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This review aims to serve as an introduction to the solute carrier proteins

(SLC) superfamily of transporter proteins and their roles in human cells.

The SLC superfamily currently includes 458 transport proteins in 65 fami-

lies that carry a wide variety of substances across cellular membranes.

While members of this superfamily are found throughout cellular orga-

nelles, this review focuses on transporters expressed at the plasma mem-

brane. At the cell surface, SLC proteins may be viewed as gatekeepers of

the cellular milieu, dynamically responding to different metabolic states.

With altered metabolism being one of the hallmarks of cancer, we also

briefly review the roles that surface SLC proteins play in the development

and progression of cancer through their influence on regulating metabolism

and environmental conditions.

Introduction

In order to survive and maintain proper function, cells

must closely monitor and control their intracellular con-

tents. By allowing specific molecules such as metabolites

and ions to pass through the lipid bilayer and enter or

leave the cell, transport proteins control nutrient levels,

remove waste from cells, and regulate cell volume [1].

Mirroring the large range of compounds requiring

transport, different types of transporter proteins have

evolved that can be subdivided into four main super-

families: (a) the ATP-binding cassette (ABC) trans-

porters, (b) ATPases, (c) ion channels, and (d) solute

carrier proteins (SLC) [2,3]. The current review aims to

serve as an introduction to the SLC superfamily of

transporter proteins and their roles in human cells.

Members of this superfamily are found throughout the

cell in the membrane of almost every organelle, as well

as the plasma membrane. In the first section, we summa-

rize how the family is defined, highlight common struc-

tural features, and briefly introduce their roles in human

health and diseases. Next, we provide an overview of

the various SLC families in humans, focusing on SLC

proteins that are expressed on the cell surface and may

be considered the gatekeepers of cellular contents. We

briefly review their roles in various pathologies and

potential therapeutic implications. We decided to focus

on cell surface SLC proteins because of considerable evi-

dence to suggest that the composition of surface-ex-

pressed transporters changes in response to the

environment and during cellular differentiation and thus

reflect cellular and metabolic states. We refer to existing

reviews to cover specific topics, organelles, or families of

SLC proteins [4–9].

Abbreviations

7TMIR, 7TM-inverted repeat; ABC, ATP-binding cassette transporters; ATP, adenosine triphosphate; HATs, heteromeric amino acid

transporters; LATs, L-type amino acid transporters; LeuT, leucine transporter; MFS, major facilitator superfamily; PM, plasma membrane;

SLC, solute carrier transporter; TM, transmembrane.
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In this review, we also mention examples of how the

transport of specific classes of molecules can affect the

development and progression of disease. Hopefully, a

deeper understanding of the functional integration of

transporters at the interface between cells and their

environment will grant a better appreciation for how

SLC proteins allow cells use to thrive under physiolog-

ical conditions and how this changes in disease states

(in particular cancer).

Other transport protein families

While this review aims to provide a guide to plasma

membrane SLCs, it is important to place these in the

context of other transport proteins that play comple-

mentary and essential roles in the uptake and secretion

of metabolites and ions and are thus part of the ‘gen-

eral equation’ of cellular metabolism.

There are four types of transporters that are driven

by ATP hydrolysis or drive the synthesis of ATP: P,

V, or F-type ATPases and ABC transporters [10].

ABC transporters serve mainly as exporters in eukary-

otic cells, using energy derived from ATP hydrolysis to

efficiently drive the transport of their substrates out of

the cell [11]. ABC transporters generally consist of

four domains: two transmembrane domains, which act

as the passageway for substrates, and two nucleotide-

binding domains that bind and hydrolyze ATP. While

the transmembrane domains have a wide variety of

structures and amino acid sequences, the nucleotide-

binding domains show sequence conservation [12].

Many ABC transport proteins are implicated in resis-

tance to cytotoxic drugs and other targeted chemother-

apies [13]. For more information regarding ABC

transporters, the reader is referred to Liu [14].

The ATPase family encompasses a large variety of

proteins that also interact with ATP in order to per-

form their function. They can be further subdivided

into F-, V-, or P-type ATPases. F- and V-type

ATPases are both rotary ATPases, meaning they

rotate about an axis as they perform their function,

but are specialized in opposite functions. F-type

ATPases drive the synthesis of ATP using established

ion gradients, whereas the V-type ATPases use the

energy derived from ATP hydrolysis to pump ions

across a membrane and build up an electrochemical

gradient [15]. P-type ATPases, on the other hand,

drive the transport of ions and lipids across cellular

membranes using extensive conformational changes

driven by free energy released by ATP hydrolysis [16].

For more information regarding ATPase transporters,

the reader is referred to Futai et al., Palmgren et al.

and Lippe et al. [16–18].

Ion channels perform passive transport, meaning

substrates are transported down their electrochemical

gradient. These proteins provide a pathway to specific

ions and allow them to passively move down their

concentration gradient [19]. This results in rapid trans-

port, as the channels do not undergo such drastic con-

formational changes [19]. As their name suggests, the

ion channel family transports a wide array of ions

across cell membranes, maintaining the membrane

potential and playing a critical role in cellular excita-

tion and signaling [20]. For more information regard-

ing ion channels, the reader is referred to Alexander

et al. [21].

SLC superfamily

The SLC superfamily currently includes 458 transport

proteins in 65 families that transport a wide variety of

substances across cell membranes [22]. These families

are defined by the HUGO Gene Nomenclature Com-

mittee (HGNC) of the Human Genome Organization

(HUGO) and organized such that member proteins

within each family share at least 20–25% sequence

similarity with at least one other member of the family

[22,23]. The average SLC family contains seven mem-

bers, with eight families containing only one member

(SLC32, SLC40, SLC48, SLC50, SLC53, SLC61,

SLC62, and SLC64) and the largest, SLC25, contain-

ing 53 members. More recently, newer models of clas-

sification have emerged based on clustering and

phylogenic analysis or a combination of functional

and phylogenetic analysis [24–26]. For example,

H€oglund et al. analyzed the entire human genome

(along with 16 other species) and identified 400 unique

SLC genes [25]. They further found that several of the

HUGO-defined families could be organized into four

large phylogenic clusters. The largest of these clusters

was the a group, containing 13 SLC families. For a

comprehensive overview of the naming and classifica-

tion systems used for SLC proteins, we refer the reader

to Perland et al. [27].

Overall, SLC proteins transport a wide array of

molecules, including sugars, amino acids, vitamins,

nucleotides, metals, inorganic ions, organic anions,

oligopeptides, and drugs [23]. General substrate class

specificity tends to be consistent within most families.

As detailed below and in Table 1, SLC proteins also

have a range of substrate specificity, with some pro-

teins transporting a range of biomolecules, while

others are currently known to transport only one bio-

molecule and still others are ‘orphan’—with no known

substrate. Recent reviews estimated that as many as

30% of SLC proteins remain such orphan
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Table 1. Summary of SLC families, their general structure, and relation to the development or progression of cancer. Proteins in bold are

described in more depth in the review. Proteins in italics have been annotated in other parts of the cell in addition to the plasma membrane.

Protein folds have been classified as either the MFS, the LeuT or labeled with ‘Other’ and the prokaryotic homolog structure is in

parentheses (ND, not determined). The Major substrates column is a representative but not exhaustive list of substrates transported by the

proteins in the given SLC family. For more specific information regarding substrates, the reader is referred to the literature reviewed in the

article. The number of transmembrane domains was obtained from Uniprot and literature cited in the respective sections. This table was

assembled using information from [36] and [559]. For more specific structural information for these protein families, the reader is referred to

Bai et al. [36]. A continuously updated resource containing similar information will be available through Meixner, Girardi et al. [562].

Family Proteins at cell membrane Fold type

Range of TM

domains Major substrates

Cancer related genes

mentioned in this

review

Sugars

SLC2 SLC2A1, SLC2A2, SLC2A3, SLC2A4,

SLC2A5, SLC2A7, SLC2A9, SLC2A10,

SLC2A11, SLC2A12, SLC2A13, SLC2A14

MFS 12 Glucose,

fructose,

mannose,

galactose

SLC2A1, SLC2A3

SLC5 SLC5A1, SLC5A2, SLC5A3, SLC5A4,

SLC5A4, SLC5A5, SLC5A6, SLC5A7,

SLC5A8, SLC5A12

LeuT 11–13 Glucose,

fructose,

mannose,

galactose

SLC5A1

Amino acids and peptides*

SLC1 SLC1A1, SLC1A2, SLC1A3, SLC1A4,

SLC1A5, SLC1A6, SLC1A7

Other (GltPh) 8–10 Ala, Ser, Cys, Thr SLC1A5

SLC3;

SLC7

SLC3A1, SLC3A2; SLC7A1, SLC7A2,

SLC7A3, SLC7A4, SLC7A5, SLC7A7,

SLC7A8, SLC7A9, SLC7A10, SLC7A11,

SLC7A13

ND (SLC3); LeuT

(SLC7)

1 (SLC3); 9–14

(SLC7)

Leu, Val, Gly, Ala,

Ser, Glu, Cys

LAT1 (SLC7A5 and

SLC3A2), xCT

(SLC7A11 and

SLC3A2)

SLC6 SLC6A1, SLC6A2, SLC6A3, SLC6A4,

SLC6A5, SLC6A6, SLC6A7, SLC6A8,

SLC6A9, SLC6A11, SLC6A12, SLC6A13,

SLC6A14, SLC6A15, SLC6A18, SLC6A19,

SLC6A20

LeuT 12 GABA,

norepinephrine,

dopamine,

serotonin, Gly,

Leu, Iso, Val,

Pro

SLC6A14

SLC38 SLC38A1, SLC38A2, SLC38A4, SLC38A10 LeuT 10–11 Ala, Glu, Ser, Gly,

Met, Thr

SLC43 SLC43A1, SLC43A2, SLC43A3 ND 12 Leu, Phe, Iso,

Val, Met

SLC43A1

Vitamins

SLC19 SLC19A1, SLC19A2, SLC19A3 MFS 12 Folates (e.g., 5-

methyl

tetrahydrofolate,

5-formyl

tetrahydrofolate),

thiamine

SLC19A1, SLC19A3

SLC23 SLC23A1, SLC23A2, SLC23A3 Other (UraA,

UapA)

14 Ascorbate SLC23A2

SLC46 SLC46A1 ND 12 Folates (eg. 5-

methyl

tetrahydrofolate,

5-formyl

tetrahydrofolate)

SLC46A1

Nucleotides/nucleosides

SLC28 SLC28A1 , SLC28A2, SLC28A3 Other (vcCNT) 13–14 Nucleotides/

nucleosides

SLC28A1

SLC29 SLC29A1 , SLC29A2, SLC29A3, SLC29A4 MFS 10–11 Nucleotides/

nucleosides

SLC29A1, SLC29A2

Bicarbonate ions and protons

SLC4 10–14 SLC4A7
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Table 1. (Continued).

Family Proteins at cell membrane Fold type

Range of TM

domains Major substrates

Cancer related genes

mentioned in this

review

SLC4A1, SLC4A2, SLC4A3, SLC4A4,

SLC4A5, SLC4A7, SLC4A8, SLC4A9,

SLC4A10, SLC4A11

Other (UraA,

UapA)

Bicarbonate,

carbonate

SLC9 SLC9A1, SLC9A2, SLC9A3, SLC9A6,

SLC9A7, SLC9B2

Other (NhaA) 10–14 Protons SLC9A1

SLC26 SLC26A1, SLC26A2, SLC26A3, SLC26A4,

SLC26A4 SLC26A5, SLC26A6, SLC26A7,

SLC26A9, SLC26A11

Other (UraA,

UapA)

8–13 Bicarbonate,

sulfate, formate

SLC26A3

Calcium ions

SLC8 SLC8A1, SLC8A2, SLC8A3 CaCA 10–11 Ca2+ SLC8A1, SLC8A2,

SLC8A3

SLC24 SLC24A1, SLC24A2, SLC24A3, SLC24A4 CaCA 10–11 Ca2+ SLC24A4

Inorganic ions

SLC12 SLC12A1, SLC12A2, SLC12A3, SLC12A4,

SLC12A5, SLC12A6, SLC12A7

LeuT 12 Cl� SLC12A2, SLC12A6,

SLC12A7

Carboxylates

SLC13 SLC13A1, SLC13A2, SLC13A3, SLC13A4,

SLC13A5

Other (VcINDY) 11–12 Sulfates, di- and

tricarboxylates

SLC13A2, SLC13A3

SLC16 SLC16A1, SLC16A2, SLC16A3, SLC16A4,

SLC16A5, SLC16A6, SLC16A7, SLC16A8,

SLC16A9, SLC16A10, SLC16A11,

SLC16A12, SLC16A13

MFS 12 Monocarboxylates

SLC16A1, SLC16A3, SLC16A7

Phosphate

SLC20 SLC20A1 , SLC20A2 ND 10–12 HPO4
2�, H2PO4

� SLC20A1

SLC34 SLC34A1 , SLC34A2, SLC34A3 ND 8 Inorganic

phosphate

SLC34A2

Organic ions

SLC14 SLC14A1, SLC14A2 Channel like 10 Urea SLC14A1

SLC22 SLC22A1, SLC22A2, SLC22A3, SLC22A4,

SLC22A5, SLC22A6, SLC22A7, SLC22A8,

SLC22A9, SLC22A11, SLC22A12,

SLC22A13, SLC22A16, SLC22A17,

SLC22A24

MFS; Other

(UraA)

7–12 Urate,

prostaglandins,

bile acids, a-

ketoglutarate,

amines

SLC22A1, SLC22A2,

SLC22A11

Trace metals

SLC11 SLC11A2 LeuT 12 Fe2+, Mn2+, Cu2+,

Co2+, Cd2+, Ni2+,

Pb2+

SLC30 SLC30A1, SLC30A2, SLC30A5, SLC30A10 Other (YiiP) 5–16 Zn2+

SLC31 SLC31A1 , SLC31A2 ND 3 Cu2+ SLC31A1

SLC39 SLC39A1 , SLC39A2, SLC39A3, SLC39A4,

SLC39A5, SLC39A6, SLC39A8, SLC39A10,

SLC39A14

MFS 6–8 Zn2+

SLC40 SLC40A1 ND 10 Fe2+, Mn2+ SLC40A1

SLC41 SLC41A1, SLC41A2, SLC41A3 ND 10–11 Mg2+, Fe2+, Zn2+,

Cu2+
SLC41A1

SLC49 SLC49A1 ND 13 Heme

Other organic compounds

SLC10 SLC10A1, SLC10A2, SLC10A4, SLC10A5,

SLC10A6, SLC10A7

Other (NhaA) 8–10 Bile acids, steroid

hormones

SLC10A2

SLCO SLCO1A2, SLCO1B1, SLCO1B3, SLCO1B7,

SLCO1C1, SLCO2A1, SLCO2B1, SLCO3A1,

SLCO4A1, SLCO4C1, SLCO5A1

ND 11–12 Wide variety of

organic anions

and cations

SLCO1A2,

SLCO1B1,

SLCO1B3, SLC2B1
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transporters, even as recent technological develop-

ments have afforded novel methods to study these

transport proteins [27,28]. The SLC superfamily does

not contain active transporters that directly use the

energy released by ATP hydrolysis to drive the trans-

port of substances against their concentration gradient.

