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Abstract
Older adults following recovery from ischemic stroke have a higher incidence of orthostatic hypotension, syncope, and fall risk, which
may be related to impaired autonomic responses limiting the ability to maintain cerebral blood flow. Thus, we investigated
cerebrovascular and cardiovascular regulation in 23 adults ≥55 years of age, 10 diagnosed with ischemic stroke, and 13 age-
matched healthy controls when sitting at rest and upon standing to compare differences of autonomic variables at ∼7months (218±
41 days) poststroke.
Arterial blood pressure via finger plethysmography, muscle-pump baroreflex via electromyography, heart rate variability via 3-lead

ECG, and cerebral blood flow velocity via transcranial Doppler were analyzed while sitting for 5 minutes and then during quiet
standing for 5 minutes.
From the seated to standing position, the stroke group had significantly greater decline in the low frequency component of heart

rate variability (164 [79] vs 25 [162]ms2;P=0.043). All other cardiovascular parameters and assessments of autonomic function were
not significantly different between the two groups.
Our findings support the hypothesis of continued autonomic dysfunction after recovery from ischemic stroke, with potential

attenuation of the cardiovascular response to standing. However, further investigation is required to determine the mechanisms
underlying the increased risk of orthostatic hypotension, syncope, and falls poststroke.

Abbreviations: ANS= autonomic nervous system, EMG= electromyography, FFT= fast Fourier transform, HF= high frequency,
HRV = heart rate variability, LF = low frequency, NTS = nucleus tractus solitarius, OH = orthostatic hypotension, RRI = R-to-R time
interval.
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1. Introduction

Medically treated nonfatal falls among those 65 years of age or
older living in the US is currently a multibillion-dollar healthcare
expenditure.[1] Ischemic stroke is a significant cause of gait
imbalance and falling,[2,3] with incidence of stroke more than
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tripling between the 35 and 44 to 65 and 73-year-old age
groups.[4,5] Autonomic dysfunction has proven to be both a risk
factor and also as a symptom poststroke, attributing to the
increased fall risk in stroke survivors.[3,5–7]

Regulation of blood pressure and heart rate involves fast,
neurally mediated reflex systems. The central autonomic
network, which includes the nucleus tractus solitarius (NTS)
and ventrolateral medulla, in conjunction with the cardiac,
carotid, and aortic arch baroreceptors of the peripheral nervous
system are involved in those systems. The pathophysiology
underlying autonomic dysfunction following both ischemic and
hemorrhagic stroke involving these structures remains elusive due
to the complexity of contributing factors such as comorbidities
and location of ictus.[8,9] Nonetheless, many studies have
attributed an increase in cardiovascular and all-cause mortality
to the alterations in autonomic control poststroke.[8–10] De-
creased cardiac baroreceptor reflex sensitivity (BRS) and reduced
vagal inhibitory outflow, both of which can be measured via
noninvasive techniques such as heart rate variability (HRV), have
been seen up to 9 months after ischemic stroke.[11] Poststroke
increased arrhythmogenic potential, blood pressure variability,
sympathetic tone, and altered cerebral perfusion all lead to a poor
prognosis.[9–11]

The sum of aging, gait imbalance,[3] and muscle weakness,[12]

with cardiovascular autonomic dysfunction in the elderly
poststroke precipitates an exaggerated risk of orthostatic
intolerance and falls, increasing morbidity, mortality, and health
care costs in this population.[1,2,4–8] Thus, we utilized noninva-
sive techniques to perform a cross-sectional investigation of the
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degree of autonomic dysfunction in adults ≥55 years of age that
are less than 1-year poststroke.
2. Methods

2.1. Study population

Twenty-three subjects (10 poststroke and 13 controls) gave
written informed consent to participate in the pilot study.
Approval was obtained from the Ethics Committee of the
Medical University of Graz. Stroke patients 55 years of age and
older were included in the study if the cerebral ischemic infarction
had occurred in the 12 months prior to the study and was
diagnosed by magnetic resonance imaging (MRI). Due to our
testing procedure, only patients with transient or mild stroke
syndromes (National Institutes of Health Stroke Scale [NIHSS]
�3) were selected. Stroke patients with further neurological
disorder (epilepsy, dementia, and Parkinson’s disease), severe
disability (modified Rankin scale [mRS] >2), and/or intracranial
vessel stenosis were excluded. The control group consisted of age-
matched subjects with no history of stroke that fulfilled the
inclusion criteria previously described. Total vascular risk for
each subject was calculated by adding each individual risk factor
(eg, previous vascular event, tobacco use, arterial hypertension,
dyslipidemia, and diabetes mellitus), which were obtained from
reviewing history and medical records. All subjects underwent
basic neurological assessment (clinical neurological examination;
extra- and intracranial duplex sonography) and received medical
clearance to participate prior to performing a single sit-to-stand
test at the Neurological Department of the Primary and Tertiary
Care University Hospital of Graz.
2.2. Equipment used and measurements performed

