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for prognostic feature selection and clinical
patient subgroup selection

Jian Ouyang,1,2,6 Guangrong Qin,3,6 Zhenhao Liu,2 Xingxing Jian,2,4 Tieliu Shi,1,5,* and Lu Xie2,4,7,*

SUMMARY

Patientswith cancerwithdifferentmolecular characterization and subtypes result in
different response to anticancer therapeutics and survival. To identify features that
are associated with prognosis is essential to precision medicine by providing clues
for target identification, drug discovery. Here, we developed a tumor online prog-
nostic analysis platform (ToPP)which integrated eightmulti-omics features and clin-
ical data from 68 cancer projects. It provides multiple approaches for customized
prognostic studies, including 1) Prognostic analysis based on multi-omics features
and clinical characteristics; 2) Automatic construction of prognostic model; 3) Pan-
cancer prognostic analysis in multi-omics data; 4) Explore the impact of different
levels of feature combinations on patient prognosis; 5) More sophisticated prog-
nostic analysis according to regulatory network. ToPP provides a comprehensive
source and easy-to-use interface for tumor prognosis research, with one-stop ser-
vice of multi-omics, subtyping, and online prognostic modeling. The web server is
freely available at http://www.biostatistics.online/topp/index.php.

INTRODUCTION

Cancer is among the top fatality diseases which cause approximately 10.0 million deaths worldwide each year

(Sunget al., 2021). Prognosis analysis is thepredictionof theprobableoutcome froman individual’s currentmed-

ical condition (Hansebout et al., 2009). Many factors are closely related with prognosis in cancer, including age,

tumor types, pathological stages, genetic background, andmolecular features at different levels (Banfalvi, 2014;

Montazeri, 2009). Prognosis analysis from large patient cohort can help identify biomarkers or potential targets

for patients with different clinical outcomes, and it can also evaluate the outcomes of patients withdifferent treat-

ments or indifferent subgroups. However, it is cumbersome for clinical researchers to conduct prognosis analysis

due to lack of follow-up data, clinical data, or statistical skills.

Recently, with the efforts from large consortia, such as TheCancer GenomeAtlas (TCGA) (Weinstein et al., 2013),

International Cancer Genome Consortium (ICGC) (J. Zhang et al., 2019), and the Clinical Proteomic Tumor Anal-

ysisConsortium (CPTAC) (Zhangetal., 2016b), tremendousamountof clinical andomicsdatahavebeenavailable

to the research community, while the analysis and utilization of these data are still difficult due to the large data

size. Several prognosis analysis platforms have been developed. PrognoScan (Mizuno et al., 2009) focuses on the

microarray datasets of 14 tumors, and provides the minimum log-rank p-value by the best cut-off point. GEPIA

(Tang et al., 2017) provides not only patient survival analysis but also differential expression analysis, correlation

analysis, and dimensionality reduction analysis based on gene expression. Oncolnc (Anaya, 2016) contains the

relationship between lncRNA, miRNA, mRNA, and prognosis in 21 types of tumors. CaPSSA (Jang et al., 2019)

provides prognostic analysis at the gene expression and mutation levels. MethSurv (Modhukur et al., 2018) is a

web server for survival analysis based on methylation data in 25 tumor types in TCGA. However, most of them

focusedon theprognostic impact of genetic changes at a single level or provideprognosiswith fixed subgroups.

Practically, it is not robust to evaluate the prognosis of all patients through single prognostic marker due to the

complexityof thedisease and the heterogeneity of thepatients, so it is necessary toestablish amore customized,

comprehensive, andeffectiveprognostic analysis platformwith joint analysis ofmulti-omics data for user-defined

subgroups.

To bridge the gap between the high demand for versatile prognosis analyses from clinical researchers and

the big multi-omics datasets, here, we developed the tumor online prognostic analysis platform (ToPP),
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which provides prognostic analysis usingmulti-omics (genome, transcriptome, proteome, and epigenome)

data and clinical data in both the univariate and multivariate modules. Furthermore, users can build prog-

nostic models or perform pan-cancer prognostic analysis on this platform by submitting their own data. For

promoting the application in precision medicine, we also provide in-depth investigation of regulatory rela-

tionship or molecular mechanism among prognostic features, as illustrated by four sophisticated case

studies on a more precise tumor subgroup stratification.

RESULT

Overview of ToPP

The overview of ToPP is illustrated in Figure 1. ToPP usagemainly includes four steps: data aggregation, patient

stratification, prognosismodeling, and result visualization. ToPP aggregates eight types ofmulti-omics data and

clinical data (Table 1) from 33 tumors in TCGA (Table 2), CPTAC and 35 projects in ICGC. It also allows users to

upload their in-house data for prognosis analysis. ToPP provides patient stratification through multiple ways.

Users can select three conditions when conducting subgroup selection. The phenotype conditions include

the patient’s clinical data, mainly in physiological and experimental indicators. The molecular conditions are in-

dicators related tomolecular characteristics that have beenwidely used in various tumors, including specificmo-

lecular subtypes, immunophenotyping, etc. The genetic conditions are customizable; users can screen specific

patient subgroups through a certain molecular feature of interest, thus achieving precise subtyping. Four prog-

nosis modules were provided in ToPP, namely univariate module, multivariatemodule, pan-cancermodule, and

Figure 1. The overview of ToPP workflow

The data source part shows the datatype collected in ToPP such as genome, transcriptome, proteome, epigenome, and

clinical data; the subtype part shows the way for subgroup selection; the analyses part shows the functionmodule in ToPP;

and the output part shows the schematic diagram for the results.
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combination module, which will be illustrated in the following sections. ToPP also provides a variety of custom-

ized charts, such as KM curve, box plot, and calibration curve.