Rather, these proteins act as passive facilitative trans-

porters or secondary active transporters [29]. Facilita-

tive transport is a system of transport in which the

SLC acts as a simple gatekeeper for a compound to

passively move down its gradient [2]. Facilitative trans-

port refers to systems in which only one molecule is

transported in a thermodynamically favorable direc-

tion. In secondary active transport, transporters couple

the passage of two or more substances. One substrate

goes down its electrochemical gradient, which provides

the free energy to drive the transport of the other sub-

strate(s). Thus, the thermodynamically favorable trans-

port of one substance provides the necessary free

energy to transport the other in an unfavorable direc-

tion. In many of these cases, the rate of transport is

proportional to the electrochemical gradient of the

coupled ion [30]. Such secondary active transporters

can either be symporters, which transport their sub-

strates in the same direction, or antiporters, in which

the substrates cross the membrane in opposite direc-

tions [2]. The substrate specificity of these transporters

is determined not only by interactions between amino

acid residues and the substrate, but also by intramolec-

ular interactions that regulate gating and/or selectivity

elements [31–34]. Most secondary active transporters

are thought to use the ‘alternating access’ transport

mechanism, whereby protein domains are arranged to

have a ligand binding site available on only one side

of the membrane at a time, changing conformations to

transport their substrates by shifting to the other side

of the membrane [35].

Structure

Since SLCs are grouped together as a ‘superfamily’,

SLC proteins belonging to different SLC families have

a variety of different three-dimensional folds that are

not all phylogenetically related [29]. Nevertheless, there

are certain structural features common to most if not

all the SLC transporters. When analyzing hydropathy

plots, SLC proteins are predicted to contain between 1

and 16 transmembrane (TM) domains, although most

(~ 83%) tend to contain between 7 and 12 TM

domains [36,37]. An overview is provided in Table 1.

SLC proteins with known structures have so far

been shown to share a distinct feature: a pseudosym-

metry across the core TM domains [38]. Although, as

is detailed in Table 1, there are other structural homo-

logues used to classify SLC structures, two of the most

common structural folds among SLC proteins are the

major facilitator superfamily (MFS) and the leucine

transporter (LeuT)-like folds [36]. The MFS fold con-

sists of two pseudo-repeats of six TM helices con-

nected by a cytoplasmic loop, while the LeuT-like fold

consists of two five-TM helices, each of which contains

a bundle and a scaffold domain [38]. The specific

mechanism that drives alternating access transport

depends heavily on the physical structure of proteins

[39]. Proteins of the MFS fold utilize a rocker and

switch mechanism, while proteins with a LeuT fold

utilize a rocking-bundle approach, and a third ‘eleva-

tor’ mechanism is also used by SLC proteins [39,40].

As mentioned previously, in the alternating access

transport mechanism, the substrate-binding site is

available only on one side of the membrane at a time.

During the intermediate steps of these transport cycles,

the substrate is occluded from access to either side of

the membrane. In both the rocker-switch and the rock-

ing-bundle model, the substrate binds to the available

binding site. Next, the two transmembrane domains

shift around the substrate, exposing the binding site to

the other side of the membrane and releasing the sub-

strate [40]. The rocking-bundle mechanism has a simi-

larly centrally localized substrate-binding site between

the two transmembrane domains. However, rather

than moving both transmembrane domains around the

substrate, only one domain shifts around the binding

site and change the side the substrate is exposed to

[40]. Finally, in the elevator mechanism, the two

domains have distinctly different roles. There is a scaf-

fold domain and a transport domain, which binds the

substrate. The transport domain, through rigid body

movement, migrates across the membrane and release

the substrate [40].

One problem that persists when investigating the

structure and function of SLC proteins is how difficult

it is to purify and study transmembrane proteins [23].

Thus far, very few high-resolution structures for

human SLC proteins have been determined, exempli-

fied by SLC2A1, SLC2A3, SLC4A1, SLC6A4, and

SLC42A3 [41–46]. The structures of SLC homologues

in other species combined with computer modeling

have provided insights to human SLC transporters

[47]. As an example, the crystal structure of vSGLT,

the sodium/glucose cotransporter from Vibrio para-

haemolyticus, has been determined, providing insight

on the mechanism of similar proteins like SLC5A1

(which has 32% sequence similarity) [48]. Similarly,

the high-resolution atomic structure of a bacterial

amino acid transporter has further provided structural
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context for how the SLC6 family of proteins trans-

ports its substrates [49,50]. However, one of the major

limitations of using bacterial transporters as a method

to elucidate the structure and function of human trans-

porters is that these crystalized bacterial proteins can

lack the longer cytoplasmic tails that play a significant

role in transporter activity and specificity [51]. Com-

pounding these difficulties to predict SLC protein

behavior a priori is the complex web of regulation

resulting from interaction partners, selective gating,

and post-translational modification. Although trans-

porters may have similar binding residues, differences

in these factors can change the specificity of a trans-

porter.

Solute carrier proteins proteins are regulated by dif-

ferent post-translational modifications on the intracel-

lular loops between TM domains and the N and/or C

termini. These modifications include phosphorylation,

acetylation, and ubiquitination, while the extracellular

loops and termini can be heavily glycosylated (re-

viewed by Czuba et al. [7]). Such modifications have

been shown to affect both the rate of transport, affin-

ity for their substrates, and SLC protein activity

[52,53]. As an example of such complex regulatory net-

works, the activity of every well-characterized SLC12

transporter is regulated through the phosphorylation

and dephosphorylation of serine/threonine residues

[54]. The location of these regulatory sites and the

effect of modification differs between the different sub-

families of SLC12 [54,55]. Furthermore and of particu-

lar relevance for this review, ubiquitination often

regulates the translocation of SLC proteins from vac-

uoles and/or other intracellular organelles to the

plasma membrane and vice versa [56]. As an example,

the insulin-dependent translocation of SLC2A4 to the

PM is regulated by ubiquitination and clathrin-medi-

ated vesicular trafficking [57,58]. Of note, the activity

of SLC proteins is also not only affected by the modi-

fication of the transporters themselves, but changes to

their intermolecular interactions with other proteins

and intramolecular interactions between domains [31–
34]. For example, the substrate specificity of FurE, a

fungal transport protein, is regulated by interactions

between its terminal cytoplasmic domains that create a

gating system for this transporter. As another example,

the substrate specificity of the fungal protein UapA is

regulated by residues that are not part of the sub-

strate-binding site [59]. Intermolecular interactions

between proteins like PCBP2 and SLC11A2 regulate

the proper transport of iron to intracellular sites [60].

SLC16A1, 16A3, and 16A7 also all have their trans-

port function increased in part through their interac-

tions with carbonic anhydrases (CA) (CAII for

SLC16A1 and 16A3; CAIV for SLC16A7) [61,62].

This increase in efficiency is due to a direct supply of

protons from the anhydrases to the transporters

[63,64].

For a more comprehensive review on inter- and

intramolecular interactions and how they impact trans-

porter activity, readers are referred to Mikros et al.

[51].

Roles in health and disease

Owing to their role as one of the main regulators of

what enters or leaves cells, the transport function of

SLC proteins is linked to a wide range of cellular and

physiological processes. Some SLC proteins have been

found to be tissue specific, performing roles unique to

certain cell types, best exemplified by specific trans-

porters of the SLC6 and SLC18 family, which regulate

the concentration of neurotransmitters in synapses

[65]. Many different SLC families are also involved in

transporting nutrients across selective barriers between

tissues (like the blood–brain barrier or the gut epithe-

lium) to provide them with the necessary nutrients

[66]. Some SLC proteins are now also understood to

act as ‘transceptors’, acting as both a transporter and

receptor for the cell, allowing transport to also serve

as a signaling system within the cell (further reviewed

in Hundal et al. [67]). In this vein, some believe that

SLC proteins are involved in ‘remote sensing and sig-

naling’, a hypothesis that suggests SLCs and other

transporters regulate cell and even tissue function by

their altered expression/activity [68]. According to this

hypothesis, transporters could play a role in signaling

between organs [69]. For example, SLC30A8, a zinc

transporter that has been closely linked to diabetes, is

highly expressed at the membrane of pancreatic cells

[70–72]. There, the transporter imports zinc from the

cytoplasm into insulin secretory granules [71]. The sub-

sequent cosecretion of insulin and zinc will impact not

only neighboring endocrine cells, but the zinc serves as

a signaling molecule that inhibits downstream hepatic

insulin clearance, allowing the delivery of insulin

throughout the body [71]. In another transport-inde-

pendent role, SLC proteins from several different fami-

lies contain a virus-binding site, thus facilitating viral

entry into cells, including SLC1A5, SLC3A2, SLC7A1,

and SLC52A1 [73–77].
As a consequence of their importance in physiology,

mutations of SLC proteins have been linked to various

diseases by contributing to an imbalance in the uptake,

disposal, or absorption of metabolites and ions across

different tissues resulting in disease states [78,79].

According to the Online Mendelian Inheritance in
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Man (OMIM) database, about 190 different SLC

genes have been linked to an inherited disease, result-

ing in phenotypes ranging from deafness (SLC17A8),

anemia (SLC25A38), thyroid dyshormonogenesis

(SLC5A5), and choreoacanthocytosis (SLC4A1)

[28,80–84]. Furthermore, genomewide association stud-

ies (GWAS) have linked polymorphisms of SLC genes

to complex diseases. For example, variants of

SLC16A11 have been associated with type 2 diabetes

in a GWAS in Mexico, although the exact role that

SLC16A11 plays in the development of type 2 diabetes

remains unclear [85,86]. Other examples, such as

SLC2A9 (gout), SLC22A4 (inflammatory bowel dis-

ease), and SLCOB1 (jaundice), are further reviewed in

Lin et al. [78].

Solute carrier proteins proteins are not only trans-

porters of endogenous metabolites and ions, but are

also the system by which many drugs are thought to

cross the lipid bilayer and gain access to biological sys-

tems. Thus, SLC proteins indirectly affect disease out-

come by affecting drug pharmacokinetics. In recent

drug development guidelines, the FDA emphasizes the

importance of screening SLC proteins for potential

drug–drug interactions [87]. This further underscores

the central role that SLC proteins play in the absorp-

tion of drugs in the intestine and across other inter-

faces [88]. A recent analysis of transport proteins (371

SLC and 46 ABC transporter genes) and their poten-

tial as drug interactors linked a total of 493 pharmaco-

logical compounds to 107 transporters [89]. The effect

can be either via direct transport or indirect, for exam-

ple, by importing a cofactor needed by an enzyme to

convert a prodrug. As an example, SLC proteins play

a critical role in the transport of antimetabolites such

as 5-fluorouracil (SLC29A1) and methotrexate

(SLC19A1) [90]. Although a wide variety of SLC pro-

teins are known to participate in drug transport, the

SLC22 and SLCO families are among the best under-

stood in terms of pharmacokinetics [28]. These findings

have led to the hypothesis, which we support, that

most drug uptake occurs through transporters rather

than simple diffusion through the plasma membrane

[91]. Hence, we postulate that more drug transporters

will be identified in the future, leading to a better

understanding of solute carriers, and particularly those

expressed on the cell surface. Unraveling such drug

transporters may enable the development of treatments

that take advantage of transport discrepancies in dis-

ease versus healthy states.

A few SLC proteins are the direct target of

approved drugs, most of which are members of the

SLC5, SLC6, SLC12, or SLC22 families [92]. The

potential afforded by modulating SLC protein

activities continues to expand as their significance in

pathophysiology continues to unravel, along with

structures and transport mechanisms (see review by

Rives et al. and Wang et al. [5,8]). Such potential is

best exemplified by the SLC6 family, different mem-

bers of which are associated with 42 drugs currently

approved by the US Food and Drug Administration,

mainly for the treatment of psychiatric disorders [92].

An overview of plasma membrane
solute carrier proteins

While solute carrier functions cover a broad range of

transport between different cellular organelles, about

60% of SLC proteins with known localizations have

been annotated at the cell surface on the plasma mem-

brane (PM) [37]. These regulate the transport between

the extracellular and intracellular milieus and hence

directly control the uptake and efflux of nutrients,

drugs, and other biomolecules from/to the environ-

ment. However, the expression of surface SLCs is

likely to be tuned to the environment as well as the

cellular programs of gene/protein expression of growth

and differentiation. In this ‘guide to SLC proteins’, we

focus on SLC families in which some members are

known to be expressed on the PM. Owing to the fact

that we do not currently have a complete understand-

ing of the cellular localization for each SLC, this

review cannot be a comprehensive list of solute carriers

on the PM. We have grouped transporters by broad

classes of metabolites and ions that are transported,

with the aim to provide the reader with a useful survey

of how metabolites and ions are transported in and

out of cells. With altered metabolism being one of the

hallmarks of cancer, we also briefly review the roles

that surface SLC proteins play in the development and

progression of cancer through their influence on regu-

lating metabolism and environmental conditions. An

overview of the SLC families described in this review

is provided in Table 1.

Transporters of sugars

A large source of energy production in cells comes

from the breakdown of carbohydrates and in particu-

lar glucose. Thus, the uptake of sugars is critical to cell

survival. The two major families that drive such trans-

port are SLC2 and SLC5 (Fig. 1).

SLC2

The SLC2 family transports a wide variety of carbon

compounds, including monosaccharides and polyols.
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These proteins are expressed throughout the body in

almost every cell type, underscoring their ubiquitous

importance [93]. The subcellular localization of SLC2

proteins can be affected by cellular state and thus

allows for very close regulation of monosaccharide

concentrations within the cell [6]. Structurally, all

SLC2 proteins contain an MFS structural fold and

most possess 12 TM domain segments with a cytoplas-

mic linker domain. These proteins also all have cyto-

plasmic N and C termini [94]. This family consists of

three different subfamilies of transporters based on

their sequence similarity. Class 1 consists of SLC2A1,

2A2, 2A3, 2A4, and 2A14 (GLUT1-4 and 14, respec-

tively) and contains the most closely studied members

of the family. Class 2 consists of SLC2A5, 2A7, 2A9,

and 2A11 (GLUT5, 7, 9, and 11, respectively) while

class 3 contains SLC2A6, 2A8, 2A10, 2A12, and 2A13

(GLUT6, 8, 10, 12, and HMIT, respectively). Mem-

bers of this family have been implicated in Mendelian

disorders like hyperuricemia (SLC2A9), Fanconi–
Bickel syndrome (SLC2A2), and GLUT1 deficiency

syndrome (SLC2A1) [95–97].
The main SLC2 proteins expressed on the PM are

SLC2A1-SLC2A5. One of the most well-understood

SLC proteins is SLC2A1 (reviewed by Carruthers

et al. and Zambrano et al.) [98,99]. SLC2A1 has been

long investigated for its roles in tumor progression

[100]. It is expressed at the PM throughout the human

body, and functions primarily as a glucose transporter,

although it can also transport mannose, galactose, and

glucosamine [98]. SLC2A2 is most highly expressed at

the PM in hepatocytes [101]. This transporter has a

high affinity for glucosamine and can also transport

glucose, galactose, mannose, and fructose. Among

other regulatory roles, SLC2A2 functions in the regu-

lation of glucose-sensitive genes and insulin-related

pathways [101,102]. One of the primary glucose trans-

porters in brain tissue is SLC2A3, where its higher

affinity and maximum turnover number help overcome

the lower concentration of glucose in cerebral blood

[103]. The cellular distribution of SLC2A3 varies

between tissue types and cell states. In neurons,

SLC2A3 is found mainly on the cell membrane, but

also in vesicles and mitochondria, while in human

white blood cells SLC2A3 exists mainly as a cytoplas-

mic vesicular protein which is then translocated to the

cell membrane upon activation of the cells [103,104].

SLC2A4 is similarly stored in cytoplasmic vesicles,

which can then be redistributed to the cell membrane

upon activation by insulin signaling [105]. This protein

is expressed mainly in skeletal muscle, adipocytes, and

cardiomyocytes, where it acts as a glucose transporter

after its insulin-triggered translocation to the cell mem-

brane [106]. SLC2A5 functions mainly to transport

fructose across the apical membrane of the small intes-

tine [107]. Interestingly, SLC2A5 is also expressed

across a wide array of human tissues, although fruc-

tose concentrations are minimal in the blood and thus

SLC2A5’s role in more peripheral tissues is uncertain

[108].

