributions cannot be accounted for by
any treatment that has a ground-state reference. In the present
study, we want to explore this problem by developing a model
which is formulated for a system in which one molecule is in an
excited state. As a first step, we start from a continuum model,
leaving to a further work the generalization to a possible
discrete model.
In a previous work,12 we have presented a method to

estimate the dispersion interaction energy between two
molecules based on the measure of the electronic electric
field fluctuations by means of quantum Monte Carlo (QMC)
methodologies. The approach has been extended to the
calculation of the dispersion contribution to the free energy of
solvation within a continuum model framework. An explicit
expression has been given, and test calculations have been
performed on atomic solutes in water as a solvent. Here, we
show for the first time the generalization of the method to
nonspherical solutes in ground and low-lying excited states and
in various solvents. The method involves the accurate
calculation of the electronic wave function of the solute in
ground and excited states, while the solvent is treated as a
continuum and is characterized by the refractive index and the
ionization potential. We present results for different cavities. In
all our calculations, we observe a red shift due to this
contribution in the vertical electronic excitation energy of the
solute.
The paper is organized as follows: we start by reviewing our

previous continuum model and we illustrate the modification
to implement the calculation for electronic vertical excitations

of solutes. Next, we illustrate in detail some calculations on a
set of test examples, and we discuss the results. Finally, we
draw the conclusions with suggestion for future directions.

2. THEORY
Starting from London’s interpretation of intermolecular
dispersion forces,1 in our previous work,12 we have introduced
a measure of the electronic electric field fluctuations that can
be used to evaluate the strength of such interactions. In our
approach, we distinguish the two interacting systems: one, A
say, is the system of interest, to be studied at a high level of the
theory, and the other, B say, is treated as a probe and is
modeled in terms of its dipolar polarizability αB. Because we
started from London asymptotic formula, in our paper,12 A and
B were atoms.
Our main achievement has been the following formula for

the computation of interatomic dispersion energy
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along a given direction, namely
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in which b is a parameter characteristic of the system A.
We used QMC to find the wavefunction Ψ of the system A,

and we computed the electric field fluctuations from the
sampled electronic configurations.
In a second step, always in our paper,12 we extended the

dispersion energy equation to the calculation of the relevant
contribution to the solvation free energy for a solute A in a
solvent B. Solvent polarization was introduced within a PCM
framework by means of the Clausius−Mossotti equation. The
resulting equation for the dispersion contribution to the
solvation free energy is

G Sr rd ( )
r

disp A(B) A
2

A (6)

where

=
+ +
3( 1)

4 ( 2)(1 / )A(B)
B
2

B
2
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in which ηB is the solvent (B) refractive index, ωA and ωB are
the characteristic London’s formula frequencies of solute (A)
and solvent, and CA is the solute cavity.
In our previous paper, we applied eq 6 on atomic solutes in

aqueous solution, but this equation is more general and is valid
also for a polyatomic solute A of any shape, the quantity SA2
being related to the electronic electric field fluctuations.
However, eq 6 is restricted to solutes in the ground state. In
fact, eq 6 is the final result of a mathematical development
which involves the Casimir−Polder type integration13 and the
Unsold’s approximation.14 The Casimir−Polder type integral is
the crucial point. In order to understand how to modify the
equations to follow the same procedure for the excited states,
we have to go back to the definition of dispersion energy
between two electronic systems.
From the second-order perturbation theory and neglecting

the overlap, the usual definition of dispersion energy between
two molecules A and B in the states, respectively, a and b is2

=
+

E
r

E E
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where the sum runs over all possible simultaneous excitations/
de-excitations in both molecules. If a and b are the two ground
states, all transition energies are positive. In this case, we can
use the Casimir−Polder type integral13
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and by putting u = ΔEA(0 → a′) and v = ΔEB(0 → b′), one
obtains the relation15,16
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in terms of the individual generalized frequency-dependent
polarizabilities2,15 (X = A, B)
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Here, ρX(0 → x′|r) is the transition density between the
ground state and the excited state x′2.
In the asymptotic regime, when the distance RAB between

the two molecules is very large, eq 10 behaves as

E
C
Rdisp

(AB) 6
(AB)

AB
6

(12)

giving for the Van der Waals coefficient C6
(AB), the expression

=C 3
(i ) (i ) d6

(AB)