Cerebral blood flow velocity (BFV) of the middle cerebral artery
was measured using a transcranial Doppler (TCD) (Multi-Dop T
digital, Compumedics Germany GmbH, Singen, Germany).
Arterial blood pressure was measured with noninvasive finger
plethysmography (Finometer, Finapres Medical Systems B.V.,
Amsterdam, Netherlands), and the heart rate (HR) was measured
using bipolar 3 lead ECG (FD-13, Fukuda Denshi Co. Ltd, Tokyo,
Japan). Standard arterial blood pressures, derived from a
continuous pressure trace acquired using a digital artery cuff
placedon themiddlefingerwith thehandheldat heart level assisted
with an arm sling, were obtained during sitting and standing. The
force plate (AccuSway, Advanced Mechanical Technology, Inc.,
Watertown,MA) was zeroed before each subject placed his or her
feet into position. To obtain muscle-pump baroreflex responses,
electromyography (EMG) of bilateral gastrocnemius muscles was
performed (MyoSystem1200,NoraxonUSAInc., Scottsdale,AZ).
Analog outputs were digitized using an USB-6218 integrator
(National Instruments Corporation Ltd., Newbury, UK) and
recorded on LabVIEW 13.0.1f2 (National Instruments Corpora-
tion Ltd., Newbury, UK).

2.3. Experimental protocol

Following 5 minutes of sitting at rest on a bed adjusted to patient
knee height (sitting), subjects were gently assisted into the standing
position (standing) on a force plate while looking straight ahead.
After5minutesofquiet standing, the subjectwasassisted to resume
the initial seated position (recovery) for a further 3 minutes.
Subjects were instructed to breathe naturally throughout the
protocol andwhen standing, to swayor shift theirweight if they felt
2

uncomfortable, but asked to stay as still and relaxed as possible,
with their shoes off and feet shoulder width apart on a force plate.
Medical personnel and anopenbed nearbywere available should a
subject become syncopal. All investigations were performed
between 7:00 and 11:00 AM inside a quiet room maintained at
23 to 25 °C. Subjects were asked to refrain from coffee or other
stimulants for 24hours prior to study participation.
2.4. Data extraction

Sampling rate for output datawas 1kHz.R-to-R time interval (RRI)
wasmeasured using peak detection software accurate to 1-ms. ECG
data were screened manually for artifacts such as premature
ventricular contractions, HR was derived from the average RRI of
each epoch in addition to RR interval standard deviation (RRSD)
standardized to 15seconds for each subject per epoch. Spontaneous
baroreflex response was determined from changes in RRI and
systolic blood pressure (SBP) described by Blaber et al.[13,14]

HRVwas derived via the fast Fourier transform (FFT) method,
following RRI detection (MATLAB, Mathworks, MA). FFT was
performed on 260-second sections from each of the 3 protocol
epochs using Welch method (64seconds Hanning window with
50% overlap) to determine the absolute (milliseconds2) and
normalized (Equation 1) very low frequency (VLF: �0.04Hz),
low frequency (LF: 0.04–0.15Hz), and high frequency (HF:
0.15–0.4Hz) power density.[15]

ððLF _or HFÞ=ðTotal Power� VLFÞÞ�100

Equation 1: HRV normalization
The EMG data were rectified and low pass filtered (cutoff

frequency 5Hz) to extract the envelope using the moving average
method. Beat to beat EMG impulses (ie, area under the EMG
envelope during each RR interval) were then calculated to
represent the overall effect of EMGwithin each beat. The muscle-
pump baroreflex sensitivity was characterized by the transfer
function gain[16] from SBP to EMG impulse series in 3 frequency
bands (VLF: 0.01–0.07Hz; LF: 0.07–0.15Hz; and HF: 0.15–0.3
Hz).[17] The transfer function was estimated by Welch method
(64seconds Hanning window with 50% overlap) from SBP and
EMG impulse during the 5-minute standing period. The gain
value at a given frequency was considered to be valid only if the
magnitude squared coherence between SBP and EMG impulse at
the same frequency was greater than 0.5.