SLC5

The SLC5 family contains 12 members that perform

the concentrative transport of glucose up its own con-

centration gradient by harnessing the electrochemical

Na+ gradient across the cell membrane [109]. Other

substrates of SLC5 family include different sugars

(mainly galactose, mannose, and fructose), anions,

vitamins, and short-chain fatty acids [110]. One mem-

ber of this family, SLC5A4, has been found to act not

as a transporter, but rather as a glucose sensor in the

plasma membrane of tissues [111]. All SLC5 proteins

with the exception of SLC5A5 and SLC5A8 are com-

posed of 14 TM helices, with the N terminus located

on the extracellular side of the membrane [110].

SLC5A1 (SGLT1) is the most well-understood pro-

tein in the SLC5 family. This protein transports one

molecule of glucose or galactose with two sodium ions

across the brush border of the small intestine and kid-

ney [110,112,113]. Due to the extreme sodium gradient

across the cell membrane and the stoichiometric ratio

of transport, SLC5A1 acts as a concentrative

Na+

Glucose

Glucose

SLC46A1

Na+

Electrochemical gradient

SLC2A1

Cytosol Extracellular 
space

Fig. 1. Examples of SLC proteins transporting sugars (SLC2 and

SLC5). SLC2A1 is shown as an example of the SLC2 GLUT

transporters, while SLC5A1 is shown as an example of the Na+-

dependent SLC5 family of sugar transporters.
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transporter and is the most highly expressed trans-

porter in the small intestine’s brush-border membrane

[114]. SLC5A2 (SGLT2) cotransports one sodium ion

with one molecule of glucose and is most highly

expressed in the kidney cortex, where it localizes to the

brush-border membrane of the proximal tubule [110].

SLC5A2 plays a critical role in glucose reabsorption,

absorbing ~ 90% of the filtered glucose [115]. Both

SLC5A1 and SLC5A2 have been closely associated

with diabetes and thus are significant targets of

approved drugs [116–118].
SLC5A3 and SLC5A5 do not transport sugars

across membranes, despite their sequence similarity to

other SLC5 members. SLC5A3 (SMIT1) cotransports

Na+ and myoinositol, a critical osmotic regulator for

cells, across membranes, thereby playing a role in vol-

ume regulation [119]. In hypotonic environments, both

the expression and the plasma membrane localization

of SLC5A3 are increased, resulting in increased uptake

of myoinositol [120]. SLC5A5 (NIS) is a symporter,

coupling the import of an anion (primarily I� but

other substrates include ClO3
�, SeCN�, and SCN�)

with Na+ [121]. This protein is expressed primarily in

the thyroid gland, but is also found in the salivary

gland, stomach, small intestine, and mammary glands

[122]. As the main I—importer in the thyroid, SLC5A5

plays a critical role in thyroid hormone biosynthesis

[123].

Sugar transporters and cancer

Cancerous cells are known to often have altered meta-

bolic states, relying more on glycolysis as their source

of ATP [124,125]. This change requires cells to

increase their uptake of glucose to fuel these more

metabolically active cells [126]. Thus, targeting glucose

transporters discussed above would provide a targeted

strategy through which to disrupt the energetic supply

of cancerous cells. The expression of both SLC2 and

SLC5 proteins changes during the development of can-

cer, although the proteins thought to be the most sig-

nificant contributors to these changes are SLC2A1,

SLC2A3, and SLC5A1 [127–129]. Both SLC2A1 and

SLC2A3 are expressed at significantly higher levels in

most cancers, with higher expression of proteins found

in more aggressive and proliferative cancers and lower

protein expression being linked to higher survival rates

of patients [130,131]. Higher expression of SLC2 pro-

teins has also been linked to the development of

chemotherapy resistance [128,132,133]. SLC5 proteins

have been found expressed at higher levels in colon,

lung, head, neck, and pancreatic cancers [127].

SLC5A1, as the main sodium-glucose transporter in

the body, is often overexpressed in cancerous tissues,

allowing these higher rates of aerobic glycolysis [129].

These alterations in SLC5A1 expression at the cell

membrane may be due to the EGFR increasing expres-

sion of the protein while also decreasing its degrada-

tion [129,134]. Imaging studies using a small molecule

that is transported specifically by SLC5A2 have shown

that also SLC5A2 is expressed at higher levels in cer-

tain cancers [135,136].

Transporters of amino acids and
peptides

Amino acids are utilized as the building blocks for

proteins and also serve a multitude of different signal-

ing and energetic roles within cells. In this section, we

review SLC families 1, 3, 7, 6, 38, and 43 which

together drive the majority of transport of these com-

pounds (Fig. 2). SLCs in these families have been in

the past annotated also by their transport substrates

and mechanism (Table 2). However, these classifica-

tions are becoming increasingly difficult to define, as

proteins like SLC38A7 possess properties of both sys-

tems of transport [137].

SLC1

The SLC1 family contains seven different glutamate and

neutral amino acid transporters expressed throughout

the body, although they play a particularly important

role in the central nervous system (CNS) [138]. Five of

the transporters, SLC1A1 (EAAC1), SLC1A2 (GLT1),

SLC1A3 (GLAST), SLC1A6 (EAAT4), and SLC1A7

(EAAT5), are high-affinity glutamate transporters,

while SLC1A4 (ASCT1) and SLC1A5 (ASCT2) are

referred to as neutral amino acids transporters (alanine,

serine, cysteine, and threonine), although transport is

not restricted to these compounds (e.g., SLC1A5’s pre-

ferred substrate is glutamine and at lower pHs also read-

ily transports glutamate) [138–140]. The high-affinity

glutamate transporters cotransport glutamate with 3

Na+ ions against the counter-transport of 1 K+ ion

[138]. This subset of SLC1 transporters functions to

maintain a sufficiently low extracellular concentration

of glutamate, the major excitatory neurotransmitter in

the CNS that is cytotoxic at higher concentrations [141].

These transporters localize to the plasma membrane of

astrocytes and neurons [142]. In addition, these high-

affinity glutamate transporters also play a role in the

regulation of cellular metabolism because their substrate

is involved in the synthesis of glutamine [140]. The two

neutral amino acid transporters are expressed through-

out the body [138]. SLC1A5 is expressed at cell
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membranes, where its main function is to import glu-

tamine in exchange for neutral amino acids (e.g., serine,

asparagine, or threonine) in a Na+-dependent manner

[77].

SLC3/7

Two SLC families, SLC3 and SLC7, are closely linked

in their function. A protein from each of these families

can be linked by disulfide bridges in order to form a

protein complex known as the heteromeric amino acid

transporters (HATs) [143]. These SLC3/SLC7 dimers

facilitate a wide range of transport, described in detail

below. SLC3 proteins are also known as the heavy

subunit of HATs, while SLC7 proteins are also known

as the light subunit. Although most SLC7 proteins

form these heterodimers to transport amino acids,

some members remain functional as monomers.

The SLC7 family of amino acid transporters con-

tains 13 members, which can in turn be further divided

into two subfamilies: the cationic amino acid trans-

porters (CATs), which include SLC7A1-4 and

SLC7A14, and the L-type amino acid transporters

(LATs), which include SLC7A5-13 and the pseudogene

SLC7A15P [143]. These two subgroups differ slightly

in terms of structure, consisting of 14 and 12 TM seg-

ments, respectively. SLC7 proteins can also serve as

amino acid sensors and are necessary to initiate the

activation of the mTORC1 pathway [144].

SLC7A1-4 is monomeric transport proteins called

CATs. These proteins function as system y+ trans-

porters (Table 2) [145,146].

LATs act as the light or catalytic subunit of the

HATs and determine the transport system (Table 2)

and substrate specificity of the heterodimer [143].

There are five transport systems used by the HATs:

SLC43A1

AA°

SLC38A1

Na+

Gln

SLC1A1
Na+ K+ Glu

SLC1A5
Na+AA° Gln

SLC6A1

2 Na+

Cl–

GABA

SLC6A2

Na+

Norepinephrine

Electrochemical gradients

K+

Na+

Cl-

SLC7A1

Arg

LAT1
(SLC7A5 and SLC3A2)

Leu

SLC6A5

3 Na+

Cl–

Gly

SLC6A19

Na+

Glu

Fig. 2. Examples of SLC proteins

transporting amino acids and peptides

(SLC1, SLC3, SLC6, SLC7, SLC38, and

SLC43). SLC1A1 represents the SLC1

subfamily of high-affinity glutamate

transporters, while SLC1A5 represents the

subfamily of neutral amino acid

transporters. SLC7A1 represents the

subfamily of L-type amino acid transporters

(LATs), while LAT1 represents the group of

heterodimeric transporters called

heteromeric amino acid transporters (HATs).

SLC6A1 represents the SLC6 subfamily of

GABA transporters. SLC6A2 represents the

subfamily of monoamine transporters.

SLC6A5 represents the subfamily of Na+-

and Cl�-dependent amino acid transporters

while SLC6A19 represents the nutrient

amino acid transporters. SLC38A1 is shown

as an example of SLC38 amino acid

transporter, while SLC43A1 is shown as an

example of the SLC43 family of system L

amino acid transporters.
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system L, which is driven by SLC7A5 (LAT1) and

SLC7A8 (LAT2); system asc, which is driven by

SLC7A10 (Asc-1) and SLC7A12 (Asc-2); system xc
�,

which is driven by SLC7A11 (xCT); system y+L, dri-

ven by SLC7A7 (y+LAT1) and SLC7A6 (y+LAT1),

and finally system b0,+, driven by SLC7A9 (b0,+AT)

[143,146,147]. The functional heterodimeric transporter

is often simply referred to by the name of its light sub-

unit. The heavy subunit is one of the two members of

the SLC3 family: SLC3A1 (rBAT) and SLC3A2

(4F2hc) [148]. These proteins have a single TM

domain with an extracellular C terminus and are

essential to the proper routing of the light subunits of

HATs to the plasma membrane, where the heterodi-

mer drives the sodium-independent transport of amino

acids [143,149].

Perhaps, the most well-understood heterodimer is

LAT1, which consists of SLC3A2 and SLC7A5 and

transports branched-chain and aromatic amino acids

[150,151]. LAT1 is critical to cell growth due to its role

as the main transporter of eight of the nine essential

amino acids (leucine, isoleucine, valine, phenylalanine,

tyrosine, tryptophan, methionine, and histidine)

[152,153]. LAT2 on the other hand, formed by the

dimerization of SLC7A8 and SLC3A2, transports a

wider range of amino acids at a lower affinity [151].

Both transport dimers are widely expressed throughout

the body at varying levels [146,152].

SLC7A10 forms a heterodimer with SLC3A2 and

localizes to the cell membrane of central nervous sys-

tem tissue to transport small neutral amino acids like

glycine, alanine, serine, threonine, and cysteine [154].

SLC7A7 and SLC7A6 both form complexes with

SLC3A2, forming similar transporters called y+LAT1

and y+LAT2, respectively, driving the exchange of

cationic amino acids for Na+ and a neutral amino acid

[143,155,156].

SLC7A11 also forms a complex with SLC3A2 to

form xCT, a sodium-independent exchanger of intra-

cellular glutamate and cystine [157]. This transporter

has been shown to play a critical role in maintaining

the metabolic and redox balance of cells [158].

SLC7A9 forms a heterodimer with SLC3A1 to form

a transporter called rBAT/b0,+AT. This transporter

drives the uptake of cystine and dibasic amino acids

and is highly expressed at the apical membrane of the

renal proximal tubule, where it performs the majority

of cystine reabsorption [147,159]. More recently,

SLC3A1 has also been found to interact with

SLC7A13 (AGT1) in the sections of the renal proximal

tubules where SLC7A9 is not as highly expressed

[160]. This newly discovered heterodimer is thought to

act as a second cystine transporter on the plasma

membrane of the kidney.

SLC6

Transporters of the SLC6 family use the sodium gradi-

ent to carry out the secondary active transport of

small amino acids or amino acid-like substrates

[30,161]. Members of this family tend to have very

specific localization in cells, owing to their specialized

roles [161]. These proteins have 12 TMs with both C

and N termini in the cytoplasm. These termini have

been shown to play regulatory roles in protein traffick-

ing and the stoichiometry of transport [162]. They are

also implicated in the proper function of these pro-

teins, serving as scaffolds upon which some of these

proteins form dimers and higher oligomers [163,164].

Many members of this family are well-known targets

of inhibitory drugs, treating epilepsy and movement

disorders like Parkinson for example [162,165–168].
This family can be divided into four subfamilies based

on their transport substrates: (a) the gamma-aminobu-

tyric acid (GABA) transporters, (b) the monoamine

transporters, (c) the neurotransmitter amino acid

transporters, and (d) the nutrient amino acid

Table 2. Different transport systems of amino acids.

Transport

system

[182,560,561] Meaning

Transporters

from SLC

families

System A Proteins cotransport Na+ with

small, polar amino acids amino

acids

SLC38

System N Proteins cotransport Na+ with His,

Gln, or Asn and the simultaneous

antiport of protons

SLC38

System L Proteins that have Na+ independent

transport of large hydrophobic

neutral amino acids

SLC3/7,

SLC43

System ASC Proteins cotransport Na+ with Ala,

Ser, or Cys

SLC1

System asc Proteins transport small neutral

amino acids

SLC3/7

System xC
� Proteins exchange Cys for Glu SLC3/7

System xAG
� Proteins cotransport Na+ with Asp

or Glu and antiport K+

SLC1

System y+L Proteins cotransport Na+ with

cationic and neutral amino acids

SLC3/7

System y+ Proteins transport cationic amino

acids

SLC7

System b0,+ Proteins transport cationic amino

acids as well as neutral amino

acids

SLC3/7

System B0 Proteins cotransport Na+ with

neutral amino acids

SLC6
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transporters [30]. There is also one remaining orphan

transporter (SLC6A16) [161].

The GABA transporter subfamily includes SLC6A1

(GAT1), 6A6 (TauT), 6A8 (CT1), 6A11 (GAT3),

6A12 (BGT1), and 6A13 (GAT2) [30,161,169].

Although referred to widely as the GABA transporter

subfamily, members also transport a variety of other

substrates, including taurine (SLC6A6), creatine

(SLC6A8), and betaine (SLC6A12) [161]. SLC6A1 is

the main neuronal GABA transporter and one of the

best understood members of this family [169].

SLC6A1 is found primarily in the synapse of presy-

naptic neurons, while SLC6A11 localizes to the cell

membrane of astrocytes in close proximity to the

synapses of GABAeric neurons [166,170]. The trans-

port function of GABA transporters is driven by

sodium and chloride cotransport, although the exact

stoichiometry of this transport varies [170,171].

SLC6A13 is not only expressed in the brain but also

in peripheral tissues like the liver and kidney [161].

SLC6A13 localizes to the sinusoidal membrane of

periportal hepatocytes and to the basolateral mem-

brane of proximal tubules [172]. SLC6A6 and

SLC6A12 are also expressed in the brain, as well as

the kidney and other tissues [161].

The SLC6 subfamily of monoamine transporters

contains SLC6A2 (NET), 6A3 (DAT), and 6A4

(SERT) [30,168]. These transporters are all primarily

expressed in the CNS and localize to the cell mem-

brane of neurons at the presynaptic cleft [168]. There,

these proteins perform the reuptake of norepinephrine

(SLC6A2), dopamine (SLC6A3), or serotonin

(SLC6A4), which is driven by the cotransport of a

sodium ion [168].

The subfamily of amino acid transporters includes

SLC6A5 (GlyT2), SLC6A7 (PROT), SLC6A9

(GlyT1), and SLC6A14 (ATB0,+) [30]. These trans-

porters are all dependent on both sodium and chloride

[162,173]. Both SLC6A5 and SLC6A9 transport gly-

cine and 1 Cl� along with 3 Na+ or 2 Na+, respec-

tively [162]. The reuptake of glycine functions to

prevent the over activity of glycine receptors in

synapses [174]. SLC6A5 functions to maintain the

concentration gradient between the extracellular space

(where glycine is found at submicromolar levels) and

the cytosol (millimolar levels) [174]. SLC6A9 has been

shown to also reverse its direction of transport in

response to dopamine stimulation of neurons, possibly

as a way to rapidly transduce dopamine signaling into

glycine release [175]. SLC6A7 is expressed primarily in

a subset of glutamatergic neurons and functions as a

high-affinity proline transporter [176]. SLC6A14 dif-

fers from the other transporters in this subfamily,

driving the transporting all essential amino acids as

well as glutamine and arginine [173]. Although it is

expressed at lower levels in normal tissues, it has been

found to be upregulated in different kinds of cancers

[177,178].

