
   1Filipow N, et al. BMJ Open Resp Res 2022;9:e001165. doi:10.1136/bmjresp-2021-001165

To cite: Filipow N, 
Main E, Sebire NJ, et al. 
Implementation of prognostic 
machine learning algorithms in 
paediatric chronic respiratory 
conditions: a scoping 
review. BMJ Open Resp Res 
2022;9:e001165. doi:10.1136/
bmjresp-2021-001165

GD and SS are joint senior 
authors.

Received 2 December 2021
Accepted 6 March 2022

1UCL Great Ormond Street 
Institute of Child Health, 
University College London, 
London, UK
2Population, Policy and 
Practice Research and 
Teaching Department, UCL 
Great Ormond Street Institute 
of Child Health, University 
College London, London, UK
3GOSH NIHR BRC, Great 
Ormond Street Hospital for 
Children, London, UK
4Institute of Cardiovascular 
Science, University College 
London, London, UK
5Community Health and 
Epidemiology, Dalhousie 
University, Halifax, Nova 
Scotia, Canada

Correspondence to
Nicole Filipow;  
​nicole.​filipow.​18@​ucl.​ac.​uk

Implementation of prognostic machine 
learning algorithms in paediatric chronic 
respiratory conditions: a scoping review

Nicole Filipow  ‍ ‍ ,1 Eleanor Main,1 Neil J Sebire,2,3 John Booth,2,3 
Andrew M Taylor,3,4 Gwyneth Davies,2,3 Sanja Stanojevic5

Respiratory epidemiology

© Author(s) (or their 
employer(s)) 2022. Re-use 
permitted under CC BY. 
Published by BMJ.

ABSTRACT
Machine learning (ML) holds great potential for predicting 
clinical outcomes in heterogeneous chronic respiratory 
diseases (CRD) affecting children, where timely individualised 
treatments offer opportunities for health optimisation. This 
paper identifies rate-limiting steps in ML prediction model 
development that impair clinical translation and discusses 
regulatory, clinical and ethical considerations for ML 
implementation. A scoping review of ML prediction models in 
paediatric CRDs was undertaken using the PRISMA extension 
scoping review guidelines. From 1209 results, 25 articles 
published between 2013 and 2021 were evaluated for features 
of a good clinical prediction model using the Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis (TRIPOD) guidelines.
Most of the studies were in asthma (80%), with few in cystic 
fibrosis (12%), bronchiolitis (4%) and childhood wheeze (4%). 
There were inconsistencies in model reporting and studies 
were limited by a lack of validation, and absence of equations 
or code for replication. Clinician involvement during ML model 
development is essential and diversity, equity and inclusion 
should be assessed at each step of the ML pipeline to ensure 
algorithms do not promote or amplify health disparities among 
marginalised groups. As ML prediction studies become more 
frequent, it is important that models are rigorously developed 
using published guidelines and take account of regulatory 
frameworks which depend on model complexity, patient safety, 
accountability and liability.

INTRODUCTION
The rapidly expanding field of machine 
learning (ML) has created widespread 
promise in healthcare for the diagnosis, 
prognosis and management of disease to ulti-
mately enrich personalised medicine. ML is a 
broad field that uses statistics and algorithms 
to acquire knowledge from existing data, with 
the aim of predicting a future outcome for a 
set of similar circumstances, and the opportu-
nity for an ongoing process of updating and 
fine tuning when new data are available. A 
rapid expansion in the application of ML in 
medicine has been fuelled by vast amounts 
of data captured through clinical records, 
imaging, diagnostic investigations, patient 
registries and more recently electronic health 

records (EHRs) and wearable devices. As 
automated data capture becomes more wide-
spread in routine care, so too does the poten-
tial for ML models to diagnose disease or 
predict disease trajectories.

