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Abstract Neuroplasticity refers to the changes in the molec-
ular and cellular processes of neural circuits that occur in
response to environmental experiences. Clinical and experi-
mental studies have increasingly shown that estrogens partic-
ipate in the neuroplasticity involved in cognition, behavior,
and memory. It is generally accepted that estrogens exert their
effects through genomic actions that occur over a period of
hours to days. However, emerging evidence indicates that
estrogens also rapidly influence the neural circuitry through
nongenomic actions. In this review, we provide an overview
of the genomic and nongenomic actions of estrogens and dis-
cuss how these actions may cooperate in synaptic plasticity.
We then summarize the role of epigenetic modifications, syn-
aptic protein synthesis, and posttranslational modifications,
and the splice variants of estrogen receptors in the complicated
network of estrogens. The combination of genomic and
nongenomicmechanisms endows estrogens with considerable
diversity in modulating neural functions including synaptic
plasticity.
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Introduction

Neural circuit activity is essential for normal brain processes
[1–3]. The fine regulation of this activity is driven by changes
in synaptic structure and function, which is the cellular mech-
anism underlying cognition, behavior, and memory [4, 5].
Thereby, synaptic plasticity, which is the changes that occur
in the number and/or morphology of neuronal synapses, is
considered a fundamental feature of the nervous system, and
it allows for adaptation to changing behavioral environments
[6, 7]. Importantly, many of the cellular processes that con-
tribute to synaptic plasticity are associated with neuronal dis-
orders [8–10]. Understanding the abilities of synapses to mod-
ify their functional strength according to the environment and/
or extracellular signals will help to delineate the underlying
molecular mechanisms that allow these events to occur.

Estrogens are neuroactive steroids and/or neurosteroids that
have the potential to influence the nervous system [11, 12].
Clinical and experimental studies have overwhelmingly dem-
onstrated a modulatory role of estrogens in the brain and sug-
gest their beneficial actions in neuronal plasticity [13–17]. For
example, estrogen-primed animals exhibit decreased hippo-
campal seizure thresholds [18], and pretreatment with exoge-
nous estrogens decrease rodent mortality and infarct size fol-
lowing middle cerebral artery occlusion [19–21]. Collectively,
those studies reported an association between lower estrogen
levels and increased risk of neuronal disorders which matched
with human disease patterns that have long been known to
differ between men and women and between premenopausal
and postmenopausal women [22]. Consequently, interest in
learning how estrogens affect the neuroplasticity of neural cir-
cuits and thus contribute to cognition, behavior, andmemory is
increasing. Thus, the underlying mechanisms of estrogenic
action in neuroplasticity need to be clarified in order to better
understand their functions in the normal activity of neural
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circuits and their potential therapeutic roles in brain disorders.
In addition to the effects of estrogen on the regulation of gene
transcription, which requires hours to days to manifest [5, 23],
accumulating studies have shown that estrogens affect
neuroplasticity within minutes [24–27]. Therefore, the rela-
tionships of estrogens with rapidly activated signaling cascades
and transcriptional machinery and their potential crosstalk or
convergence are evident [1, 28, 29].

Although genomic and nongenomic estrogenic effects are
often viewed as distinct modes of estrogenic action, this may
not necessarily hold true because the inhibition of one can
limit the effectiveness of the other [30]. In this review, we
focus on the relationship between the rapid nongenomic and
genomic signaling of estrogens. First, we provide an overview
of the advancements that have beenmade in the understanding
of the rapid nongenomic and genomic signaling of estrogens
in synaptic plasticity. Second, we discuss how the rapid
nongenomic and genomic signaling actions of estrogens in
the brain might rely on a cooperation or sequential modulatory
system that ultimately results in changes in synaptic activity.
Finally, we explore the molecular and cellular mechanisms
that underlie the relationship between the rapid nongenomic
and genomic signaling of estrogens.

The Genomic Actions of Estrogens in Synaptic
Plasticity

Estrogens have a variety of effects on the central nervous
system (CNS). These effects, which typically require hours
or even days to take effect, are mediated through transcrip-
tionally regulated changes in gene expression [31]. These es-
trogenic actions, which have been described as genomic ef-
fects, are characterized by the following features: a prolonged
latency; long lasting; involving gene transcription and protein
synthesis; initiation within the nucleus, usually through the
nuclear receptor superfamily; ineffectiveness of steroid ana-
logs that are unable to cross the plasma membrane [32, 33];
and functional at physiological levels [34]. Nuclear estrogen

receptors (ERs) have two forms: ERα and ERβ [35–37]. Like
other members of the nuclear receptor superfamily, ERα and
ERβ contain a common structure of six functional domains
(A/B, C, D, E, and F), as shown in Fig. 1 [36, 38]. In the
inactive state, ERs usually exist as a monomer or complex
with immunophilins and heat shock protein 90 (HSP-90)
[39]. The estrogen-ER complex then binds to the estrogen
response element (ERE) in the promoter region of the target
genes and exerts its regulatory potential [40, 41].