The fourth subfamily contains the nutrient amino

acid transporters. This subfamily encompasses

SLC6A15 (B0AT2), 6A16 (NTT5), 6A17 (NTT4),

6A18 (B0AT3), 6A19 (B0AT1), and 6A20 (SIT1) [30].

SLC6A15 and SLC6A17 both are expressed mainly at

the cell membrane of neurons, although also at lower

levels in kidney, pituitary, lung, and brain cells

[30,161]. Mouse homologues of SLC6A15 transports

leucine, isoleucine, valine, proline, and methionine,

while SLC6A17 transports proline, glycine, leucine,

and alanine [179,180]. SLC6A18 (B0AT3) is highly

expressed at the luminal membrane of the proximal

tubules in the kidney, where it acts as a sodium and

chloride-dependent neutral amino acid transporter

[181]. SLC6A19 (B0AT1) and SLC6A20 are brush

boarder transport proteins, expressed primarily at the

apical membrane of small intestine and kidney cells

[182–184].

SLC38

The SLC38 family contains 11 proteins that transport

amino acids, with specificity varying greatly between

the different members [137]. SLC38 proteins transport

small amino acids like alanine, glutamine, serine, gly-

cine, methionine, and threonine [185]. These trans-

porters are expressed throughout the body [137,186].

The SLC38 family is considered to possess similar

structural features throughout the family, consisting of

11 TM segments with an extracellular C terminus and

intracellular N terminus [187].

Members of the SLC38 family are thought to per-

form either system A transport or system N (Table 2)

[186]. Of the characterized proteins, SLC38A1

(SNAT1), SLC38A2 (SNAT2), SLC38A4 (SNAT4) are

all thought to be System A transporters, while

SLC38A3 (SNAT3), SLC38A5 (SNAT5), and

SLC38A7 (SNAT7) are thought to be system N [186].

SLC38A2, among other members of the SLC38 family,

is also suggested to behave as a ‘transceptor’, whereby

amino acid binding or transport could trigger signaling

network within the cell, resulting in both transport of

a substrate and activity as a receptor [185,188,189].

SLC38A10 has been suggested to provide the bidirec-

tional transport of glutamine, alanine, glutamate, and

aspartate and the efflux of serine [190]. This protein is

expressed at the plasma membrane of both neuronal

cells and astrocytes [190].
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SLC43

The SLC43 family of proteins is rather small, consist-

ing of only three members: SLC43A1 (LAT3),

SLC43A2 (LAT4), and the orphan transporter

SLC43A3 (EEG1) [191]. Both characterized proteins

are highly similar plasma membrane system L amino

acid transporters (Table 2), sharing ~ 57% amino acid

similarity and consist of 12 TM domains [191]. Typical

of other system L transporters, both SLC43A1 and

SLC43A2 provide sodium-independent transport

[192,193]. Unlike the SLC7 LATs, the SLC43 family

does not require a binding partner to form a heterodi-

meric transport unit [193]. They act as low affinity

facilitated diffusers of neutral amino acids, preferen-

tially transporting leucine, phenylalanine, isoleucine,

valine, and methionine [192–194]. Through their trans-

port of leucine, both SLC43A1 and SLC43A2 play a

role in the mTOR signaling pathway [194].

SLC43A1 is most highly expressed at the plasma

membrane of liver, skeletal muscle, and pancreatic tis-

sues, although it is also expressed at lower levels in

other tissues of the body [193]. Expression of this pro-

tein is upregulated in response to starvation states,

suggesting that it plays a critical role in interorgan

amino acid balance [195]. SLC43A2 has a broader

expression profile than SLC43A1, being expressed in

the placenta, kidney, leukocytes, and at lower levels in

many other tissue types [192]. The localization of this

protein to the plasma membrane follows feeding pat-

terns in mice, with increased plasma membrane expres-

sion of SLC43A2 occurring cyclically in anticipation

of food intake, attesting to a role for SLC43A2 in

amino acid absorption [196]. This protein is also

required for proper mouse development, with knock-

out models exhibiting significant growth retardation

and low amniotic fluid amino acid levels [197].

Amino acid transporters and cancer

In cancer cells, the dysregulation of amino acid trans-

porters alters amino acid levels, helping drive carcino-

genesis [198]. Not only do cancer cells have a higher

dependency on amino acids to drive the synthesis of

proteins as they proliferate, but altered amino acid

levels also contribute to the modulation of mTOR, a

key protein kinase in cellular metabolism [198]. Of par-

ticular relevance to the etiology of cancer is the dys-

regulation of leucine and/or glutamine. Leucine serves

as the main regulatory mechanism for mTOR in many

tissues [199]. Cancer cells often overexpress leucine

transporters, leading to higher intracellular leucine

concentrations, mTOR activation, and the subsequent

proliferation of cancer cells [199,200]. Glutamine on

the other hand serves a multitude of different roles

within cells as a carrier for ammonia in tissues, a regu-

lator of the acid/base balance in kidney cells and as

the precursor of compounds like glutathione, gluta-

mate, and GABA [201]. It is used as a building block

for nucleotides and other amino acids, provides a

source of a-ketoglutarate for the TCA cycle (as a pre-

cursor of glutamate), and helps regulate the redox bal-

ance in cells [200]. These roles make glutamine a

critical metabolite for cancer cells. Five of the major

contributors to aberrant leucine and glutamine trans-

port in cancer cells are SLC1A5, LAT1, xCT,

SLC6A14, and SLC43A1 [131].

SLC1A5 serves as the primary source of glutamine

uptake in cancer cells [131]. Its activity controls the rate

of tumor growth in breast cancer and blocking this

transporter’s activity has been shown to prevent tumor

cell proliferation in different tissues [77,201]. The func-

tion of LAT1 (the heterodimer of SLC7A5 and

SLC3A2) is linked to that of SLC1A5, as it uses the

efflux of glutamine to drive the uptake of leucine, which

subsequently activates mTOR signaling. These two pro-

teins can cooperatively drive the proliferation of tumor

cells [201]. xCT (the heterodimer of SLC7A11 and

SLC3A2) is essential for maintaining the redox balance

of cells and the increased expression of xCT in cancer

cells allows cells to reduce their oxidative stress and

avoid apoptosis [158,200]. This dimer has upregulated

expression in breast cancers that metastasize and inhibi-

tion of SLC7A11 (the functional subunit of xCT) delays

lung metastasis, suggesting that xCT plays a significant

role in cancer metastasis [202,203].

SLC43A1, similarly to LAT1, has upregulated

expression in cancers as a source of essential amino

acids (in particular leucine) [191,204]. SLC43A1 has

also been implicated in cell proliferation and is partic-

ularly implicated in the severity of prostate cancers

[194].

SLC6A14, a highly concentrative amino acid trans-

porter, is expressed at higher levels in cancers in vari-

ous tissue systems (e.g., breast, colorectal, cervical)

[131,200]. Owing to the fact that SLC6A14 is generally

expressed lower in healthy tissues than in cancerous

tissues, it serves as a promising drug target.

Transport of vitamins

Vitamins like ascorbic acid, folates, and thiamine are

used in cells as the precursors of various compounds,

as cofactors in metabolism and regulators of oxidative

stress. Three SLC families drive the transport of these

compounds, SLC19, SLC46, and SLC23 (Fig. 3A).
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SLC19/ SLC46

The SLC19 family of proteins contains three members

that transport either reduced folates (SLC19A1 [RFC])

or thiamine (SLC19A2 [ThTr1] and SLC19A3

[ThTr2]), driven by the antiport of organic anions

[205]. These proteins are expressed throughout the

body, ensuring proper levels of these critical vitamins

in tissues [206]. The term folates refers to a larger

group of water-soluble B vitamins that are the precur-

sors and substrates for many different compounds

related to cell and tissue growth and development

[207]. Thiamine, also known as vitamin B1, also plays

a critical role in cells as a cofactor in energy metabo-

lism and also as a regulator of oxidative stress [208].

All three proteins perform the most efficient transport

at a neutral extracellular pH (around 7.4), with effi-

ciency dropping as pH does [206,207]. This may be

due in part to the changing H+/OH� gradient across

cell membranes [205].

SLC19A1 has a MFS structure and consists of 12

TM segments, with both N and C termini localizing to

the cytoplasm [209]. The concentrative transport of

SLC19A1 is driven by the export of anionic cellular

metabolites down their concentration gradients [207].

SLC19A1 was identified in a recent study to also

transport a cyclic dinucleotide that is produced when

cytosolic DNA binds to cyclic GMP-AMP synthase,

thus playing a role in triggering larger immune

responses [210].

SLC19A2 and SLC19A3 share 48% identity and

have different expression patterns within cells and

affinities for thiamine. SLC19A2 is expressed primarily

at basolateral membranes while SLC19A3 localizes to

the apical membrane of cells. This localization suggests

that SLC19A2 plays a role in thiamine export while

the higher affinity transporter SLC19A3 directs the

accumulation of thiamine into the cell [211,212].

A functionally related family of proteins is the

SLC46 proteins. This family of proteins contains three

members, two of which remain largely orphan trans-

porters (SLC46A2, SLC46A3) [206]. SLC46A1 (PCFT)

is a proton-coupled folate transporter that mediates

the absorption of folate in the intestine, as well as

transporting it into the CNS [206,213,214]. SLC46A1

performs electrogenic transport at a low pH, where it

has an affinity for both folic acid and reduced folates

[206].

SLC23

The SLC23 family of transporters contains three

members that regulate intracellular ascorbate concen-

trations [215]. SLC23A1 (SVCT1) and SLC23A2

(SVCT2) are both well characterized, while SLC23A3

(SVCT3) remains an orphan transporter [216]. Both

characterized transporters are highly selective for L-

ascorbic acid, with SLC23A1 having slightly higher

H+

Folates

H+

Thiamine

Folates

OH–

SLC19A2

SLC19A1

SLC46A1

H+
Electrochemical gradients

OH–

Na+

SLC29A1

SLC28A1

Purines/
Pyrimidines

Pyrimidines

Na+

Cytosol Extracellular 
space
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B

Fig. 3. (A) Examples of SLC proteins transporting vitamins (SLC19

and SLC46). SLC19A1 is the folate transporter, while SLC19A2

represents the thiamine transporters. SLC46A1 is a functionally

related protein that drives the absorption of folate. (B) Examples of

SLC proteins transporting nucleotides and nucleosides (SLC28 and

29). SLC28A1 is shown as an example of a concentrative

nucleoside transporter (CNT), while SLC29A1 is shown as an

example of an equilibrative nucleoside transporter (ENT).
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capacity but lower affinity than SLC23A2 [217].

SLC23A1 and SLC23A2 are both sodium-dependent

transporters that have a stoichoimetry of 2 Na+ : 1

ascorbic acid down sodium’s electrochemical gradient

[216]. Interestingly, SLC23A2 is also dependent on

the presence of Ca2+ and Mg2+ in order to function,

with the cations switching the transporter into an

active form [218]. SLC23A1 is expressed mainly in

intestinal and renal proximal tubule epithelial cells at

the apical membrane [215]. SLC23A2 is expressed

throughout the body and is expressed at its highest

levels in brain, lung, and bone tissue [218]. It serves

as the only specific ascorbic acid transporter in neu-

ronal and glial cells, thus far [219]. SLC23A2 has

been shown to localize to both the cell membrane

and the mitochondria of tissues [218,220]. Interest-

ingly, when localized to the mitochondria, SLC23A2

does not require the presence of Ca2+ and Mg2+ in

order to function [221].

Vitamin transporters in cancer

Nutritional factors, like ascorbate, thiamine, and

folates, function as critical cofactors for enzymes are

intermediates in carbohydrate metabolism and regula-

tors of the oxidative balance of cells

[207,208,215,222]. Thus, the proper transport of

ascorbate, folate-related nutrients, and thiamine are

critical to preventing carcinogenesis [222–225]. Folates
are particularly important for one-carbon metabo-

lism, wherein 5-methyltetrahydrofolate is used in the

production of S-adenosylmethionine (SAM) [225].

Thiamine is important for several metabolic enzymes

[224]. Although the link between thiamine consump-

tion and the development of cancer remains unclear,

studies have shown links between carcinogenesis and

lower intracellular and blood levels of these vitamins

[224]. Ascorbate plays a key role in maintaining the

redox balance of cells by reducing reactive oxygen

species and quenching free radicals [222]. Ascorbate

also helps regulate the function of a-ketoglutarate-de-
pendent dioxygenases (a-KGDDs), a diverse family

of proteins that (among other functions) play a role

in regulating DNA methylation and are often down-

regulated in cancers [222,226]. Perhaps most impor-

tantly for its relation to cancer development and

progression, ascorbate is a cofactor for HIF hydroxy-

lases, proteins which identify HIF for degradation

[227].

Dysregulation of vitamin transporters, and in partic-

ular SLC19A1 and SLC19A3, has been linked to car-

cinogenesis, as well as therapy resistance owing to

their role as important drug transporters [223,224].

SLC19A1 is the primary transport mechanism for the

delivery of antifolates to tumor cells, as it is expressed

ubiquitously in tumor cells [206]. Polymorphisms of

this transporter have been associated with an increase

in adverse drug responses [228,229]. SLC46A1 pro-

vides an intriguing opportunity to harness its concen-

trative transport activity in acidic environments, which

are often found in the tumor microenvironment [230].

SLC46A1, which is ubiquitously expressed in solid

tumors, could in principle afford a more targeted

delivery of antifolate drugs to tumor cells [230].

Expression of SLC19A3 in cancerous cells has been

shown to be both increased and decreased and further

studies are needed to elucidate the role SLC19A3 plays

in cancer cells [224,231]. SLC19A3, like other trans-

porters that have been discussed in the review, is also

regulated by HIF-1a [232]. This study showed that

under hypoxic conditions the expression of SLC19A3

is induced, leading to higher import of thiamine and

suggesting an adaptive role for SLC19A3 in hypoxic

environments [232].

Various polymorphisms of SLC23A2 have been

associated with an increased risk of both colorectal

adenoma and gastric cancer, while SLC23A1 polymor-

phisms have shown conflicting results for their link to

cancer risk [227,233–235]. Vitamin C has emerged as

an intriguing therapeutic tool in oncology, with high

concentrations of vitamin C killing colorectal cells by

increasing oxidative stress in cells, inactivating

GAPDH and reducing tumor size [222,236,237]. The

varying localization of SLC23A2 in cells may be

important for helping increase the therapeutic effect of

vitamin C, as its mitochondrial localization in most

cancer cell lines has allowed for mitochondria to be

targeted in cancer therapeutics [238]. A recent study

showed that a combinatorial therapy of doxycycline,

azithromycin, and vitamin C effectively eradicates can-

cer stem cells [239]. Similarly, a combination treatment

of vitamin C and cetuximab was recently shown to be

an effective treatment to limit the development of

acquired resistances in colorectal cancer, slowed the

growth of cancerous cells, and impaired the structure

of organoids [240].

Transporters of nucleotides/
nucleosides

As the building blocks for DNA and RNA, as well as

fulfilling a multitude of different signaling roles within

and between cells, the transport of nucleotides, nucleo-

sides, and related compounds is critical for cell health.

In this section, SLC families 28 and 29 are reviewed

(Fig. 3B).
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SLC28/SLC29

Both SLC28 and SLC29 families provide the transport

of nucleotides and nucleosides [241,242]. Both families

also drive the transport of a significant number of

nucleoside-analog-based drugs, including clofarabine,

zebularine, and ribavirin [243]. In general, SLC28 pro-

teins show a higher affinity for their substrates than

SLC29 proteins, although SLC28 proteins have a

lower turnover number in transport [241].