2.5. Statistical analysis

Autonomic parameters including HR, SBP, diastolic blood
pressure (DBP), HRV, systolic baroreflex, lag time, and cerebral
blood flow velocity (both SBFV and DBFV) are presented as
median± interquartile range (IQR) with nonparametric statistics
employed to compare stroke and control groups. Nominal data
(gender, use of daily antihypertensive, and total vascular risk
factors) were compared using chi-squared test. Anthropometric
data (eg, age, height, and weight), SBP nadir after standing, the
time required to reach peak SBP after the nadir (overshoot),
and for return to within 10mmHg of that acquired in the
3rd minute of standing (plateau) for 5seconds were compared
between groups via Mann–Whitney U testing. Average auto-
nomic variables during 15seconds in the 5th minute of sitting,
3rd minute after standing, and during recovery were also
compared between stroke and control groups viaMann–Whitney
U testing. Similarly, muscle-pump baroreflex gain values in the
VLF band (insufficient data points in LF andHF bands due to low



Table 1

Demographics of stroke and control groups.

Stroke (n=10) Control (n=13) P

Age, years 64.1±7.5 62.1±7.1 0.518
Male, no. (%) 9 (90) 5 (39) 0.012
Weight, kg 89.5±16 82.6±17 0.331
Height, cm 177±6 170±10 0.054
Total vascular risk factors

∗
2±1.25 0±1 0.005

Daily antihypertensive, no. (%) 7 (70) 2 (15) 0.001
Time poststroke, days 218±41
Stroke type, no. Cardio-embolic, 4

Large vessel, 2
Cryptogenic, 4

Values are presented as median± interquartile range (IQR), unless otherwise mentioned.
∗
Total vascular risk factors calculated by the addition of risk factors (diabetes mellitus, tobacco use,

hypertension, and hyperlipidemia), with each factor valued as 1 point.

Table 3

Median (±IQR) heart rate variability indices during sitting and
standing and delta between them in stroke and control groups.

HRV parameter Position Stroke Control P

HF, ms2 Sitting 126 (124) 116 (171) 0.612
Standing 76 (251) 65 (62) 0.772
D 39 (141) 7.6 (126) 0.942

HF, n.u. Sitting 0.22 (0.16) 0.31 (0.42) 0.469
Standing 0.32 (0.43) 0.24 (0.09) 0.772
D �0.07 (0.26) �8.1�10�5 (0.21) 0.247

LF, ms2 Sitting 313 (186) 121 (222) 0.128
Standing 128 (106) 105 (189) 0.772
D 164 (79) 25 (162) 0.043

LF, n.u. Sitting 0.78 (0.16) 0.70 (0.42) 0.469
Standing 0.68 (0.43) 0.76 (0.09) 0.772
D 0.07 (0.26) �8.1�10�5 (0.21) 0.247

LF/HF Sitting 3.53 (3.0) 2.28 (4.1) 0.469
Standing 2.24 (4.4) 3.2 (1.5) 0.772
D 0.31 (2.5) �0.01 (2.5) 0.469

D=difference between sitting and standing, HF=high frequency, HRV=heart rate variability, IQR=
interquartile range, LF= low frequency, n.u.=normalized units.
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coherence between SBP and EMG impulse) were compared
using the Mann–Whitney U test. Spearman correlation between
all autonomic variables andNIH stroke severity score or vascular
risk factors was performed using Prism 6 (Prism 6 for Mac OSX,
GraphPad Software, Inc. San Diego, CA). Statistics were
performed using SPSS v23 (SPSS Statistics for Windows, IBM
Corp Armonk, NY), with significance assumed at P<0.05.
3. Results

The proportion of male subjects (X2 (1, N=23)=6.3, P<0.05),
those taking daily antihypertensive medication (X2 (1, N=23)=
11.6, P<0.01), and total vascular risk factors (X2 (3, N=23)=
12.3, P<0.01) were significantly greater in the stroke group.
Table 2

Median (±IQR) autonomic variables for stroke and control groups at

Variable Position/parameter

SBP, mmHg Sitting for 5 min
Sitting to nadir diff
Standing for 3 min
Recovery for 3 min