Based upon the findings of previous studies on the geno-
mic effects of estrogens on synaptic plasticity [39], novel re-
search techniques, including pharmacological and gene ma-
nipulation, have recently been applied to better understand
these genomic effects. HOXC10, which is one of the few
neural gene targets of ERs, has been shown to play a critical
role in spinal cord development and neuron formation [42,
43]. The authors of those studies found that the HOXC10
promoter contains multiple putative EREs, which indicates
that HOXC10 might be transcriptionally regulated by estro-
gens. In addition, they showed that the ERE1 and ERE6 re-
gions of theHOXC10 promoter are potentially involved in the
transcriptional regulation of HOXC10 expression in the pres-
ence of estrogens [44]. Another neural gene target of ERs is
Apo D, which encodes apolipoprotein D. Many studies have
demonstrated a relationship between neuronal degeneration
and Apo D expression [45, 46]. A recent study demonstrated
that Apo D has three EREs in its promoter and that its expres-
sion can be modulated by these hormones [47]. Thus, these
findings suggest that Apo D is partly responsible for the neu-
roprotective role of estrogens. In addition, the large-
conductance voltage- and Ca(2+)-activated K(+) channel has
been shown to play key roles in diverse body functions that
are influenced by estrogens. The pore-forming alpha subunit
(Slo, KCNMA1) promoters of the K(+) channel contain mul-
tiple EREs. A mutagenesis experiment further showed that the
estrogen responsiveness of the mSlo gene involves a classical
genomic mechanism that acts through ERE1 and ERE2 and
that is facilitated by ERα, which therefore suggests that ERα
exerts a genomic action on the mSlo gene promoter elements

Fig. 1 Primary structure of the classic estrogen receptors (ER). ERα and
ERβ share a common structure with six functional domains (A/B, C, D,
E, and F). Domain A/B plays a role in protein-protein interactions and the
transcriptional activation of target gene expression. Domain C is
responsible for DNA binding and ER dimerization. Domain D, which is
a hinge domain linking domains C and E, is involved in the nuclear

localization of ERs. Domain E is the ligand-binding domain. Domain F
contains cofactor recruitment regions. The similar structures of the
receptors both contain a highly homologous DNA-binding region
(95 %) and a hormone-binding region with weaker homology(69 %).
However, the carboxy- and amino-terminal regions have the least
homology (58 %)
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[48]. Luckily, the identification of estrogen target genes is
greatly facilitated by transcriptomic methods, such as RNA
sequencing, expression microarrays, and chromatin immuno-
precipitation (ChIP) with massively parallel DNA sequencing
(ChIP sequencing). Combining transcriptomic and ChIP se-
quencing data enables the discrimination of direct and indirect
estrogen target genes [49]. Interestingly, Humphreys et al. an-
alyzed the transcription of control and estradiol (E2)-treated
animals with RNA sequencing and found significant alter-
ations in the transcript levels of 88 genes in the treated animals
[50]. Another gene assay and cell-based endogenous expres-
sion analysis revealed that estrogens significantly suppress the
expression of brain size-related genes, including MCPH1,
ASPM, CDK, RAP2, and WDR62 [51]. Intriguingly, when
the EREs are deleted from the promoters, the suppressive
effects are abolished, which suggests that EREs mediate the
effects of estrogens on the brain size genes [51]. Ryokoet al.
identified a classical ERE half-site on a TPH2 gene promoter
that is functional because the deletion or mutation of this se-
quence blocks the E2-induced TPH2-luc activity. These re-
sults suggest that the ERE half-site plays an important role
in the ER-mediated regulation of TPH2 transcriptional activity
[52]. Hence, these studies indicate that advances in genomic
technology allow for the identification of the neuronal target
genes of estrogens and ERE-binding sites.

In addition to the mechanisms described above, estrogens
serve as cofactors at non-ERE sites that interact with other
DNA-binding elements, such as AP-1 or c-Jun [38].
However, ERs modulate chromatin states by associating with

different classes of coregulators [53]. Steroid receptor
coactivator-1 (SRC-1) is the predominant coactivator of p160
family members in the brain. Several studies have shown that
the expression of SRC-1 in the hippocampus is highly correlat-
ed with several key synaptic proteins during development or
after orchidectomies, but not after ovariectomies. These find-
ings indicate that SRC-1 may be regulated by hippocampal-
synthesized E2 and profoundly involved in the hippocampal
E2 regulation of hippocampal synaptic plasticity [54]. While
the roles of a large number of activator complexes and their
associated enzymatic activities have been well established by
the presence of the histone acetyltransferases (HATs) p300/CBP
and the levels of H3K4me2 and H3K27Ac [55], the precise
biochemical mechanisms by which so many of the coactivators
that are required for the different functional activities are recruit-
ed at specific enhancer sites remain incompletely understood
[56, 57]. Liu et al. reported a new signature of the functionally
active estrogen-regulated enhancers that involve the selective
trans-recruitment of an apparent complex of other DNA-
binding transcription factors, including RARα/γ, GATA3,
AP2γ, STAT1, AP1, and FoxA1 [58]. However, this phenom-
enon has only been described in MCF7 cells. Whether a similar
conclusion can be made about the brain is still unclear (Fig. 2).