The SLC28 family of proteins consists of three pro-

teins that provide the concentrative transport of nucle-

osides and are referred to as concentrative nucleoside

transporters (CNT). These proteins link the import of

nucleosides with sodium ions [241,244]. SLC28A1

(CNT1) and SLC28A2 (CNT2) have a transport stoi-

chiometry of 1 Na+ : 1 nucleoside while SLC28A3 has

a stoichiometry of 2 Na+ : 1 nucleoside [245]. These

proteins are predicted to consist of 13 TM domains,

with extracellular C terminus and an intracellular N

terminus [244]. These proteins all localize primarily to

the apical membrane of cells, where they provide the

reabsorption of nucleosides from the extracellular

milieu [246].

SLC28A1, unlike SLC28A2 and SLC28A3, does not

transport adenosine, instead exhibiting a higher affinity

for pyrimidine and pyrimidine-based analogs [245,247].

This protein is highly expressed in epithelial tissues,

where levels vary as cell progress through the cell cycle

[248]. In general, SLC28A1 tends to be upregulated in

highly proliferating cells, possibly compensating for

insufficient enzymatic synthesis of certain nucleosides

with higher uptake [248,249].

SLC28A2 has a higher affinity for purine nucleo-

sides than SLC28A1 and SLC28A3 [241]. In proliferat-

ing cells, this protein has been shown to salvage

extracellular adenosine, triggering the activation of

AMP-dependent protein kinase [250]. SLC28A2 has a

varied subcellular distribution, localizing to both the

cell membrane and intracellular vesicles in certain cell

lines. This localization has been shown to be regulated

by bile acids (BA), with extracellular BA triggering

translocation to the cell membrane [251].

Unlike SLC28A1 and SLC28A2, SLC28A3 has

coupled transport of substrates to both Na+ and H+

[243]. Interestingly, the affinity of SLC28A3 toward

substrates changes depending on which cation is

being cotransported [252]. Na+-coupled SLC28A3

transports a wider spectrum of pyrimidine and purine

nucleosides/nucleoside drugs while H+-coupled trans-

port is more selective and does not transport guano-

sine or zidovudine (an antiviral nucleoside drug)

[243,252].

The SLC29 protein family encodes four transport

proteins that are referred to as equilibrative nucleoside

transporters (ENTs) [242]. These proteins provide the

facilitative transport of nucleosides and nucleobases

(and monoamines in the case of SLC29A4 (ENT4)), a

function that is critical for nucleotide synthesis [241].

SLC29 members are expressed in all tissues [242].

These proteins are predicted to have 11 TMs, with a

cytoplasmic N terminus and an extracellular C termi-

nus [241,253]. These proteins also mediate the trans-

port of nucleoside drugs like gemcitabine and

didanosine and are predictors of treatment responses

in diseases like pancreatic cancer and gallbladder ade-

nocarcinomas [243,254,255].

SLC29A1 (ENT1) and SLC29A2 (ENT2) transport

similar substrates across the plasma membrane,

although their affinities to purine and pyrimidine

nucleosides differ [242]. Through their role in control-

ling the nucleotide pool available for DNA synthesis,

these transporters play a role in regulating the progres-

sion of cells through the cell cycle [256].

SLC29A4 (ENT4) localizes to the apical membrane

of renal cells, where it provides proton-driven organic

cation reabsorption [257]. This protein’s activity is pH

sensitive, with increases in pH resulting in diminished

transport and acidic environments activating the pro-

tein [257]. SLC29A4 transports mainly adenosine,

although it also shows affinity for a wider range of

biogenic amines [258].

Nucleotide transporters and cancer

The uptake of nucleosides driven by SLC28 and

SLC29 proteins provides cells with the building blocks

for nucleotide synthesis. Thus, rapidly dividing cells

often rely on these nucleoside/nucleotide transporters,

resulting in increased expression of these transport

proteins to provide these building blocks [241]. Yet,

decreased expression of SLC28 and SLC29 proteins

has also been found in hypoxic environments [259].

There, HIF-1a signaling decreased the expression of

SLC29A1 and SLC29A2, resulting in higher extracellu-

lar adenosine concentrations [260]. Increased expres-

sion of SLC28A1 has also been linked to a decreased

proliferation of cancerous cells [261,262]. A recent

study showed that restoring the expression of

SLC28A1 reduced the growth of tumors in mice. How-

ever, this study showed this effect occurred indepen-

dent of transport, suggesting that SLC28A1’s

antiproliferative effect was signaling related [261].

SLC28 and SLC29 proteins also transport a signifi-

cant amount of different nucleoside analogs like clo-

farabine, zebularine, and ribavirin, whose
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pharmacokinetics are relevant to a wide variety of dif-

ferent diseases (e.g., viral infections, cancer, inflamma-

tory diseases, autoimmune disorders) [243,263,264].

Variances in transporter distribution and expression

are also linked to differing treatment outcomes, with

higher expression of transporters generally resulting in

higher sensitivity to nucleoside analogs [264].

Transporters of bicarbonate ions and
protons

Through the transport of bicarbonate ions and pro-

tons, SLC families 4, 9, and 26 play a major role in

the regulation of cellular pH, along with signaling

events related to the transport of these compounds

(Fig. 4A).

SLC4

The SLC4 family has 10 different members that have

linked the transport of bicarbonate (or carbonate) with

the transport of at least one other ion, Na+ and/or Cl�

[265]. These proteins play a critical role in the acid–
base homeostasis of the body by acting as either acid

loaders or acid extruders, thus regulating both intra-

and extracellular pH [266–268]. SLC4 protein topology

consists of 10–14 TM domains with hydrophobic N

and C termini extending into the cytoplasm [269–271].
Based on structural similarities between SLC4A1 and

a bacterial uracil:proton symporter, SLC4 proteins

with 14 TM domains are predicted to be organized in

a 7TM-inverted repeat (7TMIR), meaning that the

two structurally related halves span the membrane in

opposite orientations and form a functional inter-

twined structure [272,273]. More recently, the cryoEM

structure of SLC4A4 revealed the structural details of

the ion pathways that dictate transport of substrates

[274]. Many SLC4 proteins form dimers and oligomers

and although the functional relevance of this dimeriza-

tion is not entirely elucidated, in both bacterial and

eukaryotic homologues dimerization is necessary for

transport function and/or proper localization to the

PM [266,273,275,276].

The SLC4 family includes several functional subfam-

ilies: (a) SLC4A1 (AE1, also commonly referred to as

Band 3 protein), SLC4A2 (AE2), and SLC4A3 (AE3)

are all Cl�/HCO3
� anion exchangers (AE); (b)

SLC4A4 (NBCe1) and SLC4A5 (NBCe2) are electro-

genic Na+/HCO3
� cotransporters (NBCs); (c) SLC4A7

(NBCn1) and SLC4A10 (NBCn2) are electroneutral

NBCs [265]. For SLC4A8 (NDCBE), SLC4A9 (AE4)

and SLC4A11 (BTR1), substrates have not been fully

resolved.
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Fig. 4. (A) Examples of SLC proteins transporting protons and

bicarbonate ions (SLC4, SLC9, SLC26). SLC4A1 represents the

subfamily of anion exchangers (AE), SLC4A4 represents the

subfamily of electrogenic Na+/HCO3
� cotransporters, while

SLC4A7 represents the subfamily of electroneutral Na/HCO3
�

cotransporters. SLC9A1 serves as the prototypical Na+/H+

exchanger. SLC26A1 is an example of an SLC26 transporter that

cotransports sulfate with Cl�. (B) Examples of SLC proteins

transporting divalent ions (SLC8 and SLC24). SLC8A1 is shown as

an example of a Ca2+/Na+ exchanger. SLC24A1 is shown as an

example of K+-dependent Na+/Ca2+ exchangers.
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SLC4A1 is the predominant transport protein in the

cell membranes of erythrocytes, where it participates

in clearing CO2 from tissues to the lungs [265].

SLC4A1 is also highly expressed in the basolateral

membrane of renal cells, where it functions to reabsorb

HCO3
� into the blood [265]. SLC4A2 is the most

widely expressed of the anion exchangers, localizing to

the basolateral membrane of most epithelial cells [265].

SLC4A2 and SLC4A3 are both regulated by pH, with

increases in either intra- or extracellular pH resulting

in increased activity [277,278].

SLC4A4 (NBCe1) acts as an electrogenic Na+/

HCO3
� cotransporter at the basolateral membrane of

renal proximal tubules, pancreatic ducts, and epi-

didymis and is also expressed at lower levels through-

out the body [265]. SLC4A5 (NBCe2) generally

localizes to the Golgi apparatus within cells, but when

intracellular sodium concentrations increase, the trans-

porter is moved to the apical cell membrane [279].

SLC4A7 (NBCn1) is an electroneutral Na+/HCO3
�

cotransporter expressed throughout the body but par-

ticularly in the spleen and testis [280]. SLC4A10

(NBCn2) is primarily found in the brain, where it

functions as an electroneutral Na+/HCO3
� cotrans-

porter [265]. SLC4A10 is expressed on the basolateral

membrane of the choroid plexus epithelium, where its

activity contributes to CSF secretion [281].

SLC4A8 encodes a Na+-driven Cl�/HCO3
� exchan-

ger (NDCBE), importing Na+ and HCO3
� in exchange

for intracellular Cl� [282]. However, the substrate

specificity is not entirely clear, as some data suggest

Cl- is not necessary for transport [266,283]. This pro-

tein is primarily expressed at the plasma membrane

throughout the CNS, where it may play a role in the

pH regulation of neurons [284]. Although the protein

encoded by SLC4A9 is called AE4, it was recently

found to be an electroneutral Na+-dependent Cl�/
HCO3

� exchanger that localizes to the basolateral

membrane in cortical collecting ducts [285,286].

Finally, SLC4A11 (BTR1) is expressed throughout

the body and does not transport bicarbonate. Rather,

it was recently proposed to be an NH3/2H
+ cotrans-

porter, as well as acting as a sodium-independent

borate transporter [287,288]. Of its three main splice

variants, only SLC4A11-B and SLC4A11-C are

expressed as plasma membrane proteins, with

SLC4A11-A localizing intracellularly [288].

SLC9

The SLC9 family of proteins consists of 13 proteins

that mainly act as Na+/H+ exchangers, using the Na+

gradient to transport H+ (or Li+) across membranes

and thus contribute greatly to the pH homeostasis of

both cells and organelles [289,290]. These 13 proteins

are organized into three different families, SLC9A

(the Na+/H+ exchangers), SLC9B (two Na+ or Li+/H+

exchangers), and SLC9C (two Na+/H+ exchangers

expressed primarily in sperm tissue) [290,291]. Inter-

estingly, this family of proteins has relatively large

differences in their protein sequences, with the two

most disparate transporters (SLC9A1 and SLC9A9)

having only 12% amino acid identity [292]. Despite

these differences in sequence however, these proteins

are predicted to have relatively similar architecture,

with 10 to 12 TM segments and a cytoplasmic C-ter-

minal tail that acts as a regulatory domain [289,293].

Although all SLC9 members are functional mono-

mers, these proteins contain dimerization domains

and some members of the SLC9 family have been

shown to form homodimers as a way to increase their

stability [289,290,294,295]. Studies investigating the

dimerization of SLC9A1 (NHE1) showed that this

dimerization is critical to the proper transport func-

tion of these proteins [296]. Expression patterns of

these proteins vary greatly between the 13 proteins.

SLC9A1 is expressed in almost every tissue in the

body, although the transporter is often localized to

specialized membrane domains in tissues [297,298].

Other SLC9 transporters are expressed in a more tis-

sue or temporally dependent manner, like SLC9A4,

which is expressed primarily in the stomach [292].

Cellular localization of these proteins varies greatly

within the family as well, with SLC9A1, SLC9A2,

and SLC9A4 (NHE4) all localizing to the plasma

membrane of cells [289]. SLC9A3 and SLC9A5

(NHE5) are both trafficked between the plasma mem-

brane and endosomes [299]. SLC9A5 regulates the pH

of both endolysosomes (when it is internalized) and

locally at the cell membrane, which regulates cell

motility, neuronal differentiation, and synaptic plastic-

ity [300,301]. SLC9A6 (NHE6) is primarily an endo-

somal transporter, although it localizes to cell

membranes after certain stimuli [290]. This Na+ or

K+/H+ exchanger helps regulate intraluminal pH and

dysfunction of this transporter has been associated

with severe neurological disorders like Christianson

syndrome, X-linked intellectual disability, and Angel-

man-like syndrome [302,303]. The transport activity

of the two SLC9B proteins, SLC9B1 (NHA1) and

SLC9B2 (NHA2), remains relatively unclear, although

they are thought to drive Na+/Li+ counter-transport,

as well as (Na+ or Li+)/H+ transport [290,291,304].

Depletion of these proteins has been linked to impro-

per sperm motility and osteoclast differentiation,

respectively [290].
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SLC26

The SLC26 family of transport proteins has 10 members

that transport, with different specificity, a variety of

anions, including Cl�, HCO3
�, sulfate, oxalate, I�, and

formate [305,306]. The transport system of this family

varies, with members being characterized as channels or

electrogenic/electroneutral exchangers [307]. SLC26

proteins share similar structural features, all consisting

of 14 TM segments. Like SLC4 proteins, these are

arranged in a 7TMIR architecture [308,309]. These two

halves have slightly different functional roles, with one

being the core, substrate-binding domain while the other

acts as an elongated gate domain shielding the core

binding domain [273]. As with all other 7TMIR pro-

teins, SLC26 family members form dimers in the mem-

brane, although the exact physiological role for

dimerization is not yet clear [308].

These proteins are of particular importance in the

gastrointestinal tract, where they regulate pH, moder-

ate water absorption, and the absorption and secretion

of specific substrates [310]. For example, SLC26A1

and SLC26A2 provide the largest source of SO4
2�

uptake in the intestine, localizing to the basolateral

and apical membranes of cells, respectively [306,311].

SLC26A3 meanwhile is a Cl�/HCO3
� transporter that

is critical to the formation of mucus membranes and

epithelial tissues [312–314]. The role of SLC26 proteins

in the gut environment has also implicated these pro-

teins in the composition of the microbiome [315,316].

pH regulation and cancer

Aberrant regulation of pH in cells has long been

linked to the development and progression of cancer

[317–319]. The ability of cell to regulate their pH bal-

ance is critical to maintaining a healthy metabolic bal-

ance in cells. The regulation of pH can also be

weaponized as a way to treat cancerous cells in a more

targeted fashion [317]. Understanding the role these

transporters play in the development and progression

of cancer could potentially unveil vulnerabilities allow-

ing for more targeted treatments. SLC9A1, SLC4A7,

and SLC26A3 are particularly well-studied examples

of proton or bicarbonate transporters having an influ-

ence on cancer development and progression. SLC9A1,

as the primary proton transporter of cells, has been

extensively studied as the target of cancer therapeutics

[320,321]. In brief, the over activity of SLC9A1 leads

to both cellular alkanization and the acidification of

the microenvironment around cells. These changes in

cellular state and environment result in increased cellu-

lar proliferation and loss of cell–cell contact, which

increases the possibility of cellular migration, invasion,

and metastasis [322]. SLC9A1 and SLC4A7 have been

suggested to work in conjunction to control changes in

pH and thus act as cell cycle regulators [323]. SLC4A7

also contributes to the progression of cancer by driv-

ing the efflux of acidic waste products that are by-pro-

duct of increased cellular metabolism, a hallmark of

carcinogenesis [324]. SLC26A3 is another bicarbonate

transporter studied in the context of cancer, as its

expression is often downregulated in adenomas [325].

However, its specific role in relation to cancer develop-

ment is not clear [326]. In healthy gut cells, this trans-

porter has been found to interact with tight junction

proteins and play a role in protecting the epithelial

barrier, suggesting that this transporter may play a

role in cellular growth or motility [312,327].