Machine learning
A branch of artificial intelligence, ML uses 
algorithms to identify patterns in often 
large and complex datasets that traditional 
statistical methods can have difficulty uncov-
ering.1 Broadly, ML is separated into super-
vised, unsupervised or deep learning; each 
is employed depending on the objective of 
the analysis and the information presented 
in the data (figure  1).2 Supervised methods 
form prediction models based on data with 
labelled outcomes, for example, when the 
disease severity of patients is known. Unsu-
pervised methods are used to identify the 
shared characteristics between similar groups 
of data where the outcomes are not labelled 
or defined, for example, to identify clini-
cally meaningful subgroups of disease when 
the relative disease severities of patients are 
unknown. Deep learning may be supervised 
or unsupervised and uses artificial neural 
networks (ANNs) to learn from data. ANNs 
are complex models that use many intercon-
nected layers of processing units, termed 
neurons, which extract levels of information 
from raw data to generate a set of rules for 
predictions.3

Predicting clinical outcomes in paediatric chronic 
respiratory diseases
ML predictive algorithms are particularly 
attractive within the field of chronic respira-
tory diseases (CRD), which present with 
heterogeneous clinical outcomes from diag-
nosis across the life course. In CRDs that 
affect children such as asthma, cystic fibrosis 
(CF), primary ciliary dyskinesia (PCD), 
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bronchopulmonary dysplasia (BPD) and children’s 
interstitial lung disease (chILD), the prediction of clin-
ical outcomes is especially important, where timely indi-
vidualised treatment regimes offer opportunities for 
health maintenance before symptoms of the disease 
become severe and irreversible.4 CRDs in children often 
involve longitudinal follow-up over multiple years with 
complex outcomes from clinical encounters which may 
be captured repeatedly through patient registries, cohort 
studies, or EHRs. These large datasets have driven the 
development of ML algorithms to predict likelihood of 
unfavourable clinical outcomes common in paediatrics 
such as respiratory exacerbation, hospitalisation, or accel-
erated lung function decline, with the aim of supporting 
early treatment decisions to prevent severe outcomes 
such as lung transplant or death.5 6 The adoption of ML 
predictive models in clinical care is rare however, which 
is discouraging given the increase of ML publications 
in respiratory medicine in the last decade.7 A series of 
recent reviews in other disease areas has highlighted 
inaccuracies and failures in reporting standards of prog-
nostic models generally as the major constraint to clinical 
translation.8–10

Objectives
While opportunities exist for ML prediction models to 
impact clinical care, challenges to implementation remain 
a barrier to clinical use. To explore the gap between 
model development and clinical application specific to 
CRDs affecting children, we carried out a scoping review 
of the available literature to evaluate the reporting of ML 
prediction models and identify the rate-limiting steps in 
model development that impair clinical translation. We 
further discuss regulatory, clinical and ethical consider-
ations for implementation and the future opportunities 
for EHRs to influence ML prediction models in clinical 
care.

METHODS
Overview
We carried out a scoping review using the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses 

extension for scoping reviews guidelines11 to identify 
prognostic ML algorithms in CRDs that affect children, 
including but not limited to CF, bronchiectasis, asthma, 
PCD, BPD and chILD. The purpose of the review was 
not to provide a summary of models in specific diseases, 
but rather to investigate the rate limiting steps to clin-
ical implementation of ML predictive models generally 
across paediatric CRDs, which have in common similar 
predictors and outcomes.

To identify barriers to clinical implementation within 
model development, relevant ML models were evaluated 
with reference to the key recommendations for model 
reporting specific for respiratory, sleep and critical 
care studies, summarised below.12 These metrics were 
summarised from the published guidelines for the Trans-
parent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis (TRIPOD).13 14

Search criteria
A search for published articles was performed in the 
Medline database using a previously curated list of phrases 
to identify prediction studies,15 and included the updated 
phrase suggestions.16 To filter for studies that used ML, 
the following MeSH terms and keywords were included: 
(Unsupervised Machine Learning/ or unsupervised ​
learning.​mp.) or (machine ​learning.​mp. or Machine 
Learning/) or (artificial ​intelligence.​mp. or Artificial 
Intelligence/) or (Supervised Machine Learning/ or 
supervised ​learning.​mp.) or (deep ​learning.​mp. or Deep 
Learning/) or (Neural Networks, Computer/ or neural 
network*.mp.) or ((cluster analysis or ​clustering).​mp. or 
Cluster Analysis/) or ((support vector machine or ​SVM).​
mp. or Support Vector Machine/) or random forest*.mp. 
or (decision tree*.mp. or Decision Trees/) or ​Bayesian.​
mp.