Notably, both ERα and ERβ are abundantly localized
throughout the brain, but the relative local distributions of
ERα and ERβ may differ [35, 59]. The differential local dis-
tribution of ERs most likely indicates the different effects of
local E2 administration in the brain [60]. Evidence has re-
vealed that the individual or simultaneous activation of ERα

Fig. 2 Schematic of the genomic
estrogenic actions in neurons. The
estrogen-ER complex binds to the
estrogen response element (ERE)
in the promoter region of target
genes or acts as a cofactor/
coregulator at non-ERE sites that
interact with other DNA-binding
elements. E2, estradiol; SRC-1,
steroid receptor coactivator-1
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and ERβ has different effects [61]. These findings suggest the
intriguing hypothesis that the interactions between the two
ERs and the consequences of transcriptional modulation are
complicated and delicately balanced. Several studies have re-
ported a phenomenon of an opposite transcriptional response
between ERα and ERβ that depended on the cellular context
and associated cofactors [62, 63]. However, the exact relation-
ship of ERα and ERβ and the precise actions of their interac-
tion remain largely unknown due to a lack of systemic inves-
tigations and related methods.

The Rapid Nongenomic Actions of Estrogens
in Synaptic Plasticity and Neuroprotection

Evidence that has been collected during the last decade has
indicated that estrogens elicit cellular actions that occur as fast
as seconds to minutes and mostly within 1 h [64, 65]. In vitro
studies have shown that estrogens acutely modulate synaptic
function in both sexes. Methods that are more sensitive have
detected the subcellular location of ERs [66, 67], including
nuclei, cytoplasm, plasma membranes, perimembrane spaces,
endoplasmic reticuli, and mitochondria. Notably, the ERs lo-
cated outside of the nucleus are suspected to be related to the
rapid actions of estrogens [22]. Except for the established ERα
and/or ERβ, there are at least three putative ERs that are in-
volved in the rapid actions of estrogens in the brain: G protein-
coupled receptor 30, G protein-coupled estrogen receptor 1,
and themembrane-associated ER (mER) [68–70]. The putative
ERs have the characteristics of initiating cell signaling from the
membrane [71] with a companion G protein-coupled receptor
[72]. Moreover, a high-affinity, saturable, and 3H-estradiol-
binding site in the plasma membrane has been identified and
designated as ER-X [69]. Using a novel putative mER agonist
STX, it was reported that rapid membrane ER activation can
initiate cellular signaling through the metabotropic glutamate
receptor (mGluR) 1a [71]. Study also shows that the mER (not
ERα or ERβ) mediates the estrogen-initiated inhibition of the
expression of the ubiquitin-conjugating enzyme 9, which is the
only known E2-conjugating enzyme and which is associated
with neuroplasticity [73]. Therefore, the extranuclear receptors
are thought to be essential for mediating the rapid nongenomic
actions of estrogens. However, these putative ERs have not
been structurally characterized [69].

A major debate on whether the circulating estrogens and/or
local estrogens that are derived from the brain underlie the
rapid effects of estrogens has existed for many years [74,
75]. Recent reports have demonstrated that the concentrations
of estrogens are at nanomolar levels in some brain regions and
at picomolar levels in the plasma [76]. Thus, the concentra-
tions of circulating estrogens may be too low to initiate rapid
actions [77]. These observations have suggested that the levels
of the local estrogens that are synthesized within the brain,

which fluctuate more rapidly than the levels of the circulating
estrogens, play an essential role in the rapid actions of estro-
gens. This claim has been strengthened by the discovery of
multiple enzymes that allow for the biosynthesis of brain-
derived estrogens [78–81]. Estrogens undergo tissue and/or
cell-specific enzymatic conversions into estrogen metabolites
[82]. The neurons that express many estrogenic enzymes are
considered important producers of brain estrogens.

Several key enzymes that are involved in the synthesis of
testosterone and estrogens in the brain use dehydroepiandros-
terone as a precursor [83]. For example, the rate-limiting step
of steroidogenesis is mediated by the steroid acute regulatory
protein and transporter protein, which are widely found in typ-
ical steroidogenic tissue (e.g., ovary and adrenal gland) as well
as in neurons [84]. Increasingly, a number of other enzymes,
including the estrogen-synthesizing enzyme, aromatase, have
been widely found in different brain regions of male and fe-
male rats [85]. 17β-Hydroxysteroid dehydrogenase type 10
(17β-HSD10), which is encoded by the HSD17B10 gene that
maps to Xp11.2, is a homotetrameric mitochondrial multifunc-
tional enzyme that catalyzes the oxidation of neuroactive ste-
roids. The brains of individuals with Alzheimer’s disease (AD)
and animals in an AD mouse model exhibit abnormally in-
creased levels of 17β-HSD10. The restoration of steroid ho-
meostasis could be achieved through the supplementation of
neuroactive steroids with a properly dosed treatment regimen
or through the adjustment of 17β-HSD10 activity to protect
neurons [86]. In addition, steroid sulfatase plays a key role in
the intracrine conversion of dehydroepiandrosterone testoster-
one and estrogens [83]. Therefore, because neurons are
equipped with all of the enzymes that are activated in steroido-
genesis, they are therefore capable of synthesizing the so-called
neurosteroids, which act directly and locally on neurons to
exert neuroprotection. It is important to note that many of the
enzymes involved in steroidogenesis are expressed in not only
neurons in different brain regions but also astrocytes and even
endothelial cells and oligodendrocytes [84]. It will be impor-
tant to examine the astrocyte- and/or endothelial-specific en-
zymes in order to better clarify the contribution and/or crosstalk
of these enzymes in non-neural cell types to the rapid actions of
estrogens. Interestingly, a growing number of studies have
found that the enzymatic activity that is responsible for the
synthesis of estrogens can be modulated within minutes by
mechanisms that cannot possibly involve changes in the con-
centrations of the enzymatic proteins [87, 88]. This mechanism
underlying the rapid synthesis and metabolism of estrogens
corresponds with the rapid action of estrogens in the brain.
Collectively, these findings show that the presence and regula-
tion of estrogenic enzymes in the brain and the extracellular
localization of ERs are evidence of the rapid nongenomic ac-
tions of estrogens in synaptic plasticity.