0
A B (13)

where the frequency-dependent dipole polarizabilities αX(iω)
come from the multipolar expansion of the above transition

densities. When the frequency is imaginary, like in this case,
the dipole polarizabilities are monotonically decreasing with ω,
starting from the maximum value at ω = 0 and reaching zero at
infinity. A typical approximation, in terms of the static
polarizability αX(0) and the ionization potential IX, is the
following17
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which leads to the London’s formula1 for the van der Waals
coefficient C6

(AB), namely
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London’s formula has been the starting point of our previous
work12 in which, by using the Unsold’s approximation to
rewrite the static dipole polarizability, we have been able to
introduce, in the expression of the dispersion energy for a
given system interacting with a point model atom, the
electronic electric field fluctuations of eq 3.
Let us consider at this point the case of a molecule, say A, in

an excited state “a” interacting with the other molecule B in the
ground state. As we will show below, we must impose the
constraint

>E E E E(1) (0) (a) (0)B B A A (16)

Namely, the de-excitation of A cannot excite B. As a
consequence, the dispersion interaction remains attractive.18

In order to perform the Casimir−Polder type integration, we
take a positive number Ω such that

= + >
= >
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v E

(a a ) 0

(b b ) 0
A

B (17)

where clearly
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Then, by applying the same procedure followed for the two
molecules in the ground state, the van der Waals coefficient
C6
(AB) should be rewritten as
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where (see e.g., refs 18 and 19)
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are modified dipole polarizabilities. Here
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is the usual electronic dipole operator. In eq 20, the ionization
potentials have been replaced by two new parameters WA and
WB as a result of the summation over the states of A and B. In
the present work, we make use of the most intuitive
assumption

+W I W I(a) (0)A A B B (22)

in which the two ionization potentials are shifted by the
quantity ±Ω.
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At this point, we proceed, as in the previous case, with the
Unsold’s approximation on +

A by writing
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where “a” now indicates an excited state of molecule A.
For the molecule B, we prefer to rewrite B in the following

form
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Although Ω is set smaller than the first transition energy of
B, the first term inside the bracket could be large near
resonance (Ω close to ΔEB(0 → 1)), so we apply Unsold’s
approximation only to the second term. This leads to

+
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where we regain the definitions of the static dipole polar-
izability αB(0) and of dynamic dipole polarizability αB(Ω) at
real frequency Ω.17
After a few straightforward steps of algebra, one finally gets
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It is important to remark that for Ω = 0 and A in the ground
state, this equation reduces to that of our previous work.
Having defined the expression of dispersion energy in terms

of electric field fluctuations of the target molecule (A) and of
the dipole polarizability of the surrounding molecule (B), we
propose a generalization of our previous expression for the
dispersion free energy of solvation. This is still in the form of
eq 6, namely
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in which we assume that the Clausius−Mossotti equation can
be applied on both αB(0) and αB(Ω).

3. COMPUTATIONAL DETAILS
We performed test calculations on three solutes, formaldehyde,
acrolein, and acetone. In all cases, we have studied the vertical
electronic transition between the ground state and the n → π*
excited state at the equilibrium geometry of the ground state.
For acrolein, we studied also the transition to the π → π*
excited state.
The solutes under study have been treated at the QMC level

in order to generate a large number of electronic configurations
to compute the integrand function SA2(r) of eq 27.
In Figure 1 the contour plot of this function for the three

solutes, as calculated from QMC, is displayed.
We used variational QMC (VMC) to optimize the

wavefunction taken in a Slater−Jastrow form. The Jastrow
factor is that of Filippi and Umrigar20 and included e−n and
e−e two-body terms and e−e−n three-body terms. For the
determinantal part of the wavefunction derived from a
CASSCF setup, more precisely, we used CASSCF(4,3) for
acetone and formaldehyde and CASSCF(6,5) for acrolein in
order to include in the active space the π valence shell and a σ
lone pair on oxygen. Here, we used the Burkatzki, Filippi, and
Dolg pseudopotentials with its valence triple-zeta (VTZ)
Gaussian basis set.21 All QMC calculations have been
performed with the program CHAMP.22

In Table 1 we report the parameter b used for the calculation
of the electric field fluctuations and the ionization potential

evaluated at the diffusion Monte Carlo (DMC) level for the
solute in vacuo in the ground and excited states. In our
previous article,12 the parameter b was defined in terms of an
empirical relationship that links it to an atomic hard sphere
radius. In this paper, where we have molecules instead of
atoms, we have extended the definition by considering the
radius of equal hard spheres centered on the heavy atoms (C
or O). For a single atom, the definition of such a radius leaves a

Figure 1. Contour plot of the function S2(r) of eq 27 for HCHO (left), acrolein (center), and acetone (right). The origin of the reference frame
corresponds to the electronic center of charge of the solute.