Respiratory MeSH terms and keywords included (cystic ​
fibrosis.​mp. or Cystic Fibrosis/) or (Asthma/ or ​asthma.​
mp.) or (Bronchiectasis/ or ​bronciectasis.​mp.) or (Bron-
chopulmonary ​Dysplasia.​mp. or Bronchopulmonary 
Dysplasia/) or (primary ciliary ​dyskinesia.​mp. or Ciliary 
Motility Disorders/) or (interstitial lung ​disease.​mp. 
or Lung Diseases, Interstitial/) or (chronic respiratory 
disease or chronic respiratory illness or chronic respira-
tory ​condition).​mp.

Paediatric studies were identified from the patient ages 
in the study data rather than included as a search term 
to not exclude articles that did not specifically mention 
paediatrics. The search was limited to publications in the 
past decade (2011–15 October 2021), since it was antici-
pated that most ML prediction models would have been 
recently published given the rise in ML studies in respi-
ratory medicine in the past decade.7 Furthermore, EHR 
systems were not implemented widely into healthcare 
systems prior to 2010.17 Any subsequent related studies of 
relevant articles were searched for to ensure all aspects of 
model development and validation were captured.

Figure 1  Branches of machine learning.
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Articles were excluded from review based on the 
following criteria: (1) not a primary journal article, (2) 
irrelevant (ie, in vitro studies, pharmacokinetic models, 
ML model not developed, not a CRD), (3) diagnostic or 
disease differentiation models, (4) descriptive models, 
(5) not predictive of clinical outcomes (ie, predictive of 
cost of care), (6) did not use primarily paediatric data, 
(7) did not report the age of study participants. The 
initial search results were filtered through a title search, 
and potential articles were further screened through a 
review of abstracts and full text.

Evaluating ML prediction studies
Using hallmarks of ML prediction studies identified in 
Leisman et al,12 models were evaluated for their reporting 
of metrics that infer features of a good clinical prediction 
model: generalisability, biasedness, interpretability, repli-
cability and clinical performance13 18–20 (table 1).

Generalisability was assessed through investigation of 
study characteristics including the location, data source, 
number of centres, dates of investigation, patient charac-
teristics, as well as evidence of internal and/or external 
validations. To investigate potential sources of bias, the 
handling of missing data, sample size and the definition 
of the outcome was noted. Interpretability was inferred 
through methods of predictor selection, numbers of 
predictors, as well as any methods to meaningfully 
describe the resulting model. Replicability was inferred 
if the model structure/specificity was provided through 
equations or shared code.

Traditional measures of model performance involve a 
range of metrics that assess how well the model classifies 
data compared with the labelled classifications during 
internal and external validations, such as area under the 
receiver operator curve, specificity/sensitivity, accuracy, 
or precision–recall curves.12 However, high performance 
by these measures does not inevitably represent clinical 
efficacy or patient benefit.18 As such, this review focused 
on whether a prognostic study in a clinical setting or a 

randomised controlled trial (RCT) has been carried out 
to evaluate clinical performance of the ML model.

RESULTS
Study selection
A flow chart of the scoping review process is displayed 
in figure 2. There were 1209 results, 243 abstracts were 
screened and 25 articles were included in the review, 
which are summarised in table 2.

The studies selected for review were published 
between 2013 and 2021; 72% were published since 2018 
(figure  2). Most of the studies were related to asthma 
(80%), with few in CF (12%), bronchiolitis (4%) and 
childhood wheeze (4%). While a small number of 
studies using ML were identified in BPD, PCD, chronic 
cough and bronchiectasis, they were either diagnostic or 
disease differentiation ML models, or were carried out in 
adults and were excluded. The majority of studies used 
disease exacerbation or hospitalisation as an outcome, 
with other predictions including risk of lung damage 
(through quantification of imaging with CT), develop-
ment of comorbidities (eg, developing asthma in child-
hood wheeze), disease-specific measures such as asthma 
control, or positive clinical outcomes such as asthma 
remission or response to treatment. One study exam-
ined risk of critical care, which was defined as admission 
to ICU or death; otherwise, risk of death or lung trans-
plant was not assessed as a primary outcome which was 
expected, given their rare occurrence in paediatrics.