To clarify the mechanisms through which estrogens exert
their rapid effects on neuronal plasticity, two concepts need to
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be emphasized. The rapid nongenomic pathway is mediated
by nonnuclear ERs and/or nuclear ERs [54]. The rapid signal-
ing pathway whereby local estrogens modulate synaptic plas-
ticity activate several cellular kinases, often through ion chan-
nels [89]. We use the term rapid nongenomic pathway to refer
to processes that are coupled to the signaling cascade that
requires ER participation, while rapid signaling pathway re-
fers to the processes that are coupled to the signaling cascade
in an ER-independent manner.

The Actions of the Rapid Nongenomic Pathway
of Estrogens in Synaptic Plasticity

The rapid nongenomic pathway of estrogens in the nervous
system usually involves the activation of multiple kinase path-
ways, including the mitogen-activated protein kinase
(MAPK)/extracellular regulated kinase (ERK) pathway, phos-
pholipase C pathway, phosphatidylinositol 3-kinase(PI3K)/
Akt pathway, and protein kinase A (PKA) and protein kinase
C (PKC) pathways [5, 21, 90]. Estrogens rapidly enhance
ERK and Akt activation through phosphorylation in cortical
neurons, and inhibitors of ERK and Akt activation significant-
ly attenuate estrogen induction in excitatory glutamatergic
synapses [91, 92]. Once Akt and ERK are activated, many
essential cellular functions, such as survival, adhesion, metab-
olism, and proliferation, are initiated [93]. Interestingly, the
ability of estrogens to phosphorylate ERK and Akt persists,
even in ERα-knockout mice, thus implicating other ERs in
these estrogen actions [94]. Another potential example of an
estrogen-induced rapid nongenomic pathway involves the
regulation of the JNK-c-jun signaling pathway which was
well recognized as pro-apoptotic factors in ischemic brain
[95–97]. The rapid nongenomic pathway of estrogens was
also mimicked by the application of the PKA activator
forskolin and the PKC activator phorbol-12,13-dibutyrate. In
addition, the rapid nongenomic pathway mechanisms of es-
trogens include the interactions of estrogens with the signaling
of neurotrophic factors, such as brain-derived neurotrophic
factors, insulin-like growth factor-1 (IGF), and Wnt. A novel
model of the interactions of estrogens and acute brain-derived
neurotrophic factor signals suggests that they act in a cooper-
ative manner, which results in dendritic spine formation and
the subsequent stabilization of synaptic and circuit plasticity
[98, 99]. Moreover, ERα regulates the IGF-type I receptor
(IGF-IR) signaling pathways through the phosphorylation of
ERK and Akt, and the interactions of the ER-IGF-IR pathway
potentiates neural activities [100]. Taken together, these find-
ings indicate that the interactions of ERs and IGF-IRs are one
of the important mechanisms underlying the rapid
nongenomic pathways of ERs [100]. Therefore, estrogens
can be coupled with neurotrophin receptors, which results in
the convergence or cross-coupling of specific signaling path-
ways, particularly at the level of the MAPK cascade [94].

Along these lines, the rapid nongenomic pathway of estro-
gens can be presumed to be involved in the interactions of
membrane-localized ERs with adaptor proteins, such as c-Src,
and the downstream rapid signaling that occurs through the
MAPK pathway, G proteins, PKA/PI3K pathway, or PKC path-
way. These signaling pathways are rapidly activated, and they
in turn trigger intracellular Ca2+ release, cAMP production, and/
or c-Src activation with the subsequent activation of MAPK or
calcium/calmodulin-dependent kinases. However, it is impor-
tant to note that different receptors may be coupled with specific
rapid signaling pathways in order to exert relative effects. The
use of selective ERmodulators and transgenesis (knockout and/
or knockdown) mice in studies will help to clarify these issues.