Table 1. b Parameter of the Damping Function f(r) (See
Text) and the DMC Ionization Potential I (Hartree) for the
Three Solutes Studied in This Work in Their Ground and n
→ π* Excited States

solute state b I

HCHO GS 1.67 0.4043
n → π* 1.67 0.2503

acrolein GS 1.60 0.3776
n → π* 1.60 0.2349

acetone GS 1.62 0.3634
n → π* 1.61 0.1908
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fraction of 0.5 electrons outside of the sphere.12 In the case of
molecules, on the other hand, the fraction of electrons that
escapes is equal to a maximum of 0.5 electrons multiplied by
the number of spheres that can be reduced in order to consider
the possible overlapping of the spheres.
In this work, we calculated the ionization potential at the

DMC level because it is accurate for this purpose, although
other methods can be used alternatively, including exper-
imental ones.
In order to illustrate the present approach, we consider six

solvents that do not absorb in the same region of the n → π*
transition of the above solutes. These are water and ethanol,
which can form hydrogen bonds with the three solutes,
cyclohexane, as an example of nonpolar solvent, chloroform,
carbon tetrachloride, and toluene which are nonpolar but show
a higher polarizability. According to eq 18 which establishes
the range of possible values of the parameter Ω, we decided to
fix the interval by comparing the vertical excitation energy of
the three solutes with the simulated UV absorption spectra of
the solvents computed with Gaussian23 with TDDFT at the
B3LYP/cc-pVTZ level of the theory.

In Figure 2 we show this comparison and display the
intervals of Ω considered in this work. To compute the
dispersion energy contribution, we need to evaluate the
refractive index of the solvent at frequency Ω, which is in the
range of ultraviolet light. For the frequency-dependent
refractive index, we have used the following formula24

= + +A A( ) (0) 2
2

4
4

(29)

where η(0) is the static value and A2 and A4 are the fitting
parameters to reproduce the available literature data for the six
aforementioned solvents. Literature data are taken from Foss
and Schellman25 for cyclohexane, chloroform, and carbon
tetrachloride from Daimon and Masumura26 for water and
from Kozma et al.24 for ethanol and toluene. The fitting
parameters are reported in Table 2. In the same table, we also
report the experimental ionization potentials.27

The solute molecules treated in this work are also
characterized by the π → π* transition, but only for acrolein
in cyclohexane can we apply the present approach. Indeed, in
all other cases, it is not possible to define an appropriate value
for Ω to satisfy the constraint given by eq 18. For this reason,

Figure 2. Comparison between the vertical excitation energy (DMC) of solutes and the simulated UV absorption spectra of solvents obtained from
TDDFT calculations performed at the B3LYP/cc-pVTZ level of the theory. The horizontal arrows indicate the interval of Ω values (see text) used
in the computation of dispersion energy contribution to the solvation free energy. The letters A, B, and C refer to the solutes.
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we provide additional results for the π → π* transition of
acrolein in cyclohexane.

3.1. Cavity. The cavity is modeled on a set of interlocking
spheres centered on the solute nuclei. The radius of each
sphere is a sum of two radii representing the contact of two
spheres belonging to the solute and the solvent and depending
on the kind of contact. For the solute counterpart, we take the
atomic radius corresponding to R1/2 of Amovilli and
McWeeny,28 namely, 3.26 a0 for carbon, 2.81 a0 for oxygen,
and 2.33 a0 for hydrogen. For the solvent counterpart, instead,
the construction depends strongly on the solvent. For water,
we add the radius of solvent oxygen to the solute carbon and
hydrogen radii, while for the solute oxygen, we add that of the
water hydrogen in order to consider the hydrogen bond. Again,
these two solvent atomic radii have been taken from the work
of Amovilli and McWeeny28 and are 2.96 a0 for O and 1.86 a0
for H. For ethanol, we maintain the same approach for the
sphere defined on the solute oxygen by adding the radius of
hydrogen with the same value used for water; meanwhile, for
the other atoms, we add a radius which represents a spherical
model for the CH3 group and has the value of 3.932 a0. For all
other solvents, we have taken a unique solvent sphere. More
precisely, we consider 5.20 a0 for cyclohexane, 4.82 a0 for
chloroform, 5.20 a0 for carbon tetrachloride, and 5.01 a0 for
toluene. The resulting radii are displayed in Table 3.