Prognosis modules

The univariate module focuses on the impact of a single variable (genetic or clinical) on prognosis. Genetic fea-

tures contain gene or protein expression changes, DNA variation, and epigenome changes. Users can select the

datasets, data types, and variables to their interest. If the variable is continuous, the default patient stratification

strategy is to use the median value for this variable (eg. Gene expression value) across all samples selected as a

cutoff. In clinical research, especially in the demand of precision medicine, researchers may focus on the perfor-

manceofprognostic factors in a particular subgroup,we thereforedeveloped conditional screening tool tomeet

the subgroup screening. The conditional screening is based on gene mutation, methylation changes, or clinical

classification.TheunivariatemoduleprovidesaKMcurve, the log-rankp-value,andhazard ratioof the twogroups

of patients.Meanwhile, users canmake adjustments to the KMcurve visualization, such as risk table, group color,

unit time, median survival, and hazard ratio (HR). Furthermore, boxplot for the gene expression in tumor and

normal groups can be drawn if the user sets the radio named differential expression to ‘‘yes’’.

Multivariate module provides prognosis analysis for multiple variables, such as for a given gene list. The

result for multivariate module contains a table with five columns: gene list, univariate analysis log-rank

p-value and hazard ratio, and multivariate analysis log-rank p-value and hazard ratio for each gene, so

that users can screen out the independent prognostic factors. In addition, it also provides the function

of prognostic modeling, which includes model building, model evaluation, model diagnosis, and model

validation. With the input of a gene list, the selection of training set and verification set, ToPP will automat-

ically build the model by default parameters which are set by common processes. After checking the per-

formance of themodel in the training set and validation set (such as the three- or five-year calibration curve,

C-index and 1000 bootstrap validator) and the results of the model diagnosis (PH assumption, outliers, and

nonlinearity), users can adjust the model accordingly by further variable selection, nonlinear transforma-

tion. Users can also consider the interaction of covariates or time-dependent covariates.

Pan-cancer module was designed to investigate the prognostic effects of factors in a variety of tumors.

All data were acquired from the Pan-Cancer Atlas (Hoadley et al., 2018) with unified normalization and

Table 1. Data sources collected in ToPP

data type Source URL

Genome Mutaion UCSC Xena http://xena.ucsc.edu/

ICGC data portal https://icgcportal.genomics.cn/

CNV cBioPortal https://www.cbioportal.org/

ICGC data portal https://icgcportal.genomics.cn/

Fusion TumorFusions http://www.tumorfusions.org

Transcriptome mRNA UCSC Xena http://xena.ucsc.edu/

ICGC data portal https://icgcportal.genomics.cn/

miRNA UCSC Xena http://xena.ucsc.edu/

ICGC data portal https://icgcportal.genomics.cn/

LncRNA TANRIC https://ibl.mdanderson.org/tanric/_design/

basic/index.html

Proteome RPPA UCSC Xena http://xena.ucsc.edu/

iTRAQ CPTAC https://cptac-data-portal.georgetown.edu/

cptacPublic/

Epigenome Methylation UCSC Xena http://xena.ucsc.edu/

ICGC data portal https://icgcportal.genomics.cn/

Clinical data Phenotype &Follow up UCSC Xena http://xena.ucsc.edu/

cBioPortal https://www.cbioportal.org/

ICGC data portal https://icgcportal.genomics.cn/
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standardization. Users can select all types of cancer or just choose a subset (Table S2) of pan-cancers

such as urologic (bladder urothelial carcinoma [BLCA], prostate adenocarcinoma [PRAD], testicular

germ cell tumors [TGCT], kidney renal clear cell carcinoma [KIRC], kidney chromophobe [KICH], and kid-

ney renal papillary cell carcinoma [KIRP]) which was designed by Pan-Cancer Atlas project. The following

up patient stratification and prognosis modeling approach are as the same as the univariate module. Be-

sides, ToPP also includes the high frequently mutated gene lists in the ten canonical pathways which are,

cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFb signaling, p53, and beta-catenin/

Wnt (Sanchez-Vega et al., 2018), and it can facilitate users to explore how the alterations (copy-number

alterations, mutations, fusions, or epigenetic silencing) of genes in these pathways impact prognosis in

different tumor types. The results will show the log-rank p, HR, and KM curve for each type of cancer as

well as the pan-cancer.