A range of ML algorithms were used, with more 
studies using supervised (72%) over unsupervised 
(20%) and deep learning (8%) methods. Some studies 
employed multiple ML methods to identify the optimal 
model while others focused on the development of a 
single model. Random forest was the most widely used 
supervised method (n=10), followed by decision trees 
(n=5), Bayesian models (n=4), support vector machines 
(n=4), Lasso (n=3), various boosting methods (n=3), 
and combined models (ie, autoML, ensemble learning, 

Table 1  Key reporting elements evaluated in this scoping review to infer features of a good clinical prediction model

Features Definition Key reporting elements*

Generalisability How well the model works in populations external to the study 
population, and as such can be used to infer performance in a 
clinical setting

	► Data source
	► Participants
	► Validation (internal/external)

Biasedness Occurs when certain elements are more heavily weighted than 
others, or with inconsistency or subjectivity in defining the 
outcome.

	► Missing Data
	► Outcomes

Interpretability How well the model is understood by clinicians 	► Predictors

Replicability The ability to replicate the model in the same or independent 
population

	► Model specification
	► Model structure

Performance Whether the model provides benefit to patients 	► Prospective study
	► Randomised controlled trial

*Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis guidelines summarised in Leisman et al.12
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predictor pursuit), where predictions are made from 
multiple sequential methods (n=3). ANNs were the only 
deep learning methods used and cluster analysis was 
the only unsupervised method. Many of the descriptive 
studies excluded from review used cluster analysis to 
define the characteristics of subgroups of disease, without 
predicting future outcomes.

Generalisability
There were 19 studies (76%) that reported each of the 
data and patient metrics used to infer generalisability 
(figure 3). Often the data were described from previous 
studies but it was not always clear if the original data 
exclusions also applied to the present study. Clarity on 
these details should be included in the main text. Most 
studies originated from a single centre (52%) rather than 
multicentre or a national database (44%). There were 
more studies with data from North America (68%)21–37 
than Europe (24%),38–43 Australia (4%),44 or the Middle 
East (4%).45 Data collected during studies (ie, cross-
sectional, longitudinal cohort) were the most common 

sources of data (56%),23 25 27 31 35 37–45 followed by registry 
data from either routine EHR (24%),26 28 30 32 34 36 regional 
or national databases (12%),21 22 33 or clinical records 
(4%).24 One study did not report the source of data for 
model development (4%).29

Participant ages within a study ranged from infants 
less than a year old, to 2–22 years. Dates of study data 
ranged from 1993 to 2019, 6 studies (24%)29 38 41 43–45 did 
not report any study dates. There was no evidence of any 
model being updated over time. Year of publication did 
not always correlate with years of study data.

There were 18 studies (72%)21 22 24 26–30 32–37 40–43 that 
carried out an internal validation. This was most often 
accomplished by splitting the dataset into a test and 
training set. Only a single study (4%)22 carried out an 
external validation in geographically different data 
(figure 3).

Bias
Sample sizes ranged considerably across studies, from 
small scale studies (n=49 people) to larger analyses 
(n=52 037 people). It was often not clear whether large-
scale studies included data of repeated measures, or if they 
were independent records. In handling missing values, 
32% of studies used complete case analysis,21 22 26 27 31 32 34 39 
28% imputed missing values,23–25 33 35 42 45 and one used a 
combination of both30; however, 36% of studies did not 
define any explicit methods.28 29 36–38 40 41 43 44 In defining 
outcomes, proxy measures were often used, for example 
exacerbation was often recorded as requirement of a 
medication, which can be biased towards clinician or 
centre treatment preferences.