DBP, mmHg Sitting for 5 min
Stand to nadir diff
Standing for 3 min
Recovery for 3 min

SBFV, cm/s Sitting for 5 min
Stand to nadir diff
Standing for 3 min
Recovery for 3 min

DBFV, cm/s Sitting for 5 min
Stand to nadir diff
Standing for 3 min
Recovery for 3 min

Heart rate, bpm Sitting for 5 min
At nadir
At plateau
Standing for 3 min
Recovery for 3 min

Avg. baroreflex, ms/mmHg Sitting for 5 min
Standing for 3 min

Lag time, s Sitting for 5 min
Standing for 3 min

Blood pressure response time, s Time to reach plateau
Time to reach peak

Nadir represents values when the lowest SBP is observed (upon standing) and plateau at SBP stabilization (u
in SBP. IQR= interquartile range, SBFV/DBFV= systolic/diastolic blood flow velocity, SBP/DBP= systolic

3

There was no difference in age, height, or weight between the
stroke and control subjects (Table 1).
Poststroke subjects demonstrated a significantly greater decline

in the LF power spectra (164 [79] vs 25 [162] ms2; P=0.043)
when standing from a sitting position (Table 2). No significant
differences between group averages for heart rate, blood
pressure, cerebral blood flow velocity, spontaneous baroreflex,
baroreflex lag time, and blood pressure response time (overshoot
and plateau) were observed between the stroke and control group
at any position (Table 3). HRV did not differ significantly
various time points.

Stroke Control P

119 (15) 119 (22) 0.901
17 (7) 15 (20) 0.420
118 (21) 128 (24) 1.000
114 (26) 118 (22) 0.951
71 (14) 72 (20) 0.852
13 (8) 8 (11) 0.557
73 (10) 77 (22) 0.457
72 (12) 72 (19) 0.901
53 (31) 59 (15) 0.457
6 (11) 10 (28) 0.901
50 (30) 64 (15) 0.321
51 (27) 59 (7) 0.239
18 (11) 25 (9) 0.215
18 (8) 9 (27) 0.321
19 (12) 28 (9) 0.082
19 (14) 22 (10) 0.215
69 (5) 73 (13) 0.193
76 (9) 83 (14) 0.063
76 (11) 81 (9) 0.094
75 (9) 79 (14) 0.321
67 (7) 71 (14) 0.420
5.7 (3.8) 5.0 (5.1) 1.000
4.9 (2.5) 4.0 (2.8) 0.554
0.6 (0.1) 0.59 (0.3) 0.670

0.59. (0.2) 0.72 (0.3) 0.286
26.1 (13.3) 23.5 (5.7) 0.975
9.2 (2.6) 7.1 (6.1) 0.193

pon standing). Lag time represents the time interval between change in RR-interval following a change
/diastolic blood pressure.
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between the 2 groups at any position other than for the difference
in LF (ms2) from sitting to standing (Table 2). No significant
correlation was found between autonomic variables and total
vascular risk factors or NIH stroke severity score.
4. Discussion

The main finding of this study was a greater magnitude of
decrease in LF HRV modulation for the stroke group on average
compared to the control subjects.
4.1. Heart rate and HRV

The autonomic nervous system (ANS) directly influences the RRI
and HRV, which both provide an indicator of sympathetic and
parasympathetic autonomic modulation.[15] Power spectral
analysis of variability in the RRI for short (2–5minutes) ECG
recordings can be divided into HF, LF, and very low (VLF)
frequency components via the FFT method.[15] When expressed
in normalized units, the HF component is considered representa-
tive of parasympathetic modulation of the RRI, while LF is a
marker of sympathetic modulation, although some interpret an
influence of both ANS branches on LF when expressed in
absolute units.[15] Interestingly, increased lower frequency power
components (eg, LF, VLF) may act as risk predictors strongly
associatedwithmortality postmyocardial infarction.[8,18,19] Time
domain methods are simple calculations such as the standard
deviation of the RR interval (aka RRSD or SDNN), which, when
standardized for time, represents total power or overall global
HRV.[15]

We found that the spontaneous baroreflex response time and
HRV via the FFT method was not significantly different between
the 2 groups when orthostatically challenged, even when
controlling for male gender. A larger decrease in LF upon
standing, representing a transition to less sympathetic modula-
tion, was found on average in the stroke group upon standing.
This indicates a paradoxical decrease in sympathetic modulation
of the heart rate during orthostatic challenge and the opposite
response to that of the average healthy control (Fig. 1). Alteration
in normal sympathetic modulation to physiologic stress could
signify an underlying dysfunction at the level of the NTS.[10]