Another question that should be addressed is how ERs cou-
ple with downstream cascade signaling. Intriguingly, outside
the nervous system, ERα has been demonstrated to physically
interact with CAV1, which is necessary for the trafficking of
ERα to the membrane surface [101]. A subsequent study
showed that membrane-localized ERs are localized within dis-
tinct caveolae and that CAV1 is necessary to couple ERα to
the group I mGluRs and CAV3 is necessary for the association
of ERα and ERβ with group II mGluRs [102]. However,
recent studies on ER-interacting scaffold proteins have dem-
onstrated that scaffold proteins, such as MNAR/PELP1,
striatin, and p130Cas, might link ERs with kinases to poten-
tially mediate estrogen-induced kinase signaling [103, 104].

The Actions of the Rapid Signaling Pathway of Estrogens
in Synaptic Plasticity

Estrogens rapidly potentiate kinate-induced currents in hippo-
campal neurons from wild-type as well as ER knockout mice,
thus suggesting that estrogens directly interact with ion chan-
nels in synapses then regulate the downstream signaling cas-
cades [105–107]. L-type voltage-gated Ca2+channels (VGCCs)
play important roles in dendritic development, neuronal surviv-
al, and synaptic plasticity [108]. In electrophysiological studies,
estrogens acutely potentiate VGCCs in hippocampal neurons in
an ER-independent manner by directly binding with a domain
that overlaps with the dihydropyridine-binding site [17].
Calcium/calmodulin-dependent protein kinase-II (CaMKII) is
a major neuronal protein that plays a significant role in the
cellular processes of long-term potentiation (LTP) and the ve-
sicular release of neurotransmitters [109, 110]. The loss of
CaMKII in the forebrain has severe adverse effects on spatial
learning in mice [110]. The activation of CaMKII by estrogen-
modulated LTP induction stimulates the formation of new
spines and enlarges existing spines [111, 112]. However, this
effect of estrogens is not mediated by ER-dependent actions
[113]. A number of reports have indicated that proline-rich
tyrosine kinase 2(PYK2), which is a redox-sensitive kinase, is
activated by estrogen [114]. The activation of PYK2 in cerebral
ischemia is involved in the modulation of N-methyl-D-
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aspartate-type glutamate receptor activity and Ca2+ dynamics,
which result in ischemic neuron death. However, the detailed
mechanisms underlying the PYK2 activation by estrogens re-
main unclear. Several studies have shown that estrogens are
able to interact with K+ channels in different types of cells, such
as cardiac myocytes and neurons [115, 116]. Furthermore, ty-
rosine kinases seem to be involved in the activation of volume-
sensitive K(+) channels, whereas tyrosine phosphatases appear
to be involved in the inactivation of channels by estrogens
[116–118]. Collectively, these findings suggest that estrogen
regulation of PYK2 is mediated by direct interaction with po-
tassium channels. Until recently, no evidence existed that es-
trogens modulate mGluRs directly without ERs [101, 119,
120]. Through these rapid pathways, estrogens play an impor-
tant role in the modulation of synaptic plasticity (Fig. 3).

Cooperation of the Genomic and Rapid Nongenomic
Actions of Estrogens in Synaptic Plasticity

In the classical mechanism, estrogens bind to theα orβ isoform
of the ERs, which then binds to EREs and alters gene transcrip-
tion [31]. The nonclassical actions of ERα and ERβ possibly
occur through alternative response elements in DNA or rapid
changes in signaling cascades [121, 122]. All of these mecha-
nisms operate in the CNS [123]. The nuclear accumulation of
ERβ, which occurs 6–12 h after estrogen treatment, results in

the increased expression of postsynaptic density (PSD)-95 and
synaptophysin messenger RNA (mRNA), thus implicating the
classical genomic estrogenic actions on synaptic plasticity.
However, blocking PI3K signaling partially suppresses the
estrogen-induced expression of PSD-95 and synaptophysin,
which suggests a crosstalk between the genomic and
nongenomic actions of estrogens [124]. As shown in Fig. 4,
specific cellular and molecular mechanisms underlie the coop-
eration of genomic and rapid nongenomic actions of estrogens
[125]. Previous studies have indicated that alternative rapid
signaling cascades of estrogens act by interfering with activa-
tion of the ERK and PI3K signaling pathways that regulate on a
transcriptional level [126, 127]. One of the most intensely stud-
ied mechanisms involves antiapoptotic genes, such as BCL-2.
Several studies have shown that estrogens activate different
pathways to modulate BCL-2 transcription. Wu et al. showed
that estrogen induces rapid Ca2+ influx in hippocampal neu-
rons, which results in the activation of the Scr/ERK signaling
cascades and the upregulation of BCL-2 transcription [128].
Pugazhenthi et al. reported that estrogens regulate the activation
of Akt/PKB pathways, which induce the expression of BCL-2
mRNA through the phosphorylation of the cAMP response
element (CRE) binding (CREB) protein and its subsequent
binding to the CRE in the BCL-2 promoter [129]. Indeed, es-
trogens are involved in the regulation of pCREB within 15 min
of estrogen application, thus indicating the rapid involvement
of multiple signaling pathways, such as Ca2+, CaMKII, PKA,