Interpretability
The number of predictors ranged from 9 to 648. Studies 
using large numbers of predictors (n>50) did not typi-
cally rely on any variable reduction techniques or they 
did not describe if or which variables were included 
in the final prediction model if variable reduction was 
considered.30 35 43 These models are uninterpretable as 
it is unknown which of the hundreds of variables influ-
enced clinically relevant poor outcomes for a particular 
person. Studies using smaller numbers often used clin-
ical knowledge to select variables,22 23 25 29 31–33 36 excluded 
those with high missingness,24 35 42 or used various statis-
tical techniques to ensure included variables were clin-
ically relevant,38 39 41 45 which may allow for more inter-
pretability.

Repeatability
None of the studies shared any code or equations for 
their predictive models.

Clinical performance
Two studies carried out prospective studies to assess the 
performance of a ML model in a clinical setting. One 

Figure 2  Relevant search terms and results for a literature 
review identifying studies that used machine learning (ML) 
methods to develop prediction models of clinical outcomes 
in chronic respiratory diseases affecting children. Results 
were filtered through a title review, and abstracts were 
further screened with the exclusion criteria to identify 
relevant ML models in paediatrics. (A) Distribution of 
diseases and (B) years of publications identified in the 
search process; light grey=articles flagged as relevant 
through a title search, dark grey=articles selected for review 
based on the exclusion criteria. BPD, bronchopulmonary 
dysplasia; CF, cystic fibrosis; PCD, primary ciliary 
dyskinesia.
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study assessed the accuracy of a naïve Bayes model 
compared with both a standard score and physician deci-
sions in a prospective study to predict severity of asthma 
exacerbation in the emergency department. The naïve 
Bayes performed with less accuracy than both.24

In an RCT, the second study provided an asthma exacer-
bation prediction model to physicians in the intervention 
group, while standard care was maintained in the control 
group. There was no difference in prevalence of exacer-
bation within 1 year for patients in either group, although 
the physicians in the intervention group had a reduced 
time in reviewing EHRs for asthma management.29

DISCUSSION
The 25 prognostic ML studies assessed in this scoping 
review were overwhelmingly focused on asthma and 
the majority were supervised models. The studies were 
mainly limited by a lack of validation or prospective study, 
and the absence of equations or code for replication, 
which are major steps required for clinical implementa-
tion. Some recent studies used data from 1 to 2 decades 
ago, which may have limited relevance to current popula-
tions for which treatments and care have changed. Some 
of the models were opaque, uninterpretable models that 
used high numbers of predictors and did not explain 
the resulting predictions. This is especially important in 
healthcare since a clinician needs to know not only who is 
at risk, but also what they can do to change the outcome.

A large proportion of studies did not report on the 
handling of missing data, which does not provide trans-
parency to evaluate whether sample populations are 
under-represented, for example, towards those who 
are sicker and have more data. Smaller datasets were 
typically derived from research studies, where there is 

greater control over the variables collected or the inclu-
sion criteria for the study. However, ML methods were 
typically developed for large datasets, and studies using 
national/regional databases, EHRs, or data from daily 
home monitoring benefit from large samples likely more 
representative of wider populations.

External validations are necessary to understand the 
generalisability of the predictions; however, only one was 
conducted. In the study, similar clusters of children with 
CF developed from data in Canada were identified in 
data from the UK, providing evidence for the generalis-
ability of the model.22 Internal validations were frequent, 
but their performance relies heavily on the definition 
of the outcome. If the outcome is somewhat subjectively 
captured, for example, prescription of medication, the 
resulting predictions are biased towards the subjective. 
This is highlighted in the two prospective studies that 
identified no patient benefit despite good model perfor-
mance during development.24 29 If the models are trained 
on data where the outcome is influenced by clinician 
decision, it is unsurprising that the models would not 
outperform a clinician. While these models may benefit 
areas of healthcare such as easing/increasing clinician 
workflow, objectively captured outcomes such as chest 
imaging, lung function, or physiological data may result 
in models with greater patient benefit.