Transport of calcium ions

The Ca2+ ion is a critical signaling compound in cells,

such as playing a role in neuronal action potentials,

the restructuring of cytoskeletal components and cell

death. In order to lower the intracellular concentration

of Ca2+ after a signaling event that resulted in an

influx of free Ca2+, cells rely on two different SLC

families of proteins to return to their baseline levels:

SLC8 and SLC24 (Fig. 4B) [328]. Another significant

source of calcium transport is provided by ATPase

pumps, but will not be covered here [329].

SLC8/SLC24

The SLC8 family of proteins includes four Na+/Ca2+

exchangers that consist of 10 TM domains, binding

Ca2+ ions with a large cytosolic loop between TM5

and TM6 [330–333]. These proteins are widely

expressed throughout the human body and restore cal-

cium concentrations after a signaling cascade triggered

either the release or uptake of this ion [334]. With a

transport stoichiometry of 3 Na+ : 1 Ca2+, these pro-

teins perform electrogenic transport, with the direction

of transport depending on the membrane potential, as

well as the concentration gradient of both Na+ and

Ca2+ [330,335]. Due to this critical role in cellular sig-

naling and homeostasis, the SLC8 family has been

implicated in different diseases, such as increased inva-

sion of carcinomas, diabetes, and aberrant cardiac sig-

naling [336–339]. The four characterized members of

this family are SLC8A1 (NCX1), SLC8A2 (NCX2),

SLC8A3 (NCX3), and SLC8B1 (NCLX) [330]. SLC8

proteins are regulated by the binding of Ca2+ and Na+

ions [330]. A critical component of SLC8 structure,

calcium-binding domains (CBDs) have differing roles
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in these transporters [332]. For example, in SLC8A1,

CBD1 serves as the primary Ca2+ sensor and activates

the protein while the second CBD stimulates higher

Ca2+ flux when unbound intracellular calcium concen-

trations are at higher levels [332]. This regulation of

SLC8 proteins allows cells to precisely respond to cal-

cium concentrations by changing protein localization

and function in cells [340,341].

The SLC24 family of proteins contains 5 different K+-

dependent Na+/Ca2+ exchangers [342]. SLC24 uses the

electrochemical gradients of both Na+ and K+ to drive

the efflux of Ca2+ [343]. These proteins are expressed in

many different tissue types, although their roles are best

understood in photoreceptor, neuronal, and smooth mus-

cle cells [342,343]. Both SLC24A1 (NCKX1) and

SLC24A2 (NCKX2) have been shown to transport these

ions at a stoichiometry of 4 : 1 : 1 (Na+ : Ca2+ : K+)

[342]. A recent study showed that SLC24A1, SLC24A2,

SLC24A3 (NCKX3), and SLC24A4 (NCKX4) all local-

ize to the plasma membrane [344]. This study also sug-

gested that these proteins all share similar topology,

consisting of two sets of five-TM domains connected by a

large intracellular loop [344].

Transport of calcium ions in cancer

Among its many roles, calcium signaling is involved in

angiogenesis (the generation of new blood vessels), neu-

ronal signaling, and cell migration and can be altered in

some cells, resulting in adaptive advantages over healthy

cells and thereby promoting carcinogenesis [345,346].

SLC8A1 has been shown to play a role in angiogenesis

[346,347]. As sodium and calcium concentrations change,

this transporter has its transport direction reversed,

resulting in ERK1/2 activation and subsequent enhanced

angiogenesis [347]. Interestingly, SLC8A2 has been

shown to act as a tumor suppressor in the brain, as

increased expression of the transporter inhibits angiogen-

esis and slows tumor growth and invasion [348]. Lower

expression of SLC8A1 has also been detected in certain

cancers, and the resulting decrease in intracellular cal-

cium consequently suppresses apoptosis [349]. SLC24A4,

as well as SLC8A3, has been shown to be overexpressed

in therapy-resistant ovarian carcinoma cells [350]. How-

ever, the specific role that SLC24 proteins may play in

carcinogenesis remains unclear.

Transport of Inorganic Ions by SLC12
transporters

In this section, SLC12 family is reviewed, a family of

SLC proteins that transport ions closely related to cell

volume regulation. These proteins drive the transport

of Cl� with either Na+ and/or K+, resulting in elec-

troneutral transport (Fig. 5A). The flux of K+ and Cl�

ions and the resulting movement of water across the

membrane largely regulate changes to cell volume and

concurrent cell movement [351].
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SLC13A5

SLC16A1

Electrochemical gradient
Na+
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K+

3 Na+
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SLC13A1

Cl–
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Fig. 5. (A) Examples of SLC proteins transporting inorganic ions

(SLC12). SLC12A1 represents the subfamily of Na+-dependent

cation-Cl� cotransporters (NCC), while SLC12A4 represents the

subfamily of Na+-independent cation- Cl� cotransporters (KCC). (B)

Examples of SLC proteins transporting carboxylates (SLC13, and

SLC16). SLC13A1 represents the subfamily of Na+-dependent

sulfate transporters (NaS), while SLC13A5 represents the

subfamily of Na+-dependent di- and tricarboxylate transporters

(NaDC). SLC16A1 is shown as an example of a monocarboxylate

transporter (MCT).
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SLC12

The SLC12 family contains 9 proteins, which encode

for electroneutral cation-chloride cotransporters

[352,353]. This family includes two main subfamilies:

transporters that are sodium-dependent and those that

are sodium-independent [353]. These proteins have a

common structure, consisting of 12 TM segments with

intracellular N and C termini [352]. There are three

sodium-dependent cotransporters—SLC12A1

(NKCC2), SLC12A2 (NKCC1), and SLC12A3 (NCC)

—and four sodium-independent cotransporters, known

as the Na+-independent K-Cl cotransporters (KCC)—
SLC12A4 (KCC1), SLC12A5 (KCC2), SLC12A6

(KCC3), and SLC12A7 (KCC4) [55].

SLC12 transport proteins in cancer

In tumors like gliomas, SLC12A2 takes up Cl�, creat-
ing the energetic driving force for the resulting volume

increase through water uptake [351]. In addition to

regulating cell volume, SLC12A2 impacts cellular

migration, with higher expression of this transporter

resulting in greater tumor growth, invasive phenotypes,

and overall poorer clinical outcomes [354]. SLC12A6

and SLC12A7 are both upregulated in cancer, develop-

ing a more invasive phenotype of tumors [355].

Increased SLC12A6 expression plays an important role

in triggering the epithelial–mesenchymal transition by

downregulating E-cadherin/b-catenin complex forma-

tion and weakening cell–cell association, while

SLC12A7 overexpression results in increased filopodia

formation and can act as a cytoskeletal scaffold allow-

ing for higher rates of invasive migration [355,356].

Thus, the increased expression of these transport pro-

teins results in more aggressive and invasive behavior

[355,356].

Transport of carboxylates

SLC13 and SLC16 are the primarily drivers of car-

boxylate transport in cells (Fig. 5B). The transport of

these substances is critical to regulating cellular volume

and maintaining sufficient energy production.

SLC13

The SLC13 family of proteins contains five members

that perform Na+-dependent, electrogenic transport of

anionic substances like sulfates and di- and tricarboxy-

lates used in the Krebs cycle (e.g., succinate, citrate, a-
ketoglutarate) [357]. These transporters are expressed

throughout the body in different kinds of tissue, with

the highest expression of these proteins in the kidney,

liver, small intestine, placenta, or brain [357]. SLC13

proteins transport their substrates with a stoichiometry

of 3 Na+ : 1 substrate. This family can be separated

into two subfamilies with distinctly different sub-

strates: the sulfate transporters (SLC13A1 [NaS1] and

SLC13A4 [NaS2]) and the di- and tricarboxylate trans-

porters (SLC13A2 [NaDC1], SLC13A3 [NaDC3], and

SLC13A5 [NaCT]) [358].

SLC13A1, which localizes to the apical membrane

of brush-border membrane in the epithelial cells of the

kidney, directs the reabsorption of 90% of filtered sul-

fates [359,360]. SLC13A4 is expressed at lower levels

throughout the body and at higher levels in the pla-

centa and the brain [361]. Its functional role in tissues

is not yet fully understood [357].

The SLC13 di- and tricarboxylate transporters regu-

late and maintain the proper levels of citric acid cycle

intermediates like succinate, citrate, and malate in cells

[362] and have hence been considered as potential drug

targets in metabolic disorders [358,362]. SLC13A2 is

expressed at the apical membrane of renal proximal

tubule cells and small intestine cells, which it absorbs all

major dicarboxylate ions [357,363]. This protein plays a

major role in facilitating cell’s oxidative metabolism by

taking up citric acid cycle intermediates [357]. SLC13A3

transports the same substrates as SLC13A2 across the

basolateral membrane of kidney cells, although at

higher affinities [358]. SLC13A5 is a Na+-dependent

transporter that, unlike the other members of the

SLC13 family, transports 4 Na+ ions with each substrate

molecule [364]. This protein drives the transport of pri-

marily citrate and, at a lower affinity, succinate across

the plasma membrane of cells [357]. This protein is most

highly expressed in liver and brain tissues [358].

SLC16

The SLC16 family of proteins contains 14 transport

proteins that are also known as monocarboxylate

transporters (MCTs) [365]. The characterized members

of the SLC16 family passively transport protons and

different groups of monocarboxylates across the cell

membrane [366,367]. These proteins are predicted to

be MFS structure proteins, consisting of 12 TM helices

with intracellular C and N termini [368]. SLC16A1,

16A8, and 16A3 (MCT1, 3, and 4, respectively) all

interact with a chaperone protein, CD147 (basigin), in

order to properly translocate to the cell membrane,

where the transporter and chaperone remain closely

associated [369,370]. SLC16A7 (MCT2) requires a dif-

ferent chaperone, gp70 (embigin), to properly localize

to the plasma membrane [371].
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SLC16A1, SLC16A7, SLC16A8, and SLC16A3 can

all perform either efflux or import of their substrates

depending on the concentration gradients of their sub-

strates and the pH gradient across the membrane

[367]. Of these four proteins, SLC16A1 and SLC16A3

are two proteins that are closely linked in both their

function and role in diseases, in particular in cancer

[372]. SLC16A1 is expressed at the plasma membrane

in most tissues of the body, where it provides proton-

coupled passive transport of lactate, pyruvate, and

ketone bodies [368]. SLC16A3, on the other hand, is

expressed primarily in tissues that rely heavily on gly-

colysis as a source of energy and transports both lac-

tate and ketone bodies [368]. Within a given

microenvironment, primary role of SLC16A1 and

SLC16A3 within cells are lactate import and lactate

export, respectively [372]. Well-perfused cells have

higher expression of SLC16A1, which imports lactate,

helping fuel oxidative phosphorylation. Poorly per-

fused cells are in more hypoxic environments and rely

on glycolytic pathways to generate energy and express

SLC16A3 to export lactate [373].

SLC16A7 is expressed throughout the body, with

high expression levels in the liver, kidneys, testis, and

brain [367]. This protein localizes to the plasma mem-

brane where it functions as an importer of lactate,

although it can also transport other monocarboxylates

like pyruvate or ketone bodies [374]. Among all family

members, SLC16A7 has the highest affinity for mono-

carboxylates [375].

Unlike the more widely expressed family members,

SLC16A8 is expressed primarily in retinal pigmented

epithelial cells and choroid plexus epithelial cells where

it transports protons and lactate, potentially inhibiting

photoreceptor signaling [376,377]. SLC16A2 (MCT8)

is expressed in various tissues and is a very specific

high-affinity thyroid hormone (TH) transporter [378].

SLC16A10 (MCT10) shares high amino acid similarity

(58%) to SLC16A2, but functions as a sodium-inde-

pendent transporter of aromatic amines and localizes

to the basolateral membrane [379–381].

Transport of carboxylates in cancer

In cancerous cells, the transport of carboxylates is

often dysregulated, driving more invasive phenotypes

or enabling metabolic changes [131,351].

Due to the increase in anaerobic metabolism, which

produces large quantities of lactate, SLC16 trans-

porters serve as intriguing therapeutic targets [373].

Both SLC16A1 and SLC16A3 protein expression is

modulated in cells via CD147, a cell surface glycopro-

tein often overexpressed in cancers that stimulate

cellular proliferation, invasiveness of cancer cells, and

angiogenesis [373,382]. As detailed above, the two

transporters work in conjunction and thus increased

expression of these transporters does not usually hap-

pen in the same cells. In fact, targeting this relation-

ship using SLC16A1 inhibitors to prevent lactate-

based respiration slowed tumor growth and made can-

cer cells more sensitive to irradiation [383].

SLC16A7’s subcellular localization has been shown

to change in cancerous tissues, where there is a dra-

matic decrease in plasma membrane expression [384].

SLC16A7 was found to instead localize to peroxi-

somes, where it may increase b-oxidation levels and

contribute to malignant transformation [385]. A recent

study showed that SLC16A7 is directly involved in

forming the premetastatic niche of breast cancer by

inducing the activity of collagen hydroxylase enyzmes,

allowing for collagen remodeling [386].

Transport of phosphate

Inorganic phosphate is a substrate critical to many cel-

lular metabolites such as nucleic acids and phospho-

lipids and is central to metabolic processes like energy

production [387]. The transport of this critical anion is

driven by two SLC families, SLC20 and SLC34, which

are reviewed in the following section (Fig. 6A).

SLC20

The SLC20 family contains only two proteins,

SLC20A1 (PiT-1) and SLC20A2 (PiT-2), that are both

Na+-dependent transporters of inorganic phosphate

(Pi) [388]. SLC20 proteins preferentially transport

monovalent Pi ions with a transport stoichiometry of 2

Na+ : 1 Pi [389]. These proteins are predicted to con-

sist of 12 TM segments, with extracellular N and C

termini, and are expressed at the cell membrane of

most tissues [388,390]. Of note, both SLC20 proteins,

through their role as phosphate transporters, also play

a role in bone mineralization [391–393]. The expression

of these transporters is inducible, with lower extracel-

lular Pi concentrations resulting in an increase in

expression of these proteins [394,395]. A recent study

also suggested that these transporters play a role in

sensing and responding to extracellular levels of Pi

independently of their transport functions [396].

SLC34

The SLC34 family contains three proteins that couple

the transport of Pi with Na+ [388]. The electrogenic

SLC34A1 (NaPi-IIa) and SLC34A2 (NaPi-IIb) use
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three Na+ ions to drive the transport of divalent Pi

against its concentration gradient, while the electroneu-

tral SLC34A3 (NaPi-IIc) only uses two Na+ ions [397].

These proteins have 8 TM domains with both N and C

termini located in the cytoplasm [398]. Furthermore,

these proteins tend to form dimers in the membrane,

although they remain functionally independent [398].

These proteins play a critical role in maintaining proper

levels of Pi in serum, which can cause severe hypo- or

hyperphosphatemic states when Pi is dysregulated [399].

These clinical presentations have been linked to compli-

cations like cardiovascular diseases and higher mortality

in patients with kidney disease [399,400]. Both

SLC34A1 and SLC34A3 are expressed primarily in the

kidneys, where they localize to the brush-border mem-

brane of renal proximal tubule cells [397]. In mice,

SLC34A1 provides about 70% of the total renal Pi reab-

sorption while SLC34A3 performs the remaining 30%

[401]. Phosphate balance is maintained by parathyroid

hormone (PTH)-triggered endocytosis of SLC34A1

[402]. Although SLC34A3 internalization is similarly

induced by PTH, the response is markedly slower than

that of SLC34A1 [403]. SLC34A2 is expressed in many

different organs, such as the small intestine, where it

provides over 90% of the sodium-dependent cellular

absorption of phosphate [397,398,404].