Redistribution of modulation toward sympathetic influence in
Figure 1. HRV spectra calculated by an FFT based nonparametric algorithm during
subject (C, D). Note the decrease in low frequency (0.04–0.15Hz) spectra in the s
heart rate variability, PSD=power spectral density.
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response to the decreasedfiring from the baroreceptors should lead
to the natural physiological pattern observed in the control group.
This is assuming that the sites containing baroreceptors are
anatomically normal and not affected by atherosclerosis and
stenosis; further ultrasound or arteriograms of the carotids could
help rule out anatomic pathology. HRV derived via FFT
comparisons between stroke and control groups averages did
not show statistical significance, which restricts the supposition
that strokewas an influential factor, but the averageHR andHRV
trends suggest underlying dysfunction of centralANSorganization
at baseline and in response to orthostatic challenge, decreasing the
capacity to accelerate heart rate, in the stroke group.
Average heart rate remained slightly higher throughout the

protocol in the control group, though not significant, and this
could signify a greater baseline b-receptor quantity or sensitivity,
which correlates with relatively larger increase in HR after
orthostatic challenge (12±6 vs 9±8bpm). A larger sample size
and more equal distribution of demographics for both groups
would be required to confirm who is better equipped to maintain
cerebral perfusion in response to orthostatic challenge and would
be less likely to fall due to syncope.
Two theories to explain the poststroke alteration in autonomic

function include: the ischemic damage could be affecting NTS
signaling, resulting in constant sympathetic activity, which over
time can increase resistance at adrenergic beta-receptors to
stimulation;[20] or there may be a greater inhibition of
sympathetic catecholamine release. Those with hypertension,
stroke, and chronic heart disease often display this type of
reactivity and the results of resting heart rate being comparatively
lower before and after standing for the stroke group correlates
with either of these theories.[20] The exact mechanisms for these
differences are still unknown, but Tang et al attributed autonomic
dysfunction as the major influence in the high prevalence of
orthostatic hypotension (OH) in their stroke subjects and may
have been revealed with a larger study.[9]
4.2. Blood pressure

Assuming an upright position creates a gravitational gradient
leading to blood accumulation in the lower body, taking away
central blood volume and concomitantly cerebral blood
volume.[21] Although the difference in the magnitude of SBP or
seated (A, C) and during standing (B, D) for a stroke subject (A, B) and a control
troke subject after standing (black arrow). FFT= fast Fourier transform, HRV=
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DBP decreasing after standing was not statistically different
between the 2 groups, it is interesting to note that the average BP
drop for the stroke group in this study approached the criteria for
OH.[22] Prior studies have shown that an increased risk of
syncope occurs when cerebral perfusion decreases in response to
a significant drop in central BP, with the mechanism being linked
to withdrawal of excessive sympathetic activity.[23] The greater
baseline sympathetic modulation (ie, LF values) and greater
magnitude at which RRSD decreased seen in the stroke group
could lead to an earlier withdrawal of sympathetic vascular tone,
with an increased risk of syncope especially if beta-adrenergic
responses are blunted.[9,20]

We found no significant difference in spontaneous baroreflex
sensitivity between the 2 groups during standing. However, the
gain values from SBP to EMG impulse were attenuated in the
stroke group, which implies a poststroke impairment of muscle-
pump baroreflex. This correlates with the observation that the
average BP drop upon standing for the stroke group approached
the criteria for OH as well as the slightly longer BP recovery time
in the stroke group. An impaired muscle-pump baroreflex may be
attributed to muscle atrophy after bed rest in stroke patients and/
or affected nerve pathways to the muscular system. This could be
further investigated by recording and analyzing motor unit
activation and recruitment.
4.3. Stroke correlation