Fig. 3 Schematic of the rapid nongenomic estrogenic actions in neurons.
The expanded ERs are expressed throughout neurons, including the
nuclei, cytoplasm, plasma membranes, perimembrane spaces,
endoplasmic reticulum, and mitochondria. Local synthesis of estrogens,
which is mediated by synaptic aromatase/steroid acute regulatory protein
(StAR) or peripheral estrogens, results in the activation of ERs, ion

channels, and/or other membrane receptors. Such activation couples
with specific signaling cascades or second messenger systems through
scaffold proteins (CAV/MNAR/PELP1/striatin/p130Cas) and ultimately
leads to the remodeling of synaptic structure and function. ERGP,
estrogen receptor G-protein; LTP, long-time potential; LGCC, L-type
gate calcium channel
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and/or ERK [130]. Hence, we speculate that CREB is a critical
transcription factor in the regulation of the transcription of
many genes and a target for nonclassical estrogen signaling,
which provides the most direct relationship between rapidly
activated signaling cascades and transcriptional mechanisms
[131]. Such systems underlie many regulatory mechanisms of
synaptic plasticity in the brain, particularly the regulation of
synaptic protein expression [132]. Estrogens regulate biphasic
NPY gene expression at the level of the NPY promoter.
However, the rapid nongenomic actions of estrogens, which
are linked to the PI3K/Akt and ERK/MAPK pathways, are
critical in this process. The corresponding pharmacological in-
hibitors of the PI3K/Akt or ERK/MAPK pathways block the
effect of estrogens onNPY gene expression. These observations
suggest that the rapid signaling events that are induced by es-
trogens potentiate the genomic actions of estrogens on NPY
gene expression [30]. Although not all estrogenic mechanisms
for modulating gene transcription depend on the rapid
nongenomic effects and signaling pathways, a solid and classi-
cal mechanism underlies the cooperation of the rapid
nongenomic and genomic signaling of estrogens in neuronal
plasticity and neuroprotection. Notably, three sequences that
appear to be EREs have been found in the promoter region of
rat Nav1.7 (SCN9A). Similarly, two ERE-like sequences have

been found in the promoter region of human Nav1.7 (SCN9A).
Therefore, it is highly likely that estrogens regulate Nav1.7
mRNA expression [133]. It is also important to note that acti-
vation of estrogen receptor rapidly rescues the impairment of
neuronal excitability through BK K+ channel-mediated mech-
anism in brain slices after oxygen-glucose deprivation [134],
suggesting that this rapid signaling is also neuroprotective.
Consistently, the increased BK K+ channel-mediated currents
and related mRNA levels are found in neuronal cells treated
with physiological concentrations of E2 [135]. Because of the
important role of ion channels in the activation of signaling
cascades, we hypothesize that the genomic effects of estrogens
may also remodulate their rapid signaling cascades.

The Role of Epigenetic Modifications

The alterations in neuronal gene expression that result from the
classical genomic actions of estrogens play an important role in
neuroplasticity and neuroprotection, as described above.
However, the current understanding of pretranscriptional regu-
latory processes is poor [136]. A growing number of lines of
evidence indicate that epigenetic mechanisms regulate tran-
scription without modifying gene sequences in memory forma-
tion, neuroplasticity, and neurodegeneration [137]. Indeed,

Fig. 4 Schematic of the cooperation of the genomic and rapid
nongenomic actions of estrogens in neurons. The cooperation of the
genomic and rapid nongenomic actions of estrogens is involved in
synaptic plasticity. Epigenetic modifications, synaptic protein synthesis,

posttranslational modifications, and ER splice variants are thought to be
the main molecular mechanisms that underlie the cooperation of the
genomic and rapid nongenomic actions of estrogens
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extracellular cues, including synaptic activity, and neurotrophic
factors might crosstalk with the neuronal transcriptional re-
sponse through epigenetic modifications [138]. Histone phos-
phorylation or acetylation and DNA methylation are the main
epigenetic mechanisms that control gene expression through
modification of the chromatin structure, and these mechanisms
are critically involved in the regulation of nuclear receptor-
mediated transcription [139]. Indeed, the rapid signals that are
initiated by estrogens impact the epigenetic modifications that
are thought to be involved in the consolidation of memory and
neuroplasticity [136, 140, 141].