In this work, we have studied the effect of scaling the cavity
on ΔGdisp of eq 27. For this purpose, we have scaled all cavity
radii except for water as solvent, for which the scaling is applied
only to the sphere centered on the oxygen nucleus of the solute
molecule.

4. RESULTS
The main purpose of this work is the evaluation of the
contribution due to solute−solvent dispersion energy to the
solvatochromic shift in the vertical electronic n → π*
excitation for the chosen systems.

For all solutes and solvents, we plotted the dispersion energy
contribution to the solvation free energy by varying the cavity
scaling factor for ground and n → π* excited states of the
solute. For the excited-state calculations, we explored various
choices of Ω according to the restrictions fixed in this work.
Qualitatively, all computed curves look very similar, and the
effect of variation of Ω is relatively small if compared to the
solvatochromic shift. The shift is always negative (red shift).
Although ground- and excited-state curves look almost parallel,
for comparison purposes, we decided to read the shift by fixing
the scaling factor at which the ground-state dispersion energy
contribution is exactly the same as that calculated by Gaussian
code23 using its default for the solute−solvent pair. This
default corresponds to a calculation using the internal
parameters of the given solvent with the cavity fixed by the
code (universal force field atomic radii scaled by 1.100 factor).
The dispersion energy contribution in this case derives from
the model of Floris and Tomasi.29 In all plots, we report also
the shift calculated with the scaling factor equal to 1 (see Table
3). By way of example, we show here the case of acetone in
cyclohexane and in water; see Figures 3 and 4. All other cases

can be found in the Supporting Information. In Tables 4 and 5
are collected all estimated solvatochromic shifts. The first table
refers to the Gaussian reference while the latter to the cavity
with no scaling.
The red (negative) shifts in all cases confirm that the

solute−solvent dispersion interaction stabilizes the n → π*
excited state probably due to the fact that such a state is more
polarizable than the ground state. The magnitude of the shift, if
compared to the vertical transition energy, is about 1−2
percent, namely, some 5 nm in a typical UV spectrum. The
solvent water gives the greatest shift. In our model, the design
of the cavity takes into account the possibility of the formation
of a hydrogen bond. In such cases, dispersion interactions are
augmented due to the shortening of the distances. All other
solvents give instead about one half of the water shift with little
differences among themselves. As already said, the change in

Table 2. Fitting Parameters for the Frequency (eV)-
Dependent Refractive Index of the Solvent Considered in
This Worka

solvent η(0) A2 A4 I

water 1.32315 0.00201432 6.21176 × 10−6 0.4638
ethanol 1.35059 0.00226353 7.02316 × 10−6 0.385133
cyclohexane 1.41142 0.00259217 1.25986 × 10−5 0.3631
chloroform 1.43108 0.00260712 3.60209 × 10−5 0.41784
carbon
tetrachloride

1.44277 0.00332168 1.48334 × 10−5 0.4215

toluene 1.48437 0.0016524 0.000241204 0.3245
aThe last column refers to experimental ionization potentials
(Hartree).

Table 3. Cavity Radii (bohr) of the Interlocking Spheres
Centered on Solute Nuclei

solvent R(C) R(O) R(H)

water 6.22 4.67 5.29
ethanol 7.19 4.67 6.26
cyclohexane 8.46 8.01 7.53
chloroform 8.08 7.63 7.15
carbon tetrachloride 8.46 8.01 7.53
toluene 8.27 7.82 7.34