This scoping review was limited in that the studies 
were not assessed with the full TRIPOD guidelines, 
and bias and clinical applicability were not assessed 
with the full Prediction model Risk Of Bias ASsessment 
Tool46 guidelines. A summarised reporting checklist was 
instead used, which investigated the articles at an over-
arching level rather than a granular level to identify key 
themes. Even without detailed assessment using the full 
reporting checklists, the summarised checklist revealed 
that studies still largely failed to report on or carry out 
key metrics, and thus more granular investigation at 
this point was not required to identify shortcomings in 
model reporting. Development of ML prediction models 
is still an unexplored area of research in paediatric CRDs 
other than asthma, highlighted here by a lack of studies 
identified in other respiratory conditions. As research 
into these areas continues, and as ML prediction studies 
in paediatric CRDs are becoming more frequent (72% 
published since 2018), it is important that the models are 
rigorously developed. A quality assessment tool for artifi-
cial intelligence-centered diagnostic studies is currently 
being developed, and combined with the TRIPOD guide-
lines for prediction studies will be useful for designing 
future ML prediction models with clinical implications.47

Further considerations
The lack of model implementation is a point of discus-
sion in healthcare generally, and in addition to model 
development and reporting require regulatory, clinical 
and ethical frameworks.18 48–51 A hypothetical pathway 

Figure 3  Evaluating the generalisability of machine 
learning (ML) models through investigating dates of 
study data (x-axis) for each study (y-axis), evidence of 
validations (left=no validations, middle=internal validation 
only, right=external and internal validation), and number of 
centres (labelled on figure; ‘National’=If a national registry/
database was used and the number of centres within were 
not reported). Only studies that reported each of the data 
and patient metrics are displayed (n=19/25).
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for ML model development using these frameworks is 
summarised in figure 4.

Regulatory
The level of regulation and approval required for a 
prediction model can depend on its complexity, where 
more complicated, uninterpretable models are classed 
as a medical device and must be approved by relevant 
governing bodies, such as the Food & Drugs Administra-
tion (FDA) in the USA, or the Medicines and Healthcare 
products Regulatory Agency in the UK. A recent online 
database suggests that 64 AI/ML-based models have 
been FDA approved since the first one in 2016, which are 
predominantly within the fields of radiology and cardi-
ology.52 Alternatively, simple models that prevent over-
fitting while improving interpretability may require less 
regulation if classed as a simple calculator. Depending on 
local regulations, these simple models may be employed 
using an app, online calculator, or hosted on platforms 
such as Programmable Interface for Statistical & Simu-
lation Models (https://resp.core.ubc.ca/research/​
Specific_Projects/PRISM).

Regulatory pathways for AI-based and ML-based 
medical devices in the USA and Europe are outlined in 
Muehlematter et al.53 Generally, prospective studies and 
RCTs are the standards used by regulators to provide 

evidence for clinical decision-making.19 However, RCTs 
are time consuming and costly, which may explain why 
few were identified in this review. It has been suggested 
that observational real-world data from EHRs may be 
adequate to evaluate the performance of a ML model, 
and that while useful, prognostic studies and RCTs should 
not be solely relied on to bring ML to clinical care.54 55 
Conversely, there is discussion that observational studies 
are less rigorous and have discrepant results to RCTs and 
should never be used to infer patient benefit.56 However, 
as EHRs and big data in healthcare accumulate and 
become increasingly representative of wider popula-
tions, it seems appropriate that methods to evaluate clin-
ical effectiveness from observational data are given due 
consideration and acknowledged as a valuable resource 
complementary to RCTs. Appropriate design and meth-
odology relating to evaluation of ML models in any RCT 
to evaluate their clinical utility will be an important discus-
sion moving forward, and mutually agreed on guidelines 
by regulators and clinicians for model evaluation in EHR 
studies is necessary.