Phosphate transport in cancer

Cancerous cells that are undergoing rapid cell prolifer-

ation require a higher amount of phosphate than

healthy cells, imparting particular importance to the

SLC20 and SLC34 families. Overall, tumor cells both

express higher levels of phosphate cotransporters and

have higher intracellular stores of inorganic phosphate

[405]. SLC20A1 and SLC34A2 have been identified as

particularly relevant for the development and progres-

sion of cancer [387]. SLC20A1 protein expression has

been positively correlated with tumor size, invasiveness

of tumor, and reoccurrence of tumors in somatotroph

adenomas [406]. In addition to providing import of

inorganic phosphate ions, SLC20A1 has been found to

also have a transport-independent role in cells

[407,408]. This potential transceptor plays a role in cel-

lular proliferation and regulating TNF-induced apop-

tosis in cell, suggesting that SLC20A1 may have a

more elaborate role in the progression of cancer

[407,408]. SLC34A2 expression is similarly correlated

with the tumorigenesis and development of cancers,

with higher expression of the transporter serving as a

prognostic marker for larger tumor size and poorer
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Fig. 6. (A) Examples of SLC proteins transporting phosphate

(SLC20 and SLC34). SLC20A1 is shown as an example of a Na+-

dependent transporter of inorganic phosphate (Pi). SLC34A1

represents the subfamily of electrogenic Na+-dependent phosphate

transporter, while SLC34A3 is the electroneutral Na+-dependent

phosphate transporter. (B) Examples of SLC proteins transporting

organic ions (SLC14 and SLC22). SLC14A1 is shown as an

example of the SLC14 family of urea transporters. SLC22A6

represents the organic anion transporter (OAT) major clade of

SLC22 proteins, while SLC22A1 represents the organic cation

transporter (OCT) major clade of proteins.
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patient outcomes [409]. Knockdowns of SLC34A2

expression results in decreased cellular proliferation

and metastasis [409,410]. Interestingly, however, a sep-

arate study investigating the transporter’s role in lung

cancers found that SLC34A2 played a protective role

in cells, preventing more aggressive phenotypes from

developing [411]. Both SLC20A1 and SLC34A2 have

been implicated in activation of the Wnt/b-catenin sig-

naling pathway resulting in cellular proliferation and

carcinogenesis [406,412].

Transport of organic ions

SLC families 14 and 22 mediate the transport of differ-

ent organic ions, including urea, amines, bile acids,

and a-ketoglutarate (Fig. 6B). Owing to this wide

range of substrates, these two families play a signifi-

cant role in a variety of processes within the human

body, including helping regulate blood pressure and

remote signaling between organs. SLC14 is one of the

smallest SLC families while SLC22 is one of the lar-

gest.

SLC14

Although the SLC14 family contains only 2 distinct

genes, SLC14A1 and SLC14A2, these genes are spliced

into a total of eight different isoforms that perform

different functions within cells [413]. SLC14A1 encodes

for transporter proteins also known as UT-B1 and

UT-B2, while SLC14A2 encodes for proteins known

as UT-A1 through UT-A6 [414]. The primary function

of these transporters is to concentrate urea in the kid-

neys, allowing for the excretion of urea and also reab-

sorption of water through passive movement of urea

across cell membranes [413]. The majority of these

transporters consist of 10 transmembrane segments

with intracellular N and C termini [413]. Based on the

crystal structure of a bacterial homologue, the selectiv-

ity of these transporters is suggested to be driven by a

group of phenylalanines surrounding the transport

pore [31]. A characteristic property of this family of

transporters is their rapid regulation by vasopressin, a

hormone synthesized in the hypothalamus [415]. In

response to vasopressin signaling, transporters increase

their permeability to urea, resulting in increased water

resorption and thus increased blood volume, which in

turn increases arterial blood pressure [415].

SLC22

The SLC22 family is one of the larger families of SLC

transporters, containing roughly 30 members, 13 of

which have been localized to plasma membrane [416–
418]. The proteins within this family transport a wide

variety of metabolites and signaling molecules with dif-

ferent affinities, resulting in different physiological

functions for this family [418,419]. As examples, sub-

strates include urate, prostaglandins, bile acids, a-ke-
toglutarate, b-hydroxybutyrate, and various amines

[416]. SLC22 proteins have been grouped into two

major subfamilies (referred to as clades) and based on

their phylogenic history in multiple different subclades

[420]. The two major clades are called the organic

anion transporter (OAT) major clade and the organic

cation transporter (OCT) Major clade, both of which

are further subdivided into subclades resulting in six

final groupings [416]. These groupings are defined by

their evolutionary relatedness, apparent common

ancestral genes and/or sequence homology [416]. The

OAT Major clade is subdivided into the Oat (exempli-

fied by SLC22A6 (OAT1)), Oat-like (exemplified by

SLC22A13 (OAT10)), and Oat-related (SLC22A17

(BOCT1)) subclades. The OCT Major clade is subdi-

vided into the Oct (exemplified by SLC22A1 (OCT1)),

Octn (exemplified by SLC22A5 (OCTN2)), and Oct-re-

lated (exemplified by SLC22A16 (FLIPT2)) subclades

[416]. These proteins are predicted to all have similar

structural features, consisting of 12 TM domains and

have been found to form homo-oligomers in some

cases, although this oligomerization process does not

seem to be required for transport function [418,421].

SLC22A6 is a sodium-independent organic anion/di-

carboxylate exchanger and is one of the most highly

expressed proteins in the adult kidney [418]. In the

kidney, this protein localizes to the basolateral mem-

brane of the proximal tubules, where it excretes urate,

other endogenous anions and anionic drugs [418,422].

As a urate transporter, this and several other members

of the SLC22 family (particularly SLC22A8 but possi-

bly also SLC22A11 and A13) are thought to be

involved in remote signaling between the kidney and

intestine by regulating uric acid levels in the blood

[423,424]. This transporter has been implicated in the

transport of drugs such as nonsteroidal anti-inflamma-

tory drugs, and differential activity of the protein has

been implicated in the efficacy of imatinib in chronic

myeloid leukemia patients [425,426].

SLC22A13 is expressed in the kidneys, as well as in

the brain, heart, and intestine, where it localizes to the

basolateral membrane [427,428]. This transporter

drives the unidirectional efflux of organic anions like

nicotinate, aspartate, and glutamate [427,428].

SLC22A17 assists in the uptake of iron and does

not seem to drive the transport of other usual sub-

strates of the SLC22 family [429]. It also acts as a
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receptor for lipocalin-2, a secreted protein that can

trigger apoptosis in cells with reduced intracellular iron

concentrations [430]. Furthermore, SLC22A17 binds

to and mediates the endocytosis of filtered proteins in

the kidneys [431].

SLC22A1 is a cation transporter that operates by a

mechanism of facilitated diffusion [417]. This protein

is expressed throughout the body in epithelial cells of

different tissues, at its highest in the liver, kidney, and

small intestine, where it localizes to the plasma mem-

brane [432]. SLC22A1 transports a variety of endoge-

nous substrates, such as catecholamines, biogenic

mono- and polyamines. Furthermore, SLC22A1 trans-

ports various drugs like opioids and xenobiotic com-

pounds and hence plays important role in disease

management [433].

SLC22A5 is a sodium-dependent high-affinity car-

nitine transporter and otherwise provides sodium-inde-

pendent transport of other organic cations, with both

transport systems being electrogenic [434]. One of

SLC22A5’s main functions within the body is to

absorb dietary carnitine at the brush-border membrane

of the epithelial cells in the intestine. Due to its ubiqui-

tous expression in the body, SLC22A5 allows tissues

that are unable to synthesize carnitine to take it up

[435]. SLC22A5 also provides the transport of organic

cations like tetraethylammonium [436].

SLC22A16 is mainly expressed at the plasma mem-

brane of the testis and at lower levels in other tissues

[418]. This protein functions as a high-affinity L-car-

nitine transporter and also has transport capabilities

for other organic cations like spermidine or the drugs

doxorubicin and bleomycin A5 [418,437,438]. Similarly

to SLC22A5, SLC22A16 has a modular reliance on

sodium to drive its transport, as L-carnitine is at least

partially dependent on sodium, while doxorubicin

transport is sodium independent [418].

Organic Ion transport in cancer

A variant of SLC14A1 (rs17674580) has been identi-

fied as a significant susceptibility gene for urinary

bladder cancer [439]. The protein was also found to be

expressed at significantly lower levels in lung and pros-

tate cancers, with overexpression of the gene inhibiting

further colony formation in lung squamous cell lines

[440]. As a urea transporter, deficiency of this protein

may cause increased DNA damage in areas where urea

concentrations increase [441,442].

As one of the largest families of solute carriers,

SLC22 proteins and their transport substrates have a

wide range of roles in the development and progres-

sion of cancer. Members of this family have been

found to be both downregulated (SLC22A1,

SLC22A2, SLC22A11) and upregulated (SLC22A3

and SLC22A18) in the tissue of pancreatic and liver

cancer patients with the different transport proteins

having varying effects on the long-term survival of

proteins [443–446]. As organic ion transporters, the

SLC22 family of proteins plays a particularly impor-

tant role in the transport of drugs across cell mem-

branes [416]. The expression of transporters like

SLC22A6 is also affected by cancer treatment regi-

ments, with methotrexate downregulating the protein

[447]. Similarly, the expression of SLC22A1 is altered

by imatinib, a drug used to treat chronic myeloid leu-

kemia [448]. Both SLC22A1 and SLC22A5 expression

are also downregulated in carcinomas, which results in

higher tumor progression and poorer patient survival

[449–452].

Transport of trace metals

Although found at miniscule levels in cells, trace met-

als like magnesium, copper, zinc, and nickel play

important roles as signaling ions and cofactors in pro-

teins. Cells use SLC families 11, 40, 31, 30, 39, 41, and

49 to drive the influx and efflux of these components

and regulate their concentrations (Fig. 7). While many

of these SLCs have been studied role transporting a

specific metal ion, it has become increasingly clear that

these transporters have a much wider specificity to

trace metals, as further detailed below.

SLC11/SLC40

The SLC11 family consists of two proteins, SLC11A1

(Nramp1) and SLC11A2 (DMT-1), that perform the

proton-dependent transport of divalent metal ions and

share 66% identity in their amino acid sequence [453].

While SLC11A1 localizes to the membrane of lyso-

somes and endosomes, SLC11A2 is a plasma mem-

brane transporter [454].

SLC11A2 is expressed throughout the body, as four

different cell-type-specific splice variants [455,456].

Expression is found at particularly high levels at the

apical plasma membrane of the duodenum, where

SLC11A2 is responsible for the absorption of iron

[456]. Apart from iron, this protein transports other

divalent metal ions (Zn2+, Mn2+, Cu2+, Co2+, Cd2+,

Ni2+, and Pb2+), with highest affinity for Mn2+

[457,458]. Transport is both proton and membrane

potential dependent [457]. In order to avoid the release

of free ferrous iron into the cytosol, SLC11A2 has

been shown to interact with PCBP2 (poly(rC)-binding

protein 2), which removes the iron from the
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transporter through the formation of a PCBP2-

SLC11A2 complex [60,455,459].

The SLC40 family contains only one member,

SLC40A1 (FPN1) that functions as an iron exporter

[453,460]. This protein is expressed throughout the

body and serves as the major iron efflux pathway

[453]. Similarly to SLC11A2, SLC40A1 is also capable

of driving Mn2+ transport, suggesting these proteins

also work in conjunction to maintain manganese

homeostasis [461]. Thus, the SLC11 family primarily

transports iron into cells, while SLC40 transports iron

out of cells. This is exemplified in enterocytes, where

SLC11A2 absorbs dietary iron from the intestine and

SLC40A1 facilitates basolateral exit of iron into the

circulatory system [453].

SLC30/SLC39

Cells have developed two primary transport mecha-

nisms through which zinc homeostasis is regulated.

The SLC30 family functions to decrease cytosolic zinc

levels while SLC39 proteins increase concentrations

[462,463]. The SLC30 family of zinc transporters con-

tains 10 members that are expressed throughout the

body [463,464]. With the exception of SLC30A1, these

proteins are primarily expressed intracellularly, driving

the compartmentalization of zinc, although some

members are occasionally translocated to the plasma

membrane [463,465,466]. SLC30A1 (ZnT1) is

expressed at the plasma membrane, where it drives the

efflux of zinc into extracellular space. The expression

of this transporter is tightly regulated, with both

expression and plasma membrane localization increas-

ing in response to higher zinc concentrations in the

cytoplasm [467,468].

SLC39 is a family of 14 proteins that are primarily

responsible for transporting zinc across membranes and

into the cytoplasm [469]. Although a transport mecha-

nism has not been conclusively determined, kinetics

studies suggest that these proteins drive their transport

through a secondary active mechanism [462]. However,

the driver of this secondary transport remains unclear

and has ranged from bicarbonate to protons [470]. In

general, these proteins contain between 7 and 9 TM seg-

ments with both N and C termini facing away from the

cytoplasm, although there is some variation [462,471].

The SLC39 family is separated into 4 subfamilies based

on amino acid sequence similarities [472]. The first sub-

family, subfamily I, contains only one protein,

SLC39A9 (ZIP9). Subfamily II contains SLC39A1

(ZIP1), SLC39A2 (ZIP2), and SLC39A3 (ZIP3) [469].

The third, and largest with nine members, subfamily is

referred to as LIV-1 and is exemplified by SLC39A4

(ZIP4) [469]. The last family is called gufA and contains

only SLC39A11 (ZIP11) [469]. Due to zinc’s role as a

secondary messenger molecule, the SLC39 family has

also been implicated in signaling pathways, like the

SLC40A1

SLC11A2

Fe2+

Cytosol Extracellular 
space

SLC31A1

SLC30A1

SLC39A1

SLC41A1

SLC49A1

Fe2+

Zn2+

Zn2+

Cu2+

Mg2+

Heme

Fig. 7. Examples of SLC proteins transporting trace metals

(SLC11, SLC30, SLC31, SLC39, SLC40, SLC41, and SLC49).

SLC11A2 is shown as an example of a proton-dependent

transporter of metal ions (primarily Fe2+). SLC40A1 is an iron

exporter. SLC39A1 is shown as an example of a zinc importer,

while SLC30A1 is shown as a zinc exporter. SLC31A1 is shown as

an example of a cooper transporter. SLC41A1 is shown as an

example of a magnesium transporter. SLC49A1 is shown as an

example of a heme transporter.
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PTEN-Akt signaling axis [473,474]. SLC39A1 is

expressed throughout the human body, and primarily

localizes to the plasma membrane [469]. In response to

changing zinc concentrations, SLC39A1 can be translo-

cated from intracellular organelles to the plasma mem-

brane or vice versa [475,476].

SLC39A4 is expressed mainly in the intestine, where

its expression and localization is tightly regulated by

both transcriptional and post-transcriptional means

[477]. There, SLC39A4 functions mainly to absorb

dietary zinc [477].

Thus, as a general rule, the SLC30 and SLC39 fami-

lies have complementary roles, similar to SLC11 and

SLC40. SLC30 proteins transport zinc out of the cyto-

sol, either into organelles or extracellular space, while

SLC39 proteins transport zinc into the cytosol [462].

Other SLC families transporting trace
metals (SLC31, SLC41, and SLC49)

The SLC31 family contains two copper transporters,

SLC31A1 (CTR1) and SLC31A2 (CTR2) [478]. These

proteins are expressed ubiquitously and at highest

levels in the liver and placenta [479]. SLC31A1 is pri-

marily expressed at the cell membrane and drives the

uptake of copper from food in a potassium-dependent

manner [478,480]. Copper homeostasis is critical for

cells, as many enzymes are dependent on it for proper

function [481].

The SLC41 family contains three proteins that

transport magnesium [482,483]. SLC41A1 is the best

characterized member of the family and is expressed

throughout the body [482]. This protein drives the

efflux of Mg2+ and also to a lesser degree Fe2+, Zn2+,

Cu2+, Co2+, and Cd2+, across the plasma membrane of

epithelial cells [484,485]. The expression and localiza-

tion of this protein are regulated by extracellular Mg2+

concentrations, which regulates its transport function

through endosomal recycling mechanisms allowing for

dynamic regulation of the ion [482,486].