It was reported that responses to estrogens involved highly
specific changes in epigenetic modifications, dependent on cell
group, gene, histone modification studied, promoter/enhancer
site, and time following estrogen treatment [142]. A subsequent
investigation showed that the memory-enhancing effects of es-
trogens are blocked by a potent HAT (whole name) inhibitor
in vitro. In addition, the HAT inhibitor reverses the estrogen-
induced increases in histone H3 acetylation, HAT activity, and
levels of the de novomethyltransferase DNMT3B as well as the
estrogen-induced decrease in the levels of thememory repressor
protein histone deacetylase 2 [143]. Estrogens increase the his-
tone H3 acetylation of target genes in the brain through its rapid
signaling effects on the activation of ERK, which is essential for
the consolidation of memory and neuroplasticity [144]. Wong
et al. revealed that estrogens induce nongenomic ER signaling
to activate PI3K/AKT, which results in AKT phosphorylation
and inactivation of the histone methyltransferase EZH2, thus
providing a direct link to disruption of the epigenome [145].
Although a variety of rapid nongenomic ER signals are in-
volved in the epigenetic modifications of histone, estrogens
significantly decrease the levels of expression of histone
deacetylase. However, it is not clear if the mechanism is related
to the rapid signaling actions of estrogens [146]. DNA methyl-
ation at CpG dinucleotides and two other alternative forms of
methylation, non-CpG methylation and hydroxymethylation,
has been reported in neurons [147, 148]. Altered DNA methyl-
ation in the brain has been implicated in epilepsy and AD [149,
150]. Thirty minutes after a single infusion of estrogens in the
hippocampus, the infusion induced DNA methylation-
dependent alterations in the transcription of immediate early
genes and initiated a cascade of transcription factors, which
contributed to long-term neuronal and circuit alterations [146].
Interestingly, the time course of the estrogen alterations of DNA
methylation overlap with its rapid cellular actions, which occur
as fast as seconds to minutes but mostly within 1 h. Therefore, it
is likely that the activation of rapid signaling by estrogens pro-
motes epigenetic reprogramming. Bredfeldtet al. demonstrated
that the ER-mediated signaling that occurs through the
PI3K/Akt pathway results in the phosphorylation of EZH2,
which reduces the levels of methyltransferases [151, 152].
However, it is not clear if such mechanisms exist in the brain.
Nonetheless, the results of these studies provide compelling

evidence that communication between extracellular stimuli
and chromatin occurs through the signal transduction pathways
of estrogens. The mechanism for the rapid suppression of gene
expression occurs through the epigenetic modification of meth-
ylation at the promoter regions [153]. In neurons, ERα expres-
sion rapidly increases after middle cerebral artery occlusion,
which suggests a return to the developmental program of gene
expression. The ERα gene is also methylated after neuronal
injury, which suggests a role of DNA methylation in the regu-
lation of ER expression in the brain. In addition, estrogens can
induce differences in the DNA methylation of ERs in the brain
[154]. Consequently, the altered expression of ERs in neurons
may result in changes in its downstream effectors in both geno-
mic and nongenomic pathways. However, these types of studies
are still in their early stages, and advances are needed in the
understanding of the hormonal regulation of the enzymes that
control acetylation and methylation, transient versus stable
DNA methylation patterns, and sex differences across the epi-
genome in order to fully understand the involvement of epige-
netic modifications in brain function and behavior.

The Role of Synaptic Protein Synthesis
and Posttranslational Modifications

Synapses are dynamic structures that are continually shaped
and remodeled by a rich variety of highly sophisticated protein
complexes called scaffold proteins [155]. Many investigations
have shown that estrogens affect synaptic scaffold proteins
[156, 157]. Increases in spine density involve the formation
of new spines, which thus requires the synthesis of new pro-
teins within the PSD [158, 159].The consolidation of long-
term synaptic plasticity requires de novo protein synthesis,
which involves a mechanism that modulates the translation
of a subset of neuronal mRNAs [160, 161]. Estrogens induce
the rapid protein synthesis of new PSD-95, but they do not
cause a rapid and significant increase in PSD-95mRNA levels
[162]. This observation suggests that estrogens may modulate
the de novo synthesis of a variety of scaffold proteins in syn-
apses in accordance with neuronal plasticity. One of the sig-
nature actions of estrogens is to alter the morphology of neural
processes [163]. Dendritic remodeling requires structural
modifications of the cytoskeletal proteinβ-actin. The severing
of filamentous actin is performed by the constitutively active
enzyme cofilin, which is inactivated by phosphorylation.
Membrane-initiated estrogen signaling that involves the
mGluR 1 is responsible for the phosphorylation and subse-
quent deactivation of cofilin [164]. Thus, this phenomenon
suggests that estrogens enhance the PTMs of cofilin. PTMs
are ubiquitously involved in complex neuronal processing and
are well-established general mechanisms required for learning
and memory as well as the underlying cellular correlate, long-
term synaptic plasticity [165]. Another study reported that
rapid and transient ER signaling stimulation affected the
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PTMs of RGSz1 protein isoforms, which thereby attenuated
5-HT1AR signaling in the hypothalamus [166]. Awide variety
of neurodegenerative diseases that involve impairments in the
ubiquitin-proteasome system have been described as
proteinopathies that are caused by aggregate-prone proteins
that are not efficiently removed by proteasomes [167]. The
treatment of cells with estrogens results in aggregate removal
and increased cell survival due to activation of the autophagic
pathway. Interestingly, previous observations have suggested
that estrogens enhance the ubiquitination of calcium channels,
which decreases Ca2+ influx. Such actions reversely activate
different signaling cascades that mediate rapid estrogenic ac-
tions. Consequently, it is reasonable to presume that the regu-
lation of PTMmechanisms by estrogens links the cooperation
of the genomic and rapid nongenomic actions of estrogens in
synaptic plasticity and neuroprotection.