Figure 3. Dispersion free energy of solvation of acetone in
cyclohexane for the ground and n → π* excited states, computed at
different values of Ω (eV) as a function of the cavity scaling factor.
The two vertical arrows display the solvatochromic shift starting from
the Gaussian reference and without scaling the cavity.
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the scale of the cavity does not change too much the shift in
the range of factors considered in this work. This can be seen
by comparing the data of Tables 4 and 5. Nevertheless, we
suggest to use the Gaussian reference for this calculation. In
the two aforementioned tables, the number in parentheses
refers as usual to the uncertainty in the last digit. This quantity

depends on the interval of Ω but does not affect too much the
reliability of the average reported shift data.
Our results appear to be in agreement with the literature

data. First of all, it must be said that the experimental
solvatochromic shifts include all effects of solute−solvent
interactions and, in the case of protic solvents such as water,
for this type of solute, the shift is dominated by the
electrostatic interactions. It is well known, in fact, that
electrostatic interactions are responsible for a relatively strong
blue shift to the n → π* transition, for the three solutes
considered here in water, due to H-bond. The known
experimental data (see, e.g., ref 30) have been substantially
confirmed by theoretical calculations in which electrostatics
was explicitly included at both QM/MM30,31 and PCM
levels.32−34 Furthermore, we remark that, in such cases, even
the solute−solvent Pauli repulsion plays a not negligible role
by lowering in part the electrostatic blue shift (see, e.g., refs 35
and 36). A similar behavior was found for other systems with
the same kind of transition in water solution.6,37 However,
Guareschi et al.38 made calculations on a cluster of acrolein
with 11 water molecules. In this work, they performed both
VMC and DMC calculations, finding for the vertical n → π*
transition energy 4.40(2) eV with VMC and 4.30(2) eV with
DMC. The difference between DMC and VMC, namely
−0.10(2) eV, could be ascribed to dispersion interactions,
considering that DMC includes certainly this contribution as
opposed to VMC which could lack this quantity. Both our data
of Tables 4 and 5 are in agreement with this possible estimate
of the solute−solvent dispersion contribution for acrolein in
water.
For nonprotic solvents, acetone in cyclohexane represents a

system in which dispersion interactions could dominate the
solvatochromic shift. In this case, the experimental solvato-
chromic shift can be used in this work for direct comparison
purposes. For this system, Renge39 found a shift of −400 cm−1.
From Table 4, we obtain −323 cm−1 and, from Table 5, −162
cm−1. Both the results are in line with the literature and, in
particular, the first from Table 4 is in good agreement.
For acetone and acrolein in cyclohexane, we can make a

comparison with also the theoretical work of Cupellini et al.11

In Table S3 of the Supporting Information provided by the
authors, the dispersion−repulsion contribution of the
excitation energy shift is reported at different values of a
parameter cs. This parameter has been introduced to modulate
the dispersion interaction effects in the PCM response matrix
in their TDDFT approach. They performed the calculation at
the M062X/6-311+G(2d,2p) level. The data of the table
strongly depend on the value of cs. The authors have suggested
that an optimal value of cs should be obtained by comparison
with experimental data when available. They also state that a
value of cs > 1 is not unexpected because of de-excitations, as
they have shown by using a simplified model. Moreover, the
maximum value of cs according to this model should be 2. For
acetone and acrolein in cyclohexane, the contribution of Pauli
repulsion should be less than 1 percent of the reported values,
considering the general analysis presented in their study. If we
assume all dispersion, we recover for cs the values of 1.69 for
acetone and 1.85 for acrolein by taking the results of Table 4.
This comparison shows that the two sets of results are
consistent, despite the differences of the two approaches and
the empirical nature of the parameter cs.
For acrolein in cyclohexane, we have also studied the π →

π* transition. At the DMC level, the electronic vertical

Figure 4. Dispersion free energy of solvation of acetone in water for
the ground and n → π* excited states, computed at different values of
Ω (eV), as a function of the cavity scaling factor. The two vertical
arrows display the solvatochromic shift starting from the Gaussian
reference and without scaling the cavity.

Table 4. Computed Solvatochromic Shift (eV) due to
Solute−Solvent Dispersion Interaction Using the Gaussian
09 Reference for the Ground-State Dispersion Free Energy
Contributiona

solvent HCHO CH2CHCHO Me2CO

vacuo 4.19 3.88 4.69
water −0.051(1) −0.076(1) −0.108(2)
ethanol −0.020(4) −0.03(1) −0.052(2)
cyclohexane −0.021(2) −0.026(3) −0.040(3)
chloroform −0.031(2) −0.044(2) −0.068(1)
carbon tetrachloride −0.033(2) −0.050(3) −0.072(1)
toluene −0.031(2) −0.0436(5) −0.075(1)

aThe row vacuo refers to the calculated vertical excitation energy
(eV).