SLC49 is a family of four proteins, two of which,

SLC49A1 and SLC49A2, contribute to heme transport

across cell membranes [487]. SLC49A1 functions as a

heme exporter, protecting cells from heme toxicity

[488]. It is expressed at highest levels in the liver and

small intestine, where there are higher levels of heme

transport and localizes to the plasma membrane of

these cells [487].

Transport of trace metals in cancer

Trace metals like magnesium, copper, zinc, and nickel

are critical components of enzymes, regulating cellular

signaling pathways, DNA replication and repair, apop-

tosis and much more [489–493]. Maintaining a proper

concentration of these trace metals is important to not

only these processes, but also combating the formation

and/or accumulation of free radicals [490,492].

SLC40A1, which as mentioned mediates iron efflux

from cells, has been linked to poorer prognoses in

both breast cancer and adrenocortical carcinoma

[494,495]. Furthermore, a recent study showed that the

downregulation of SLC40A1 results in greater cell pro-

liferation [496,497]. This downregulation of SLC40A1

by Nrf-2 has also been shown to induce cisplatin resis-

tance, although this was reversed by increasing iron

concentrations within cells [498]. This suggests that

iron metabolism plays a large role in determining drug

effectiveness.

Mutations, dysregulation, or other perturbations of

zinc transporters have been linked to many different

diseases [499]. As the cofactor for so many enzymes,

zinc deficiency is particularly detrimental to cells and

is heavily linked to the development of many different

cancers [500]. For example, SLC39A4 was recently

shown to be overexpressed in more aggressive types of

ovarian and pancreatic cancer, possibly as a response

to lower levels of zinc in cancer tissues [501,502]. For

more comprehensive reviews of zinc transport in can-

cers, the reader is referred to Takatani-Nakase and

Pan et al. [500,503].

Copper accumulation has been linked to the pro-

gression of different cancers and their severity [492].

The knockdown of SLC31A1, and resulting decrease

in intracellular copper, has been shown to inhibit the

progression of pancreatic cancer [504]. SLC31A1 is

also particularly relevant to the toxicity of cisplatin

and other similar drugs, as they use this copper trans-

porter as a system to enter cells [462].

Magnesium is required for cell proliferation, mem-

brane stability, and DNA repair/genomic stability

[505,506]. Furthermore, reduced intracellular concen-

trations have been linked to a suppression or inhibi-

tion of Akt/mTOR signaling [505]. SLC41A1, the

magnesium efflux transporter, thus acts as a tumor

suppressor, with increased expression of the trans-

porter reducing the proliferative effects of mTOR sig-

naling while also helping drive bax-associated

apoptosis [507].

Transport of other organic compounds

The final two SLC families to be covered in this review

are SLC10 and SLCO (formerly known as SLC21)

(Fig. 8). These two families transport a wide array of

organic compounds, including numerous drugs. As
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transporters of such diverse substrates, members of the

SLC10 and SLCO families have wide-ranging physio-

logical roles in cells.

SLC10

The SLC10 family of proteins contains seven members.

For a time, it was thought that this family’s primary

purpose was to transport bile acid (BA), a family of

substances that play a critical role in the solubilization

and/or absorption of different nutrients like vitamins

and cholesterol as well as different signaling cascades,

and endocrine homeostasis [508,509]. However, it is

now clear that these proteins transport a wider variety

of molecules, including steroidal hormones, drugs, and

other substrates [510].

The best-studied members of this family, SLC10A1

and SLC10A2, play key roles in the regulation of BA

levels in the body, helping reabsorb secreted BAs in

the intestine and removing BAs from the liver’s portal

circulation [510]. Both SLC10A1 and SLC10A2 have

been found to use homo- and heterodimeric and

higher order oligomers as functional units on the cell

membrane [511,512]. Due to the cytotoxic nature of

BAs, both the expression and activity of these two

proteins are regulated by their substrates, through the

nuclear receptor like farnesoid X receptor [513].

SLC10A1 (NTCP) was found to be a strictly hepa-

tocellular protein, expressed at the basolateral mem-

brane [514,515]. This symporter couples the uptake of

taurocholate or another conjugated BA with the

uptake of two Na+ ions (1 conjugated BA: 2 Na+)

[516]. The uptake of these BAs is supplemented by the

actions of SLCO1B1 and SLCO1B3 (see below), two

transporters that uptake BAs in an sodium-indepen-

dent manner [513]. Recently, SLC10A1 has also been

found to act as a receptor for human hepatitis B virus

(HBV) and satellite hepatitis D virus [517,518].

SLC10A2 (ASBT) is a protein mainly expressed in the

intestine, localizing to the ileal brush-border membrane

[519]. SLC10A2 uses the sodium gradient to drive the

transport of BA into the cell with a 2 : 1 Na+ : BA

stoichiometry [520]. Due to its location in the final

portion of the small intestine, SLC10A2’s main func-

tion is to reabsorb any BAs that were not already

absorbed as a part of mixed micelles. This way, the

body takes up to 95% of the BAs and minimizes the

amount of BAs that must be synthesized again [512].

SLC10A6 (SOAT) is mainly expressed in the testis,

where it localizes to the plasma membrane of primary

spermatocytes [521]. Unlike other SLC10 members,

this protein does not transport BAs, but mediates

sodium-dependent transport of sulfated steroids like

taurolithocholic acid-2-sulfate (TLCS), estrone-3-sul-

fate (E1S), and dehydroepiandrosterone sulfate

(DHEAS), compounds which can be quickly modified

to create active steroids [522,523].

SLCO

The SLCO family of proteins (formerly SLC21) medi-

ates the transport of organic ions and are also known

as organic anion transporting polypeptides (OATPs)

[9]. These proteins are predicted to consist of 12 TM

Electrochemical gradient
Na+

SLCO1A2

SLC10A1

Conjugated
bile acids

Na+

Cytosol Extracellular 
space

SLCO4A1

SLCO3A1

SLCO2A1

Bile acids

Prostaglandins

Bile acids

Prostaglandins

Fig. 8. Examples of SLC proteins transporting other organic

compounds (SLC10 and SLCO). SLC10A1 is shown as an example

of the SLC10 family that transports conjugated bile acids.

SLCO1A2 represents the OATP1 subfamily and transports organic

anions like bile acids. SLCO2A1 represents the OATP2 subfamily

and transports prostaglandins. SLCO3A1 is the only member of the

OATP3 subfamily and functions primarily as a bile acid transporter.

SLCO4A1 represents the OATP4 subfamily and transports various

organic compounds like prostaglandins.
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segments with cytoplasmic N and C termini [9]. Eleven

identified SLCOs have been subdivided into six sub-

families based on amino acid sequence similarity

[524,525]. The largest is the OATP1 subfamily, which

contains SLCO1A2 (OATP1A2), SLCO1B1 (OATP1B1),

SLCO1B3 (OATP1B3), and SLCO1C1 (OATP1C1).

The OATP2 subfamily contains two members,

SLCO2A1 (OATP2A1) and SLCO2B1 (OATP2B1).

OATP3, OATP5, and OATP6 all contain only one

member within their families (SLCO3A1 (OATP3A1),

SLCO5A1 (OATP5A1), and SLCO6A1 (OATP6A1),

respectively). Finally, OATP4 contains two member

proteins, SLCO4A1 (OATP4A1) and SLCO4C1

(OATP4C1) [525].

This family has become a focus of drug development

and pharmacokinetics of novel drugs [526]. Expressed

throughout the body, its members are important for

drug absorption. Tissue distribution and polymor-

phisms of these transporters have a significant effect

on the efficacy of different drugs such as statins,

antibiotics, direct renin inhibitors, and cardiac glyco-

sides [527,528]. SLCO1B1, SLCO1B3, and SLCO2B1

are of particular interest, contributing to the uptake of

drugs across the basolateral membrane of hepatocytes

[526].

SLCO1A2 is expressed widely throughout the body,

localizing to the plasma membrane of most cells

[529,530]. This protein transports a wide range of

organic anions, including bile acids, steroids, thyroid

hormones, and various drugs (including imatinib, sta-

tins, and methotrexate) [531]. As with other SLCO

proteins, SLCO1A2 is trafficked to the plasma mem-

brane and stabilized through its interactions with

PDZK1 and NHERF1 [531,532].

SLCO2A1 is also ubiquitously expressed in the

body, localizing to the plasma membrane to transport

prostaglandins [9]. This transporter is of particular

importance at the blood–brain barrier, where it facili-

tates the transport of Prostaglandin E2, an essential

component of the body temperature regulatory net-

work [533]. SLCO2B1 is expressed at the cell mem-

brane of many different tissues, where it drives the

transport of various organic ions like taurocholate,

prostaglandins, antifolates, and tyroxine [9]. The trans-

port activity of this protein is stimulated at lower pH

levels [534].

SLCO3A1 is expressed in the testis and brain and to

a lower extent in the lung, spleen, peripheral blood

leukocytes, and thyroid gland [535]. This transporter

has two different cell-specific splice variants. Interest-

ingly, although expression of SLCO3A1 is generally

lower in the liver, expression is elevated during chole-

static liver injury—when bile acids accumulate in the

blood and liver due to impaired bile formation. There,

SLCO3A1 functions as a protective bile acid efflux

transporter [536,537].

SLCO4A1 is expressed throughout the body at the

plasma membrane [535]. Substrates of this transporter

include prostaglandins, benzylpenicillin, taurocholate,

and thyroxine [537]. SLCO4A1 is a prognostic marker

for colorectal cancer, with higher expression indicating

a poorer prognosis [538].

Transport of organic compounds in
cancer

The transport, release, and concentration of organic

compounds like bile acids, hormones, and drugs is reg-

ulated by the activity of members of the SLC10 and

SLCO family [9,508,509]. These diverse roles result in

a litany of links to the development, progression,

spread, and treatment of cancer [538,539].

Certain SLC10A2 polymorphisms more than double

the risk of developing colorectal polyps, which sup-

ports the idea that aberrant transport of bile acids

increases the risk of colorectal cancer [540]. Further-

more, SLC10A2 knockout mice had a significant two-

fold increase in the amount of colon adenocarcinomas

over the control mice, as well as an increased tumor

number and growth rate [541]. These contributions to

carcinogenesis are thought to be caused by an increase

in fecal bile acids acting as tumor promoters in the

colon [539,541]. The regulation of this transporter

remains an intriguing topic, as treatment of solid

tumors with irinotecan results in decreased expression

of SLC10A2 [542].

The SLCO family of transporters has been increas-

ingly investigated in the past years for their potential

role in the transport of chemotherapeutics and their

potential impact on efficacy of therapies [543]. This

interest has particularly focused on SLCO1A2,

SLCO1B1, SLCO1B3, and SLCO2B1 [525,526,544].

The expression of many SLCO proteins is altered

(both up and down) in many different types of cancers

(SLCO1A2, SLCO1B1, and SLCO1B3 tend to

expressed at lower levels, while SLCO2B1 are

expressed at higher levels in cancer tissue) [525]. These

changes in expression patterns of the above trans-

porters have not been fully elucidated, with a range of,

at times conflicting, results being reported [525,545].

The conflicting data on the use of SLCOs as biomark-

ers highlight the need for a deeper understanding of

their biology, especially as expression levels seem to be

associated with changes in efficacy for cancer treat-

ments [544,545]. For more in-depth reviews of the role

that SLCO proteins play in cancer development,
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progression, and treatment, the reader is referred to

Schulte et al. and Obiadat et al. [525,543].

Discussion

In this review, we have provided a guide to the main

families of SLCs that transport sugars, amino acids,

peptides, vitamins, nucleotides and nucleosides, differ-

ent subsets of ions, metals, and organic compounds

into cells across their plasma membrane.

In spite of the progress in understanding SLC func-

tions, major gaps remain in our understanding of

many members in the SLC protein superfamily. In

particular, while we have focused our review on docu-

mented plasma membrane SLCs, we must note that

there is incomplete understanding of the localization

of SLC proteins. Furthermore, some members of this

superfamily translocate to different subcellular local-

izations, as discussed above, or when cellular states

change. For example, expression of both SLC9A2 and

SLC9A3 has been shown to change in mice depending

on their stage in development [546,547].

As detailed in this review, SLC proteins play impor-

tant roles in maintaining the proper function of cells

and managing their relationship with the environment

of specific cell types. The overlapping and redundant

transport activity of different SLC proteins allows cells

to rapidly respond to changes in their surroundings

and maintain close control over their contents. For

example, members of both SLC7 and SLC38 provide

seemingly redundant transport of small amino acids.

However, through ancillary roles like acting as tran-

sceptors (SLC38A2) or regulating the redox balance of

cells (SLC7A11), these proteins maintain their own

unique roles within cells [158,188]. SLC34A1 and

SLC34A3 are another example of the interconnected

and complementary roles at the organism level, with

the two transporters cooperatively ensuring complete

phosphate resorption [401].

As highlighted throughout the review, members of

the SLC superfamily are implicated in the development

and progression of many diseases. For example, dysreg-

ulation of multiple members of the SLC6 family results

in disorders related to their altered ability to transport

neurotransmitters and other substrates of SLC6 pro-

teins (e.g., mutations of SLC6A3 cause infantile Parkin-

sonism dystonia, SLC6A8 is linked to X-linked mental

retardation; mutations of SLC6A19 causes Hartnup dis-

order) [161,548–550]. Changes in SLC protein expres-

sion and function are also closely linked to the

development of diseases such as cancer. In fact, a com-

parison of healthy and cancerous cell lines suggested

that SLC proteins have greater changes in their

coexpression networks than protein kinases [28]. Pro-

teins like SLC2A1, SLC39A14, and SLC16A1 may serve

as prognostic biomarkers in cancers due to their central

role in the development of cancer and responses to treat-

ments [551–553]. Thus, it is imperative to continue

studying transport proteins in a comprehensive manner,

focusing not only on individual transport functions, but

also unraveling the complex relationships between dif-

ferent transporters and metabolic states.

Furthermore, when aberrant transport of metabolites

occurs, entire signaling pathways may be affected due to

changing electrochemical gradients and metabolic path-

ways. For example, the oncogene MYC can induce the

expression SLC7A5 and SLC43A1, resulting in the

increased transport of essential amino acids and thus

supporting increased cell growth and tumorigenesis

[554]. There is a critical need to study regulatory net-

works such as these in order to understand the relation-

ships between transport activities and cellular states.

In the past years, as their roles in cells have been

discovered, SLC proteins have increasingly become the

target of drugs [8,90,92]. However, the vast potential

of modulating the activity of SLCs, and in particular

plasma membrane expressed SLC proteins, remains

largely untapped [5]. Families like SLC39 and SLC30,

whose member proteins are recognized as direct regu-

lators of zinc homeostasis, offer great therapeutic

potential in combating the progression of cancer [555].

A more complete understanding of substrates, struc-

tures, transport mechanisms, interaction networks, and

secondary functions within cells may contribute in the

future to drug discovery programs targeting such

SLCs. A family like SLC16 provides an example for

the progression of this field. After understanding the

molecular mechanisms that underlie SLC16 proteins

and how altered transport may contribute to the devel-

opment of disease states, SLC16 inhibitors were

rapidly developed [556]. Currently, there are multiple

potent inhibitors of SLC16 proteins that serve as

potent chemical tools to further understand the role of

SLC16 proteins in cells, with at least one under clinical

evaluation (NCT01791595) [557,558].

Finally, while this review covered the major classes

of substrates transported by plasma membrane SLC

proteins, there remain many other substances in the

extracellular milieu whose transporter has not been

determined or could not be described within the scope

of this review. We expect that with as our understand-

ing of the human metabolome grows, more SLCs will

be reported to mediate the transport of a growing list

of endogenous and exogenous metabolites, further

adding to the complex network of transport proteins

regulating cellular content.
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