Patient safety, accountability and liability are further 
major considerations for implementation. A recent review 
suggested that the allocation of responsibility in ML 
models is not clear, and stronger guidelines are necessary 
to understand which stakeholders are responsible should 
a ML model contribute to patient harm.57 Decision 
support tools, which aid clinicians in their assessment 
of disease severity through associated risks, may require 
less accountability than decision making tools, where 
the model becomes automated and suggests or delivers 
treatments depending on thresholds of biomarkers or 
symptoms.48 Decision support tools are more likely to 
be fully realised in the short term over decision-making 
tools, since a clinician still acts as the final decision maker 
and is ultimately responsible. Without clearer regulations 
surrounding accountability and liability, and clearer 
frameworks for determining patient safety and benefit of 
ML models, the potential for implementation of decision-
making tools is yet to be fully realised given the high risk 
of an erroneous prediction.58

Clinical
Implementation also requires the confidence of clini-
cians, and clinician involvement during model develop-
ment is essential. Especially in respiratory disease, prior 
research has generated ample knowledge on contribu-
tors of poor outcomes, which should not be ignored in 
model development or assessment. Combining clinical 
knowledge with ML may improve both performance and 
clinical trust in models, better facilitating their adoption 
in clinical care.

There is currently a lack of knowledge translation 
and implementation science between data scientists and 
clinicians, which are needed to be integrated into model 
development. Qualitative research may be necessary 
to gauge acceptance and potential utility of predictive 
models before they are developed.

Figure 4  Hypothetical framework for developing machine 
learning (ML) prediction models in healthcare. EHR, 
electronic health record; FDA, Food & Drugs Administration; 
MHRA, Medicines and Healthcare products Regulatory 
Agency; PROBAST, Prediction model Risk Of Bias 
ASsessment Tool; TRIPOD, Transparent Reporting of a 
multivariable prediction model for Individual Prognosis Or 
Diagnosis.

https://resp.core.ubc.ca/research/Specific_Projects/PRISM
https://resp.core.ubc.ca/research/Specific_Projects/PRISM
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Ethical
ML algorithms have been known to amplify or create 
health disparities among marginalised groups. Ethical 
concerns can arise at every step of ML model develop-
ment, including the selection/funding of the problem, 
collection of data, definition of the outcome, algorithm 
development and algorithm monitoring post deploy-
ment.59 These issues can arise from inconsistencies in 
access to healthcare or under representation of certain 
groups in particular centres, which is reflected in the 
data used to train models. Including variables directly in 
the model to account for marginalised groups, such as 
gender or ethnicity, is not always the best practice and 
may perpetuate the biases. A review detailing a roadmap 
for responsible and ethical ML in healthcare is useful for 
addressing some of these concerns.60 Diversity, equity 
and inclusion should be considered at every step of ML 
model development.

Opportunities with EHRs
The opportunity for ML to support clinical decisions 
has been pronounced through the adoption of EHR in 
healthcare systems.61 EHRs are often unstructured and 
inconsistently captured; however, they are a rich, real-
world source of vast amounts of clinical data useful for 
uncovering meaningful patterns. Data infrastructure 
plays a key role in harnessing EHRs to enable the extrac-
tion, processing and analysis of large volumes of data. 
Feasibility and interoperability between data systems are 
important for this process, and standards such as fast 
healthcare interoperability resources (FHIR) should be 
considered (https://www.hl7.org/fhir/).

With appropriate infrastructure, a streamlined process 
between data capture, analytics and implementation 
can exist to predict outcomes for patient data at a new 
clinical encounter or visualise patient trajectories over 
time to support or inform clinical practice (figure 5). As 
EHR data grow large over time, the algorithms can and 
should be updated to reflect newer cohorts or include 
new information. The process is easily severed if steps for 
implementation are not considered or followed through, 
which risks an abundance of models that fail to be imple-
mented into clinical practice. It is therefore necessary 
that models are developed to be generalisable, unbiased 
and interpretable with good clinical performance, and 
consider regulatory, clinical and ethical frameworks for 
implementation.

CONCLUSIONS
The 25 prognostic ML algorithms in CRDs affecting chil-
dren assessed in this scoping review were most notably 
limited by a lack of validations and replicability. For ML 
to enhance personalised medicine and influence clin-
ical care, it is important that the models are rigorously 
developed and that the regulatory, clinical and ethical 
frameworks for implementation are considered at every 
step of the ML pipeline—from predevelopment to post 

implementation. This is especially important as EHRs 
become more widespread and facilitate the integration 
of ML algorithms directly into clinical care.
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