Table 2. Multi-omics data of 33 types of cancer from TCGA included in ToPP

Type

Genome Transcriptome Proteome Epigenome Clinical data

Mutation CNV Fusion mRNA miRNA LncRNA RPPA MS Methylation Phenotype

TCGA-ACC O O O O O NA O NA O O

TCGA-BLCA O O O O O O O NA O O

TCGA-BRCA O O O O O O O O O O

TCGA-CESC O O O O O O O NA O O

TCGA-CHOL O O O O O NA O NA O O

TCGA-COAD O O O O O O O O O O

TCGA-DLBC O O O O O NA O NA O O

TCGA-ESCA O O O O O NA O NA O O

TCGA-GBM O O O O O O O NA O O

TCGA-HNSC O O O O O O O NA O O

TCGA-KICH O O O O O O O NA O O

TCGA-KIRC O O O O O O O NA O O

TCGA-KIRP O O O O O O O NA O O

TCGA-LAML O O O O O NA NA NA O O

TCGA-LGG O O O O O O O NA O O

TCGA-LIHC O O O O O O O NA O O

TCGA-LUAD O O O O O O O NA O O

TCGA-LUSC O O O O O O O NA O O

TCGA-MESO O O O O O NA O NA O O

TCGA-OV O O O O O O O O O O

TCGA-PAAD O O O O O NA O NA O O

TCGA-PCPG O O O O O NA O NA O O

TCGA-PRAD O O O O O O O NA O O

TCGA-READ O O O O O O O O O O

TCGA-SARC O O O O O NA O NA O O

TCGA-SKCM O O O O O O O NA O O

TCGA-STAD O O O O O O O NA O O

TCGA-TGCT O O O O O NA O NA O O

TCGA-THCA O O O O O O O NA O O

TCGA-THYM O O O O O NA O NA O O

TCGA-UCEC O O O O O O O NA O O

TCGA-UCS O O O O O NA O NA O O

TCGA-UVM O O O O O NA O NA O O

* RPPA: Reverse phase protein array; O: with data; NA: without data.
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Combination module allows users to input multiple levels of data for two genes separately. It allows for

more precise stratification of patients. For example, given a condition of mutation of one gene, researchers

may want to know whether the mutation or expression of its regulated gene will have an impact on the pa-

tient’s survival. Through the combination module, the samples would be subdivided into four subgroups;

each subgroup has more clear molecular characteristics. By analyzing whether there are significant differ-

ences in survival among the four subgroups, users can carry out molecular subtyping of patients.

Data upload module

Data upload module allows users to upload their own data with survival time and status to conduct all kinds

of analysis in ToPP. Also, users are advised to set the permission limit for their own data and use an e-mail

for contact if necessary.

Case studies in ToPP

Lipid metabolism affects cancer survival

Our previous study has shown lipid metabolism in cancer shows significant prognosis effects (Hao et al.,

2019). PPAR signaling pathway is a key signaling pathway that regulates lipidmetabolism. Both peroxisome

proliferator-activated receptor (PPAR) a and PPARgwere reported to regulate the expression of 3-hydroxy-

3-methylglutaryl CoA synthase 2 (HMGCS2) (Kim et al., 2019; VilÃ -Brau et al., 2011). To comprehensively

investigate the impact of PPAR signaling pathway and HMGCS2 on patient outcomes, we performed an-

alyses using multiple modules in ToPP. The univariate analysis result show that patients with kidney renal

clear cell carcinoma (KIRC) with lower expression of HMGCS2 are associated with worse prognosis (Fig-

ure 2A) and it shows downregulation in tumor samples compared with normal samples (Figure 2B). In order

to study the influence of the gene sets on the prognosis, the gene list in PPAR signaling pathway which

related to tumor prognostics as we previous reported (Hao et al., 2019) were inputted for multivariate anal-

ysis in KIRC dataset, and our results show the different status of PPAR signaling pathway can distinguish the

prognosis of patients with KIRC (Figure 2C). To address the combinatory prognostic effects for HMGCS2

and other driver genes, we also make a combinatory prognostic analysis using the combinatory module.

Von Hippel-Lindau (VHL) is the most frequently mutated gene in patients with KIRC; we then performed

the combination analysis for the VHL and HMGCS2. Interestingly, patients who have lower expression of

HMGCS2 and with no mutation in VHL show poorer prognosis than other subgroups (Figure 2D). In order

to explain this result, we propose two potential hypotheses through literature research. First one is that VHL

directly interacted with and promoted ubiquitination of PPARg leading to its degradation, and inhibition of

PPARg reduced HMGCS2 expression (Hernandez-Quiles et al., 2021; Kim et al., 2019; Noh et al., 2020). The

other is that VHL is suggested as mutated as an early event for tumor, and HMGCS2 may have a negative

regulation of tumor angiogenesis (Gossage et al., 2015; Zou et al., 2019). And their impact on prognosis

may be independent. For more evidence to confirm these hypotheses, researchers need to domore exper-

iments to verify them. To further investigate whether HMGCS2 is associated with prognosis in different tu-

mor types, we perfomed the pan-cancer analysis for HMGCS2 in ToPP using the pan-cancer analysis mod-

ule. The results show that HMGCS2 has the similar pattern in a variety of tumors (Figures 2E and 2F),

including liver hepatocellular carcinoma (LIHC), bladder urothelial carcinoma (BLCA), brain lower-grade

glioma (LGG), and KIRC.