Acute ischemic stroke can occur due to various reasons including
trauma, dehydration, hypercoagulation, arrhythmias, and drug
exposures. More commonly, chronic disease states such as
diabetes, hypertension, and vasculitides play a role in the
atherosclerotic plaque formation and blood vessel damage that
can lead to ischemicorhemorrhagic stroke.There is direct evidence
for the effects of chronic disease states on the functionof adrenergic
receptors,[8,9] necessitating greater doses of synthetic or endoge-
nous catecholamines to elicit responses, especially in shock
states.[20] This may be the reason for some of the observed
resistance to the sympathetic modulation in chronotropy in the
group with a greater quantity of vascular risk factors. Aging could
also influence this resistance, secondary to arteriosclerosis, and
may be a reason why statistical differences were not so prevalent
between age-matched stroke and control groups. Age is a risk
factor associated with coronary heart disease in current American
College of Cardiology/American Heart Association clinical
screening guidelines, and we did not exclude anyone based on
history of hypertension.[24] Chronic hypertension damages
coronary, cerebral, and any other blood vessels, so if both the
stroke and control group subjects of this study had histories of
hypertension, they will both be more likely have altered blood
pressure regulation and be at risk for adverse vascular events
compared to healthy, younger individuals.Nevertheless, the stroke
and control groups in this study did not showmajor differences in
regulation of blood pressure and heart rate. Clarification of the
mechanism behind stroke injury related autonomic dysfunction,
along with screening of the associated risk factors involved in
falling, is critical for the rapidly growing elderly population in need
of preventative strategies.[2,3,9]
4.4. Future research

Our attempt to integrate associated cardiovascular and cerebro-
vascular variables into a combined analysis using numerous
noninvasive methods highlights the need for improved orthostat-
5

ic intolerance and fall risk screening protocols. Hand held
analysis of global HRV is already available, which may
streamline data collection during more realistic physiologic
challenges outside of the laboratory. Approaches to testing
autonomic capability by a simple mechanism that does not utilize
the baroreceptor reflex (eg, oculocardiac reflex) could also help
delineate between vessel disease and central autonomic dysfunc-
tion at the bedside.[11] Autonomic dysfunction after exposure to
microgravity (aka postflight adaptation syndrome) is another
area being investigated for mechanism clarification and novel
screening techniques.[17,25,26] From a clinical standpoint, HRV
has been described as a strongly associated clinical marker for
mortality after myocardial infarction,[15,18] while greater blood
pressure variability is associated with increased disability after
stroke.[27] However, further elucidation of the relationship of
HRV with isolated stroke is needed.
Rehabilitation strategies could combine mobile monitoring of

the cardiovascular and autonomic systems with effective physical
therapy measures to protect the elderly suffering from weakness
after stroke, such as using underwater treadmills to support body
weight.[28] Further evaluation of the plasma for humoral
differences (eg, catecholamines, antidiuretic hormone, atrial
natriuretic peptide, renin, aldosterone, adrenomedullin and
galanin, etc.) between the stroke and control groups involved
in this study is underway. There could also be value in a similar
future sit-to-stand protocol that includes muscle sympathetic
nerve activity (MSNA) evaluation, which could help distinguish
the magnitude and timing of sympathetic responses seen, while
clarifying the relationship between MSNA and HRV.
4.5. Limitations

First, the sample size with which we conducted this study was
small. Second, differences in our sample population were noted
for age and medication usage, and were significant for gender.
Goswami et al[29] observed that when comparing individuals
exposed to artificial gravity via a human centrifuge, women
showed greater tendency for orthostatic intolerance, therefore
gender could be a confounding factor in comparing our subject
groups under orthostatic stress. Antihypertensive medication
usage is a confounding factor, but Panayiotou et al[30] examined
orthostatically challenged cardiovascular responses 1 week after
a stroke and found no significant changes in parameters between
patients using antihypertensive medication and those who were
not. Other research groups have investigated orthostatic
tolerance greater than 1-year poststroke, often finding continued
ANS dysfunction.[9] Since our stroke group postinsult time
interval falls between these 2 studies, we cannot assume that our
subjects’ responses are comparable. Last, positioning also plays a
role in confounding autonomic regulation with some studies
including an initial supine position into the standard sit-to-stand
protocol, which could alter neurovestibular activity and subse-
quent cerebral autoregulation.[30,31]
5. Conclusions

This pilot study was undertaken with the intent to screen for
differences in overall cardiovascular reflexes after physiological
perturbation with a simple orthostatic challenge on older patients
with and without a history of recent stroke. The most important
finding from this study was the magnitude of HRV decrease upon
standing in our stroke group. Our findings support previous
studies linking abnormal central autonomic function with
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alteration in neuronal organization months after cerebrovascular
ischemic injury.
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