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ABSTRACT Although crucial in shaping bacterial communities, few bacteriophages of
the phyllosphere have been described. We provide genome data for two Myoviridae
phages, AH04 and AH06, isolated on Erwinia billingiae strains. AH04 shares limited
genetic similarity with previously described phages, while AH06 shares over 75% simi-
larity with various Erwinia phages.

Despite their relevance to bacterial population dynamics on plants (1–5), bacterio-
phages that infect plant pathogens are poorly described. Here, we describe two

phages isolated on Erwinia billingiae strains, themselves isolated from the leaves of horse
chestnut trees (Aesculus hippocastanum; Sapindaceae) from the same location in Oxford,
UK (1–3). The bacterial strains were classified based on sequencing of 800 bp of the 16S
rRNA region and the top BLASTn hits associated with a sequence (E value,,10210) (1).

Each phage was single-plaque purified at least three times on its focal host and amplified
by overnight culturing in 10 ml King’s broth and 100ml of isolation bacteria (1). The cultured
lysate was filtered (pore size, 0.45 mm), and following the Promega Wizard PCR Preps DNA
purification system kit protocol (no. 7170), phage DNA was extracted by the Koskella lab.
DNA samples were sent to North Carolina State University’s Genomic Science Laboratory for
sequencing. Libraries were prepared using the Illumina TruSeq Nano DNA library prep kit fol-
lowing the manufacturer’s protocol. Sequencing was conducted on the Illumina MiSeq plat-
form, using a v3 150 SE flow cell. For each sample, 150-bp reads were assembled into one
contig using the GS v2.9 de novo assembler, with .200� coverage (Table 1); the quality of
the consensus contig was verified using Consed v29 (6, 7). The genome ends were deter-
mined to be circularly permuted through analysis with PAUSE and PhageTerm (8, 9). The
sequences were imported into DNA Master v5.22.22 (10) to map the open reading frames.
Putative genes were called based on Glimmer v3.0 and GeneMark v2.5 algorithms (11, 12).
Putative functions of the gene products were predicted using BLAST v2.12 (13) and HHpred
(14). For the BLASTp matches, an E value below 1025 was required to assign a function. For
the HHpred matches, a high probability (.85%), substantial coverage (.50%), and low E
value (,1025) were required. The presence of tRNA genes was verified through the Web-
based program ARAGORN (15). Default settings were used in all analyses.

Both phages have similar GC contents and relatively large genomes, with more than
290 genes, including one tRNA gene for AH04 (Table 1). Based on a BLASTn search of the
nucleotide (nt) database restricted to phages (taxid 10699, 10662, and 10744), both
phages are likely Myoviridae. AH04 shows limited nucleotide similarity (15 to 25%) to three
Myoviridae phages isolated on different Proteobacteria hosts (Table 1). AH06 exhibits
greater nucleotide similarity (.75%) to a number of Myoviridae Erwinia phages (Table 1).
As is typical of Myoviridae genomes (16, 17), there is little conservation of genome organi-
zation, and only 19 to 20% of genes could be assigned a function. Both genomes include
three endolysins, including one with a family 19 chitinase domain—the biggest gene in
each genome (7,215 and 6,678 bp, respectively, in AH04 and AH06), which is impressively
long, given the average gene length in these phages (851 and 773 bp) and the published
average phage gene length of 616 bp (18). Based on sequencing of DNA extracted from
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different samples, AH04 was isolated twice from different leaves of tree 1 in 2011, while
AH06 was isolated three times from the leaves of tree 6 in 2012 (1).

Data availability. The genome sequences and associated information can be
found under GenBank and SRA accession no. MZ501267 and SRX11736855 (AH04)
and MZ501268 and SRX11736857 (AH06), and are also associated with BioProject
accession no. PRJNA754193.
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TABLE 1 Isolation information and genome characteristics for Erwinia phages AH04 and AH06

Phage
name

Isolation
yr

No. of
reads

Coverage
(×)

Genome
size (bp) %GC

No. of
protein
genes

No. of tRNA
genesa

Best BLASTn matches (GenBank
accession no.)b

AH04 2011 910,482 520 262,639 43.3 293 1; Cys (gca) Klebsiella phage N1M2 (MN642089.1),
Pseudomonas phage OBP
(JN627160.1), Edwardsiella virus
pEt-SU (NC_048182.1)

AH06 2012 400,092 218 275,293 48.1 333 0 vB_EamM_Simmy50 (NC_041974.1),
vB_EamM_Special (NC_041975.1),
Ea35-70 (KF806589.1)

aThe tRNA gene is listed with amino acid (anticodon) information.
bThe complete genome of each phage was searched using BLASTn against the nucleotide (nt) database restricted to phages (taxid: 10699, 10662, and 10744). For AH04,
matches with more than 40% coverage of the query are reported. For AH06, only the top three matches out of 10 matches with over 80% coverage, all to Erwinia phages,
are listed.

Krukonis et al.

Volume 10 Issue 44 e00820-21 mra.asm.org 2

https://www.ncbi.nlm.nih.gov/nuccore/MZ501267
https://www.ncbi.nlm.nih.gov/sra/SRX11736855
https://www.ncbi.nlm.nih.gov/nuccore/MZ501268
https://www.ncbi.nlm.nih.gov/sra/SRX11736857
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA754193
https://doi.org/10.1086/658991
https://doi.org/10.1016/j.cub.2013.05.038
https://doi.org/10.1098/rstb.2014.0297
https://doi.org/10.1098/rstb.2014.0297
https://doi.org/10.3390/v5030806
https://doi.org/10.3390/v5030806
https://doi.org/10.1111/mec.14542
https://doi.org/10.1093<?A3B2 re 3j?>/bioinformatics/btt515
https://doi.org/10.1093<?A3B2 re 3j?>/bioinformatics/btt515
https://doi.org/10.1007/978-1-4939-7343-9_9
https://doi.org/10.1007/978-1-4939-7343-9_9
https://cpt.tamu.edu/analysis-with-pause3-2016-edition/
https://cpt.tamu.edu/analysis-with-pause3-2016-edition/
https://doi.org/10.1038/s41598-017-07910-5
http://cobamide2.bio.pitt.edu/computer.htm
https://doi.org/10.1093/nar/27.23.4636
https://doi.org/10.1093/nar/26.4.1107
https://doi.org/10.1093/nar/26.4.1107
https://doi.org/10.1186/1745-6150-7-12
https://doi.org/10.1093/nar/gki408
https://doi.org/10.1093/nar/gkh152
https://doi.org/10.1016/B978-0-12-394621-8.00015-7
https://doi.org/10.1016/j.jmb.2010.01.011
https://doi.org/10.1016/j.jmb.2010.01.011
https://www.ncbi.nlm.nih.gov/nuccore/MN642089.1
https://www.ncbi.nlm.nih.gov/nuccore/JN627160.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_048182.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_041974.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_041975.1
https://www.ncbi.nlm.nih.gov/nuccore/KF806589.1
https://mra.asm.org

	Outline placeholder
	Data availability.

	ACKNOWLEDGMENTS
	REFERENCES