Regulatory relationship investigation through multi-omics prognostic analysis in ToPP

Poly (ADP-ribose) polymerase 3 (PARP3) is the third member of the PARP family and it can accelerate the

repair of chromosomal DNA single-strand breaks (Grundy et al., 2016). Researches reported that PARP3 is a

driver gene to TGFb-induced epithelial-to-mesenchymal transition and its inhibitors sensitize breast cancer

cells to vinorelbine which was used in the treatment of metastatic breast cancer (Beck et al., 2019; Sharif-

Askari et al., 2018). Here, we investigate the prognosis effect of PARP3 in patients with breast cancer. Firstly,

we explored the relationship between PARP3 expression and overall survival in ToPP, and the result

showed that patients with higher expression of PARP3 had a better prognosis than the patients with lower

expression of PARP3 in TCGA-BRCA cohort (p = 0.0035, Figure 3A). This conclusion could be verified in

other two independent datasets BRCA-FR and BRCA-KR in ICGC Data Portal (p = 0.046, Figure 3B, p =

0.045, Figure 3C). Then, we further investigated the prognosis effect of PARP3 in patients with breast cancer

with both proteomic and genomic data, and the results were consistent, which mean that PARP3 is still a

protection factor to patients in proteomic level (p = 0.047, Figure 3D). Meanwhile, patients with PARP3 mu-

tation have a poor prognosis (p = 0.00098, Figure 3E). To look for regulatory factors to the gene that we are
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interested in, and use the regulatory relationship to provide more evidence for the predicted survival ef-

fects, we searched for related miRNAs in the miRDB (Chen and Wang, 2020) database with PARP3 as the

target gene, and performed the prognostic analysis for all these miRNAs in ToPP. Interestingly, one of

the PARP3-related miRNA hsa-miR-98-3p showed that patients with higher expression of hsa-miR-98-3p

indicated a poorer prognosis (p = 0.012, Figure 3F). As miRNAs mediated silencing and repression of their

targeted mRNAmolecules, the observations of both the higher expression of has-miR-98-3p and the lower

expression of its target gene PARP3 associated with a poorer prognosis provide us higher confidence of the

effects of the has-miR-98-3p-PARP3 regulatory relationship to survival. In addition, we found that the

expression of hsa-miR-98-3p in tumor tissues was significantly higher than that in adjacent tissues (wilcoxon

rank sum test, p < 0.001, Figure 3G) in patients with BRCA, but PARP3 showed the opposite expression

pattern (wilcoxon rank sum test, p < 0.001, Figure 3H). Correlation analysis of hsa-miR-98-3p and PARP3

expression in tumor tissues of patients with BRCA also suggested the significant correlation between

the expression levels of hsa-miR-98-3p and PARP3 (spearman correlation, p < 2.2e-16, R =�0.36 Figure 3I).

A

C

E

D

F

B

Figure 2. Research on lipid-metabolism-related genes in ToPP

(A) The univariate analysis module results show that patients with kidney renal clear cell carcinoma (KIRC) with lower

expression of HMGCS2 have poor prognostic (log-rank test, p = 0.00041).

(B) KIRC samples have lower expression compared with normal samples (p < 0.0001, wilcoxon rank sum test).

(C) Multivariate analysis module results show that the genes which are significantly associated with prognosis of patients

with tumor in PPAR pathway (CPT2, ACADL, FADS2, CPT1B, CPT1C, ACOX3, CYP27A1, LDLR, ANGPTL4, CD36,

SLC27A2, ACOX2, FABP6, HMGCS2, PLIN4, PLIN5, PPARG, MMP1, PCK1, PLIN2, GK, NR1H3, PPARD, OLR1, RXRB,

PDPK1, and RXRA) have a significant impact on the prognosis of patients with KIRC (log-rank test, p < 0.0001).

(D) The Combination module reveals that the KIRC subgroup of patients with low expression of HMGCS2 and no somatic

mutation in VHL may have the highest risk (log-rank test, p = 0.0016).

(E and F) HMGCS2 has the similar pattern in a variety of tumors including liver hepatocellular carcinoma (LIHC), bladder

urothelial carcinoma (BLCA), brain lower-grade glioma (LGG), and KIRC (log-rank test, p < 0.0001).
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Previous studies have found that hsa-miR-98-5p overexpression could increase breast cancer cells prolifer-

ation, migration, and invasion indicating that hsa-miR-98-5p functions as an oncogenic role in breast cancer

(Wang et al., 2018). However, the role of hsa-miR-98-3p in breast cancer was not clear. Through our case

study result here, we might speculate that hsa-miR-98-3p could have affected the repair of chromosomal

DNA single-strand breaks by negatively regulating PARP3, thereby affecting the prognosis of patients

with BRCA. Or such analysis result could justify more functional experimental validation. This case study

also demonstrates that ToPP can providemultiple-omic molecular feature selection in prognostic research.

A

D

G

B

E

H

C

F

I

Figure 3. Multi-omics prognostic analysis in ToPP

(A) Prognosis analysis of PARP3 mRNA expression in TCGA-BRCA cohort, patients with higher expression of PARP3 have better prognosis (log-rank test,

p < 0.0035, HR: 0.621 95%CI: 0.45–0.858). So it is in two independent datasets (B and C).

(D) The prognosis analysis of expression of PARP3 in protein level (iTRAQ) also indicates PARP3 is a protection factor to patients with breast cancer (log-rank

test, p = 0.047).

(E) Patients with PARP3 mutation may have poor prognosis (log-rank test, p = 0.00098).

(F) High expression of hsa-miR-98-3p was significantly associated with poor prognosis in patients with breast cancer (log-rank test, p = 0.012).

(G) The expression for hsa-miR-98-3p in BRCA tumor tissue and adjacent normal tissue (wilcoxon rank sum test, ***, p < 0.001).