Table 5. Computed Solvatochromic Shift (eV) Due to
Solute−Solvent Dispersion Interaction without Scaling the
Cavity Radiia

solvent HCHO CH2CHCHO Me2CO

vacuo 4.19 3.88 4.69
water −0.052(1) −0.075(7) −0.130(3)
ethanol −0.023(1) −0.026(7) −0.047(3)
cyclohexane −0.0096(9) −0.014(2) −0.020(2)
chloroform −0.024(1) −0.038(1) −0.056(1)
carbon tetrachloride −0.019(1) −0.032(1) −0.052(1)
toluene −0.016(1) −0.024(1) −0.043(1)

aThe row vacuo refers to the calculated vertical excitation energy
(eV).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00652
J. Chem. Theory Comput. 2022, 18, 6816−6825

6822

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00652/suppl_file/ct2c00652_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00652?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00652?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00652?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00652?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00652?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


transition energy found is 6.93 eV (179 nm or 55,900 cm−1).
The cyclohexane starts to absorb significantly at about 60,000
cm−1 (7.44 eV or 167 nm)40 (see also Figure 2). On the basis
of constraint on Ω (see eq 18), we have chosen the value of
7.21 eV (172 nm or 58,140 cm−1). For this value of Ω we
extrapolate a refractive index η of 1.60 by using the fitting
function

= + + + +a b c d e( ) / / 2 2 (30)

where λ is given in nm and the data are taken from the work of
Foss and Schellman.25 The source data are provided in a range
of wavelength far from 172 nm, and therefore our extrapolation
should be taken with care. Nevertheless, the value of 1.60 can
be reasonably used for the estimate of ΔGdisp. Dispersion free
energy contribution results are plotted in Figure 5. Without

scaling the cavity, the computed solvatochromic shift
contribution is −0.0081(2) eV while at the Gaussian 09
reference is −0.0120(4) eV. For both cavities, the shift is about
half of the values found for the n → π* transition. Even for this
transition, we can make a comparison with the work of
Cupellini et al.11 If we take their Table S3, and considering
now a Pauli repulsion contribution of 0.0414 eV as reported in
their Table S4, our Gaussian 09 reference should give a
dispersion−repulsion contribution of 0.0185 eV, which is
consistent with a cs value of 1.75.
Finally, it is important to note that in our calculations, we

used the wave function of the isolated molecule. We worked as
in a standard perturbation approach in which the computed
term is a correction to a given order. The other solute−solvent
interactions here are omitted, but their effect reflects in a
relatively small perturbation of the solute wave function. The
variation on the dispersion contribution will result in a
correction to a higher order. We are confident that this

correction is very small. For this kind of system, Cupellini et
al.11 found the quasi additivity of electrostatic and non-
electrostatic shifts, which supports our assumption in this
work. A first possible improvement could be the use of the
perturbed wave function, if available, in the calculation of the
electronic electric field fluctuations, our approach being not
limited to the use of an isolated molecule wave function. In a
more general procedure, since the ΔGdisp of this work is a
functional of the wave function, it should in principle be
possible to improve the wave function of the solute coherently
with the dispersion interactions included. In the current study,
we developed a parallel code to evaluate the integral of eq 27 in
order to calculate the contribution of the dispersion free
energy. A single calculation takes minutes on our cluster but, if
this operation has to be repeated several times in the process of
optimization, the method could become prohibitive. For this
reason, it is necessary to develop appropriate algorithms and
significantly modify the QMC code. This will be an object for
future study.

5. CONCLUSIONS
In this paper, a general method for calculating the
solvatochromic shift due to dispersion interactions is
presented. The method is formulated within the PCM of the
solvent and can be applied to any solute that exhibits a vertical
electronic transition energy lower than the transition energy of
the solvent to its first excited state. The peculiarity of this
approach lies precisely in a special treatment for considering
the contribution of the de-excitations of the solute in the
calculation of the dispersion energy of the solute−solvent
complex system. Here, we extend to excited states our previous
approach for solutes in the ground state.12 The main
achievement of the present study is embodied in eqs 27 and
28. As for the ground state, the integral outside the solute
cavity of eq 27 is based on the calculation of the electronic
electric field fluctuations of the solute molecule via the
function S2(r) of eq 2 now evaluated for the excited state of
interest. The prefactor of eq 28 takes instead a new more
general form depending on a special parameter, namely Ω, here
introduced to perform Casimir−Polder integration to achieve
the final expression of eq 27. Ω is an energy and takes a value
between the vertical transition energy of the solute and the
vertical transition energy of the solvent to its first excited state.
For a solute in the ground state, Ω is 0 and the prefactor gives
back the expression of our previous paper.12 Even in this work,
we use QMC to compute electric field fluctuations from the
solute electronic wave function.
We tested the method for the n → π* transition for the