(H) The expression for PARP3 in BRCA tumor tissue and adjacent normal tissue (wilcoxon rank sum test, ***, p < 0.001).

(I) Correlation between the expression of hsa-miR-98-3p and PARP3 in tumor tissue (spearman correlation, p < 2.2e-16, R = �0.36).
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Automatic gene set feature optimization and validation of a prognostic model for a certain cancer
type in ToPP

Owing to the complexity and heterogeneity of diseases, it remains a challenge to accurately predict the

prognosis of all patients using a single marker. Therefore, it is desirable to combine different signatures

to construct a versatile prognostic model to predict outcome. However, building a stable prognostic

model requires sophisticated statistical skills and profoundmedical knowledge whichmay be cumbersome

for researchers. Here, we illustrate a case study to build a prognostic model automatically with a set of gene

signatures to predict prognosis for one cancer type using ToPP. Let’s take liver cancer as an example. ToPP

provides two independent liver cancer cohorts with gene expression data and complete clinical follow-up

data (OS), one cohort with 365 samples obtained from TCGA, and the other cohort with 232 samples from

the LIRI-JP project downloaded from ICGCData Portal (Fujimoto et al., 2016). We used the normalized read

count values available in the gene expression file. We set the TCGA-LIHC cohort as the training set and

LIRI-JP cohort as the validation set. Firstly, we selected univariate analysis function in ToPP to screen out

the top 10 genes (KPNA2, G6PD, SFPQ, SOCS2, EZH2, RAMP3, UCK2, GTPBP4, CBX2, and LIMS2) which

are most relevant to the prognosis (OS) of liver cancer in gene expression level (Table S3). Then, the expres-

sions of these genes were used as candidate features for model construction. We chose AIC as model se-

lection in a stepwise (select backward) algorithm. Eventually, a four-gene (karyopherin subunit alpha

2(KPNA2), suppressor of cytokine signaling 2(SOCS2), GTP-binding protein 4(GTPBP4), and chromobox

2(CBX2)) signature model was constructed by multivariate analysis showing that they were independent

prognostic factors for liver cancer (Table 3).

To prove the effect of our automatically generated prognosis model, we validated the model by the

following analyses. The C-index with 1000 bootstrap replications in the training cohort (TCGA-LIHC) was

0.724 and 0.752 in validation cohort (LIRI-JP). We stratified the samples into two groups (high-risk or

low-risk) according to the median value of the risk score = 0:272 � KPNA2�
0:202 � SOCS2+ 0:396 �GTPBP4+ 0:138 � CBX2. KM curve was drawn with these two groups, and the

log-rank test was with p < 0.0001 (Figure 4A). Besides, Cox model diagnosis and validation was performed

simultaneously. The results show that all covariates satisfy the proportional hazards (PH) assumption and

the global test of this Cox regression model is 0.212, which means the model as a whole meets the PH

assumption (Figure 4B). A nomogram that incorporated all of the significant independent factors for pre-

dicting the 3-year and 5-year survival rates in the testing cohort was established (Figure 4D) and the asso-

ciated calibration curves from the nomograms at 3 and 5 years are shown in Figure 4C.

Investigation of mutation-expression regulation by sub-stratification prognosis analysis in ToPP:
patients with high expression of HIST2H3C have poor prognosis only in IDH1mutation subgroup of
lower-grade glioma

The featured combination module in ToPP can help us to have better stratification of patients and under-

stand the prognostic effects. As an example, here we used the mutation of isocitrate dehydrogenase

1(IDH1) as a condition for patient stratification and prognosis analysis. IDH1 is one of the most commonly

mutated genes in diffuse lower-grade gliomas (LGGs), and it is significantly related to the prognosis of LGG

(Deng et al., 2019). IDH1/2 mutations are thought to result in hypermethylated histones and DNA (Raineri

and Mellor, 2018). In order to investigate the effect of IDH1 and histone status on the prognosis of patients

with LGG, here, we selected H3 clustered histone 14 (H3C14, also known as HIST2H3C), which plays a cen-

tral role in transcription regulation, DNA repair, DNA replication, and chromosomal stability as an example

(Herranz et al., 2016). Firstly, we retrieved the effect of HIST2H3C expression level on prognosis in LGG, and

found that there was no significant (p = 0.32, Figure 5A) difference between high expression and low

expression groups in overall survival (OS). In order to examine whether HIST2H3C expression has an effect

Table 3. Univariate and multivariate analysis for a four-gene signature for the prognosis of liver cancer

symbol

Univariate Multivariate

HR(%95CI) p value HR(%95CI) p value

CBX2 1.90:(1.33–2.69) 2.90E-04 1.15:(1.02–1.30) 2.48E-02

GTPBP4 2.38:(1.663.41) 1.29E-06 1.49:(1.06–2.09) 2.20E-02

KPNA2 2.28:(1.60–3.27) 3.43E-06 1.31:(1.04–1.66) 2.18E-02

SOCS2 0.457:(0.319–0.654) 1.13E-05 0.82:(0.72–0.93) 1.46E-03
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on prognosis when IDH1 is mutated, we divided the patients into two groups: IDH1 mutation group and

IDH1 wild-type group in ToPP. The results showed that patients with higher expression of HIST2H3C

have poorer prognosis in overall survival (OS), progression-free interval (PFI), disease-specific survival

(DSS), disease-free interval (DFI), and relapse-free survival (RFS) in the IDH1-mutated group (p < 0.0001,

HR = 2.69; p = 0.00012, HR = 2.0; p < 0.0001, HR = 3.23; p = 0.017, HR = 3.26; p = 0.016, HR = 1.64,

Figures 5B and S1). However, this phenomenonwas not found in IDH1wild-type group (p = 0.93, Figure 5C).