three carbonylic compounds formaldehyde, acetaldehyde, and
acetone in six different solvents ranging from water to toluene.
We evaluated the shift on the transition energy due to
dispersion under different conditions related to the cavity size
and to the choice of the parameter Ω. We have observed a
relatively modest dependence on these conditions. This is a
positive result considering that there is always some ambiguity
in the definition of the cavity and in the choice of Ω. In all
cases, we found a negative (red) shift which is consistent with
the idea that the excited state is more polarizable than the
ground state, at least for n → π* transitions. Water as a solvent
gives the greatest effect reflecting the fact that, due to H-bond
which leads to a closer contact, solute−solvent dispersion
interactions are bigger in this case. The solvatochromic shift is

Figure 5. Dispersion free energy of solvation of acrolein in
cyclohexane for the ground and π → π* excited states, computed at
Ω equal to 7.21 eV (172 nm), as a function of the cavity scaling factor.
The two vertical arrows display the solvatochromic shift starting from
the Gaussian reference and without scaling the cavity.
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relatively small at the limit of detectability being of the order of
about 5 nm in the UV region.
In the additional test performed on the π → π* transition of

acrolein in cyclohexane, we have found a similar solvatochro-
mic shift but about half that of the n → π* case.
As a conclusion, we can say that the approach presented in

this work is able to capture the small effect due to dispersion
energy on the value of the vertical electronic transition energy
for a solute dispersed in a continuum solvent. The method
requests the explicit wavefunction for the ground and excited
states of the solute, and in principle, eq 27 can be used to
define an appropriate term in the solute QM Hamiltonian. If
the effect is of the magnitude found in this work, we do not
expect significant changes in the wave function. For the future,
we will explore this possibility in order to extend the method
to a self-consistent procedure to take into account precisely the
reaction field of the solvent in the QM Hamiltonian.
Another very interesting aspect is that of reformulating the

approach in a discrete treatment of the environment. In order
to do this, one has to go back to eq 26. This equation should
be reviewed to be adapted to a molecular aggregate and
reparameterized. This will be the object of a future work.
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Born-Landeśchen Abstoßungskraf̈te. Z. Phys. 1927, 43, 563−574.
(15) Jaszunski, M.; McWeeny, R. Time-dependent Hartree-Fock
calculations of dispersion energy. Mol. Phys. 1985, 55, 1275−1286.
(16) Amovilli, C.; McWeeny, R. A matrix partitioning approach to
the calculation of intermolecular potentials. General theory and some
examples. Chem. Phys. 1990, 140, 343−361.
(17) Tang, K. T. Dynamic Polarizabilities and van der Waals
Coefficients. Phys. Rev. 1969, 177, 108−114.
(18) Power, E.; Thirunamachandran, T. A new insight into the
mechanism of intermolecular forces. Chem. Phys. 1993, 171, 1−7.
(19) Miyazaki, T.; Shinoda, H. The Calculation of Dipole
Polarizability and Anisotropy by the CNDO Method. Bull. Chem.
Soc. Jpn. 1973, 46, 1216−1219.
(20) Filippi, C.; Umrigar, C. J. Multiconfiguration wave functions for
quantum Monte Carlo calculations of first-row diatomic molecules. J.
Chem. Phys. 1996, 105, 213−226. As Jastrow correlation factor, we
use the exponential of the sum of three fifth-order polynomials of the
electron−nuclear (e−n), the electron−electron (e−e). The Jastrow
factor is adapted to deal with pseudo-atoms, and the scaling factor κ is
set to 0.6 a.u.The 2-body Jastrow factor includes five parameters in
the e−e terms and four parameters for each atom type in the e−n
terms
(21) Burkatzki, M.; Filippi, C.; Dolg, M. Energy-Consistent
Pseudopotentials for Quantum Monte Carlo Calculations. J. Chem.
Phys. 2007, 126, 234105.
(22) CHAMP is a quantum Monte Carlo program package written
by C. J. Umrigar and C. Filippi, and collaborators. http://www.
utwente.nl/tnw/ccp/research/CHAMP.html (accessed on September
1, 2022).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00652
J. Chem. Theory Comput. 2022, 18, 6816−6825