Further investigation found that the isocitrate dehydrogenase (IDH) mutant is related to increased methyl-

ation of histone lysine residues (Venneti et al., 2013), while, methylation of some lysine and arginine

residues of histones results in transcriptional activation (Whetstine, 2010). Moreover, we found that the

expression of HIST2H3C in patients with LGG with IDH1 mutation was significantly higher than that in

IDH1 wild-type patients (wilcoxon rank sum test, p < 0.001, Figure 5D). The above evidence shows that

HIST2H3C affects the prognosis of patients through a joint effect with IDH1 mutation. In subsequent

mechanism or drug research, it may suggest a new approach to treat LGG by inhibiting HIST2H3C expres-

sion when the IDH1 gene is mutated.

A

C

B

D

Figure 4. Four-gene signature-predictive prognosis model in liver cancer

(A) The risk score calculated with KPNA2, SOCS2, GTPBP4, and CBX2 could assess patient prognosis (log-rank test, p <

0.0001).

(B) Four covariates fit proportional hazards (PH) assumption for a Cox regression model (Schoenfeld test, p = 0.2116).

(C) 3-years and 5-years calibration curves showing model-predicted survival vs. observed fraction.

(D) Nomogram based on four-gene signature predicting patient outcome in 3 and 5 years.
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DISCUSSION

ToPP is an interactive web application for survival analysis for multi-omics data (genome, transcriptome,

proteome, epigenome, and clinical data) of 68 cancer projects from the TCGA, CPTAC, and ICGC Data

Portal. It collects comprehensive, standardized data. Therefore, it is at the first place in an affluent data re-

pository for versatile cancer prognostic features. Genes or proteins can be searched in ToPP to check on its

prognostic value in multiple published datasets.

ToPP provides flexible and comprehensive prognosis analysis modules, such as univariate, multivariate, com-

bined, patient subgroup stratification survival analysis, self-designed prognostic model construction, and pan-

cancer prognosis analysis module. Also, users can upload their own data for prognostic modeling and analysis.

All the data resources and analysis functions are provided in a friendly and simple interface for the conve-

nient application to experimental cancer researchers. For more advanced computational biologists, the

scripts in our GitHub account with full resources are also provided.

Limitations of the study

There are also some limitations in ToPP. It only contains relatively common types of tumors, which may not

be suitable for some specific types of tumors or other types of diseases. The clinical subtype annotation

information of some tumors is not comprehensive enough, such as liver cancer or colon adenocarcinoma

and so on. The molecular subgroup does not include the mutation sites, alternative splicing, or integrated

signatures such as tumor mutation burden, which we notice are being increasingly studied in cancer prog-

nosis. The analytical conclusions obtained by our platform are all data-driven which may lack more

A

C

B

D

Figure 5. Patients with lower-grade gliomas (LGG) with high expression of HIST2H3C have poor prognosis only in

IDH1 mutation subgroup

(A) Prognosis analysis of HIST2H3C mRNA expression in 528 patients with LGG shows no significant difference (log-rank

test, p = 0.32) for patient outcome.

(B) High expression of HIST2H3C has poor prognostic (log-rank test, p < 0.0001, HR: 2.69 95%CI: 1.61–4.5) in IDH1 mu-

tation subgroup.

(C) There is no significant difference (log-rank test, p = 0.93) in IDH1 wild-type subgroup.

(D) Patients with LGG have higher expression of HIST2H3C in IDH1 mutation subgroup than IDH1 wild-type subgroup

(wilcoxon rank-sum rank sum test, ****, p < 0.0001).
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biological explanations and experiments to validate the results. We will keep expanding the data reposi-

tory and function panels of ToPP to make it a sustainable resource for cancer researchers.
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LÃ3renz-FonfrÃ-a, V., Gutierrez-Gallego, R.,
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Lu Xie (luxiex2017@outlook.com).

Materials availability statements

This study did not generate new unique reagents.

Data and code availability

� All the public data including multi-omics data and clinical data for all the samples can be obtained

from the ToPP web server (http://www.biostatistics.online/topp/index.php).

� All original code has been deposited at https://github.com/kbvstmd/ToPP and is publicly available

as of the date of publication.

� Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Data resource

Multi-omic (Genomic, Transcriptomic, Proteomic, Epigenomic) and clinical data for multiple tumor types

from TCGA, ICGA and CPTAC projects were integrated in the ToPP platform (Tables 2 and S1). The

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Code for analyses This paper https://github.com/kbvstmd/ToPP

multi-omics data and clinical data This paper http://www.biostatistics.online/topp/index.

php

Software and algorithms

R 3.5.0 R Core Team https://www.rproject.org/

MySQL 5.7.17 Oracle Corporation https://www.mysql.com/

PHP 7.0.12 The PHP Group https://www.php.net/

rms 5.4.1 (Núñez et al., 2011) https://cran.r-project.org/web/packages/rms/

index.html

survminer 0.4.6 Alboukadel Kassambara (alboukadel.

kassambara@gmail.com)

https://cran.r-project.org/web/packages/

survminer/index.html

stringr 1.4.0 (Wickham et al., 2019) https://cran.r-project.org/web/packages/

stringr/index.html

data.Table 1.12.8 Matt Dowle (mattjdowle@gmail.com) https://cran.r-project.org/web/packages/

data.table/index.html

dplyr 0.8.5 (Wickham et al., 2019) https://cran.r-project.org/web/packages/

dplyr/index.html

forestplot 1.9 Max Gordon (max@gforge.se) https://cran.r-project.org/web/packages/

forestplot/index.html

ggpubr 0.2.5 Alboukadel Kassambara (alboukadel.

kassambara@gmail.com)

https://cran.r-project.org/web/packages/

ggpubr/index.html

ggsignif 0.6.0 Constantin Ahlmann-Eltze (artjom31415@

googlemail.com)

https://cran.r-project.org/web/packages/

ggsignif/index.html

ll
OPEN ACCESS

14 iScience 25, 104190, May 20, 2022

iScience
Article

mailto:luxiex2017@outlook.com
http://www.biostatistics.online/topp/index.php
https://github.com/kbvstmd/ToPP
https://github.com/kbvstmd/ToPP
http://www.biostatistics.online/topp/index.php
http://www.biostatistics.online/topp/index.php
https://www.rproject.org/
https://www.mysql.com/
https://www.php.net/
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
mailto:alboukadel.kassambara@gmail.com
mailto:alboukadel.kassambara@gmail.com
https://cran.r-project.org/web/packages/survminer/index.html
https://cran.r-project.org/web/packages/survminer/index.html
https://cran.r-project.org/web/packages/stringr/index.html
https://cran.r-project.org/web/packages/stringr/index.html
mailto:mattjdowle@gmail.com
https://cran.r-project.org/web/packages/data.table/index.html
https://cran.r-project.org/web/packages/data.table/index.html
https://cran.r-project.org/web/packages/dplyr/index.html
https://cran.r-project.org/web/packages/dplyr/index.html
mailto:max@gforge.se
https://cran.r-project.org/web/packages/forestplot/index.html
https://cran.r-project.org/web/packages/forestplot/index.html
mailto:alboukadel.kassambara@gmail.com
mailto:alboukadel.kassambara@gmail.com
https://cran.r-project.org/web/packages/ggpubr/index.html
https://cran.r-project.org/web/packages/ggpubr/index.html
mailto:artjom31415@googlemail.com
mailto:artjom31415@googlemail.com
https://cran.r-project.org/web/packages/ggsignif/index.html
https://cran.r-project.org/web/packages/ggsignif/index.html


genomic data mainly included three types: somatic mutation, Copy Number Variation (CNV) and gene

fusion. Somatic mutation data were downloaded fromUCSC Xena(Sanborn et al., 2011) and ICGCdata por-

tal. CNV data were extracted from cBioPortal data portal(Cerami et al., 2012) using the R-package ‘cgdsr’

(https://github.com/cBioPortal/cgdsr) and ICGC data portal while gene fusion datasets were obtained

from TumorFusions(Xin et al., 2018). The Transcriptomic data included mRNA expression, miRNA expres-

sion and lncRNA expression. The mRNA expression and miRNA expression data were downloaded from

UCSC Xena and ICGC data portal, and the LncRNA expression data were collected from TANRIC(Li

et al., 2015). Proteomic data included reverse phase protein array (RPPA) data and MS-based global pro-

teomic data. The RPPA data were acquired fromUCSC Xena andMS proteomic data(isobaric Tags for Rela-

tive and Absolute Quantification, iTRAQ) in Breast invasive carcinoma (BRCA) (Mertins et al., 2016), Colon

adenocarcinoma (COAD) (B. Zhang et al., 2014), Ovarian serous cystadenocarcinoma (OV) (Zhang et al.,

2016a) and Rectum adenocarcinoma (READ) (B. Zhang et al., 2014) were extracted from CPTAC using

the R-package ‘TCGA-Assembler-2’(Wei et al., 2018). Epigenome data (DNAmethylation data) were down-

loaded from UCSC Xena and ICGC data portal. Clinical data were collected from UCSC Xena, cBioPortal

data portal and ICGC data portal, which included overall survival(OS), progression-free interval(PFI), dis-

ease-specific survival(DSS), disease-free interval(DFI), Relapse Free Survival(RFS) (Liu et al., 2018) vital sta-

tus, tumor stage, age, height, weight, gender, race, lymphatic invasion status, lymph node status, primary

tumor pathologic spread, molecular subtypes and immune subtypes (Hoadley et al., 2018) (Table 1). Pan-

cancer data were downloaded from PanCanAtlas(Weinstein et al., 2013) in UCSC Xena.