6824

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00652?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00652/suppl_file/ct2c00652_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Claudio+Amovilli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8024-6972
https://orcid.org/0000-0001-8024-6972
mailto:claudio.amovilli@unipi.it
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Franca+Maria+Floris"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7838-8031
https://orcid.org/0000-0001-7838-8031
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00652?ref=pdf
https://doi.org/10.1007/bf01421741
https://doi.org/10.1002/jcc.20078
https://doi.org/10.1002/jcc.20078
https://doi.org/10.1002/wcms.30
https://doi.org/10.1002/wcms.30
https://doi.org/10.1103/physrevlett.102.073005
https://doi.org/10.1103/physrevlett.102.073005
https://doi.org/10.1103/physrevlett.102.073005
https://doi.org/10.1021/acs.jctc.7b00776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00912?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00912?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00912?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00912?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400329u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400329u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400329u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400329u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0003523
https://doi.org/10.1063/5.0003523
https://doi.org/10.1021/jp9621991?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp9621991?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp9621991?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp507962n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp507962n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp507962n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp510072n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp510072n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/158787a0
https://doi.org/10.1038/158787a0
https://doi.org/10.1007/bf01397633
https://doi.org/10.1007/bf01397633
https://doi.org/10.1080/00268978500102021
https://doi.org/10.1080/00268978500102021
https://doi.org/10.1016/0301-0104(90)80002-f
https://doi.org/10.1016/0301-0104(90)80002-f
https://doi.org/10.1016/0301-0104(90)80002-f
https://doi.org/10.1103/physrev.177.108
https://doi.org/10.1103/physrev.177.108
https://doi.org/10.1016/0301-0104(93)85127-t
https://doi.org/10.1016/0301-0104(93)85127-t
https://doi.org/10.1246/bcsj.46.1216
https://doi.org/10.1246/bcsj.46.1216
https://doi.org/10.1063/1.471865
https://doi.org/10.1063/1.471865
https://doi.org/10.1063/1.2741534
https://doi.org/10.1063/1.2741534
http://www.utwente.nl/tnw/ccp/research/CHAMP.html
http://www.utwente.nl/tnw/ccp/research/CHAMP.html
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00652?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.;
Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi,
R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar,
S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox,
J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A.
D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D.
J.Gaussian 09 Revision A.02; Gaussian Inc.: Wallingford CT, 2009.
(24) Kozma, I. Z.; Krok, P.; Riedle, E. Direct measurement of the
group-velocity mismatch and derivation of the refractive-index
dispersion for a variety of solvents in the ultraviolet. J. Opt. Soc.
Am. B 2005, 22, 1479−1485.
(25) Foss, J. G.; Schellman, J. A. Measurement of Ultraviolet Indices
of Refraction with a Differental Refractometer. J. Chem. Eng. Data
1964, 9, 551−553.
(26) Daimon, M.; Masumura, A. Measurement of the refractive
index of distilled water from the near-infrared region to the ultraviolet
region. Appl. Opt. 2007, 46, 3811−3820.
(27) NIST. NIST Standard Reference Database Number 69; National
Institute of Standard and Technology, US Department of Commerce,
2018.
(28) Amovilli, C.; McWeeny, R. Shape and similarity: two aspects of
molecular recognition. J. Mol. Struct.: THEOCHEM 1991, 227, 1−9.
(29) Floris, F.; Tomasi, J. Evaluation of the dispersion contribution
to the solvation energy. A simple computational model in the
continuum approximation. J. Comput. Chem. 1989, 10, 616−627.
(30) Aidas, K.; Møgelhøj, A.; Nilsson, E. J. K.; Johnson, M. S.;
Mikkelsen, K. V.; Christiansen, O.; Söderhjelm, P.; Kongsted, J. On
the performance of quantum chemical methods to predict
solvatochromic effects: The case of acrolein in aqueous solution. J.
Chem. Phys. 2008, 128, 194503.
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