Data preprocessing

The CNV data acquired from cBioPortal data portal were normalized to�2, �1, 0, 1, 2. Here we defined - 2

as CNV loss and 2 for CNV gain. In the meantime, the CNV data were downloaded from ICGC data portal

which contains the type information of CNV (gain, loss, etc). Here we only kept the information of CNV for

type gain and loss. Somatic mutation data were normalized into 1 and 0, where 1 represents the gene with

at least one sitemutated, and 0 represents nomutation in this gene. Similarly, gene fusion data was normal-

ized to 1 or 0. Here, 1 indicates the observation of a fusion event in this gene and 0 is the opposite. The

methylation value of a gene was determined by the mean beta value of all CpG sites in this gene, and

we defined beta values greater than 0.8 as hypermethylation and lower than 0.2 as hypomethylation by

default. Users can also customize the thresholds of beta values by selecting hypermethylation or hypome-

thylation sites in survival analysis. For all of the above data types, we only kept tumor samples. For other

data types, such as expression data, we kept both tumor and normal samples.

Survival analysis

Subgroup selection

With the advance of precision medicine, developing drugs that target a subset of patients with particular

features contributing to poor survival can be beneficial to these patients. The function of ‘‘subgroup selec-

tion’’ in ToPP is aimed to meet this demand. It mainly includes molecular subgrouping and clinical sub-

grouping. Molecular subgrouping function allows users to classify mutation subgroups, CNV subgroups

and methylation subgroups according to one or more genes to the user’s interest. Clinical subgrouping

includes not only the traditional classification such as gender, race or tumor stage, but also the molecular

label subgroups, which have been widely applied in clinic, such as the HER2 positive or negative subgroup

in breast cancer. Also, the distribution of the clinical features for each molecular stratified group will be

show to help identify any potential bias due to some clinical confounding variables.

Univariate analysis

Univariate analysis was performed with log rank test. For continuous variables such as gene or protein

expression, patients can be divided into two groups according to the median value of the variable, quantile

or the ‘best-cut’ value. Here, we calculated the log rank p values for the filtering of each sample and kept at

least 10% of samples for each group, and the cut point with the lowest p value was represented as the

‘‘best-cut’’. For categorical variables such as somatic mutation, CNV or gene fusion, patients were divided

into two groups by the binarized classification. Kaplan-Meier (KM) survival curves(Kleinbaum and Klein,

2012) were then drawn by the divided groups, the hazard ratio and the 95% confidence interval information

were also included in the survival plot.
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Combination analysis

Combination analysis is to analyze the prognosis effects by considering two features. These two features

can be in the same level of data such as the expression of two genes, or they can be in different levels.

For instance, if a researcher wants to know the prognostic impact of gene A expression in combination

with gene B mutant. Then, all the patients were divided into four groups (high expression + mutation

group, high expression + wild type group, low expression + mutation group and low expression + wild

type group) according to the threshold of two features, and then log-rank test was performed to test

whether there was significant difference between any of two groups, separately. Co-inactivation of one

gene pair which results in better survival may provide evidence for synthetic lethality interaction predic-

tion(Lee et al., 2018).

Multivariate analysis and prognostic modeling

Cox regression (or Cox proportional hazards model) is used for multivariate analysis(Christensen, 1987).

When constructing a prognostic model, we firstly fit a naive Cox model including all covariates. Then,

redundant or irrelevant variables from the model should be removed. Interaction between covariates

and time-dependent covariates should also be considered in the modeling process (Austin et al., 2020).

Therefore, stepwise regression is performed to select the variables of the model and is evaluated by the

Akaike information criterion (AIC) value. For diagnostic model, we mainly included the following three as-

pects: 1) testing the proportional hazards (PH) assumption, 2) examining influential observations (or out-

liers), 3) detecting nonlinearity in relationship between the log hazard and the covariates. In order to

test the model assumptions, residuals method was used. The common residuals for the Cox model

included: 1) Schoenfeld residuals to test the proportional hazards assumption; 2) Martingale residual to

assess nonlinearity; 3) Deviance residual (symmetric transformation of the martinguale residuals), to

examine influential observations(Xue and Schifano, 2017). Covariates conversion such as nonlinear transfor-

mations should be performed if it is necessary. Finally, we used Concordance index (C-index) (Harrell et al.,

1996) to evaluate the effect of the model.

Pan-cancer analysis

In order to reduce the impact of tissue specificity on the data, we used a specially standardized dataset

named the Pan-Cancer Atlas(Hoadley et al., 2018), which has normalized and removed batch effects of

the data, making the data comparable. In addition, since the expression of genes in various types of tumors

may be quite different, when doing the pan-cancer prognostic analysis, we first divided the patients into

high gene expression group and low gene expression group according to the median gene expression

in each type of tumor, separately. Then, all the high expression samples were combined as the pan-cancer

high group, so is the low expression samples. After that the log rank test was performed between these two

groups.

QUANTIFICATION AND STATISTICAL ANALYSIS

The ToPP web interface was developed using HTML5 and PHP script (version 7.0.12) in the Bootstrap

framework. JavaScript and jQuery were also used to perform dynamic web services with js library such

as DataTables.js and select2.js. The database was implemented in MySQL (version 5.7.17) and deployed

in Apache web server running on the CentOS 6.5 system. Data preprocessing and data analyses were per-

formed by the R scripts (version 3.5.0) with several R packages (rms v5.4.1, survminer v0.4.6, stringr v1.4.0,

data.table v1.12.8, dplyr v0.8.5, forestplot v1.9, ggpubr v0.2.5, ggsignif v0.6.0). Wilcoxon rank sum test was

used to compare two groups, and p < 0.05 was considered as significant difference. Significance levels

p < 0.05, p < 0.01 and p < 0.001 are noted using asterisks *, **, and ***, respectively.
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