Interestingly, the findings of recent studies have suggested a
novel model whereby the concomitant translocation of pro-
teins from the dendritic cytoplasm to synapses and the nucleus
occurs in response to synaptic activity in order to control neu-
ronal plasticity [168]. However, whether estrogens acutely reg-
ulate such a model at adult synapses and if such effects are
responsible for its actions that link its genomic and rapid
nongenomic effects are still unknown. Several synaptically
synthesized proteins that are transported to the nucleus from
synapses may link specific types of stimuli with the nucleus,
which indicates that the synapse-to-nuclear transport of pro-
teins dynamically informs the nucleus about synaptic activity
[169, 170]. Signals generated at synapses trigger transcription-
al changes that is essential for neuronal development, required
for persistent forms of learning-related synaptic plasticity [171,
172]. However, the precise mechanisms underlying the infor-
mation transfer from the cytoplasm to the nucleus of neurons
are still poorly characterized [173]. Estrogens increase the con-
centration of filamentous actin in spines and strongly enhance
its polymerization in association with LTP. A study of the
origins of these effects showed that estrogens activate the small
GTPase RhoA and phosphorylate (inactivate) the actin-
severing protein cofilin, which is a downstream target of
RhoA. Moreover, an antagonist of RhoA kinase (ROCK)
blocks estrogens’ synaptic effects. Estrogens thus emerge as
a positive modulator of the RhoA-cofilin pathway that regu-
lates the subsynaptic cytoskeleton. Moreover, ovariectomies
decrease RhoA activity, spine cytoskeletal plasticity, and
LTP, whereas brief infusions of estrogens rescue plasticity, thus
suggesting that the deficits in plasticity arise from acute as well
as genomic consequences of hormone loss [174]. Therefore,
estrogens affect synaptic physiology by partially activating the
actin-signaling pathways that may participate in the transloca-
tion of synaptic proteins [175]. Such a mechanism acts in the
ERs themselves, as in estrogen-treated cells, and the mem-
brane and cytosolic ERβ levels gradually decrease, while
those of nuclear ERβ progressively increase in a time-

dependent manner, thus suggesting the estrogen-dependent nu-
clear translocation of ERβ [124]. Although the data strongly
support a role of this pathway in the control of the translocation
of proteins from the dendritic cytoplasm to synapses and the
nucleus, the direct regulation has not been tested.

The Role of ER Splice Variants

The identification of multiple splice variants of ERs in rodents
and humans has added a further layer of complexity to geno-
mic regulation by estrogens [176]. In the hypothalamus, splice
variants have been suggested to participate in membrane-
initiated estrogenic signaling, which would connect the geno-
mic and rapid nongenomic estrogenic effects [177]. The brain
has the highest levels of exon skipping, which is the most
common mechanism of alternative splicing [178, 179].
Canonical ER mRNA exons may generate a number of splice
variants with single or multiple exon skipping, exon duplica-
tion, inserts, or partial exon deletions [180]. To date, the func-
tional implications of ER splice variants in the CNS remain to
be determined [3]. ERα splice variants have been investigated
in the brain areas that regulate memory formation and that are
affected in patients with AD [180]. The major ERα splice
variants are the dominant negative del.7 isoform lacking exon
7, which encodes a substantial portion of the ERα ligand-
binding domain. This alternative may protect tissues from
excessive estrogenic effects [181]. However, the high concen-
trations of the dominant negative isoform del.7 that inhibits
estrogenic signaling in the brains of the elderly and patients
with AD suggest a possible reduction of the effects of estro-
gens on cognitive functions [180]. Importantly, the expression
of multiple ER variants might be tissue-specific [182]. Indeed,
Ishunina et al. found that the major ERα splice variant in the
hippocampus was del.4 [183]. It is also worth noting that the
ER splice variants were substantively different in structure.
These structural differences suggest the intriguing possibility
that these receptors may have specific functions not dependent
on ligands and/or resistant to normal estrogenic effects, which
could have detrimental consequences on therapeutic hormone
treatment strategies during menopause or in disease states
[184]. In addition to ERα splice variants, recent studies have
identified those of ERβ in the CNS [60].

To date, three major splice variants of the classic ERβ
receptor have been described in the rodent. These include a
deletion of exon3, a deletion of exon 4, and an insert between
exons 5 and 6 [185]. The human ERβ variants that have been
identified to date contain variable length deletions and substi-
tutions in exon 8 [176]. A novel finding demonstrated that
human-specific ERβ splice variants exhibit marked constitu-
tive activity in neuronal cells at both minimal and complex
promoters. Furthermore, human-specific ERβ splice variants
are largely unresponsive to ligands and induce modest in-
creases of ERE-mediated promoter activity and robust
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decreases in AP-1-mediated promoter activity. Although the
changes in the ERE-mediated promoter activity were modest,
these fine-tuned changes could have important biological con-
sequences [184]. Collectively, these findings suggest that the
ER area constitutes part of the estrogenic rapid nongenomic
pathway and that their splice variants, which are genomic
changes, could undoubtedly affect the cooperation of the ge-
nomic and rapid nongenomic actions of estrogens.

In summary, althoughmany questions remain to be resolved,
there is substantial evidence that the biological effects of estro-
genic actions constitute a complex interplay of genomic and
nongenomic mechanisms and depend on the physiological
and genetic context of the target cells. However, whether they
rely on a cooperative or sequential modulatory system remains
to be clarified. The combination of genomic and nongenomic
mechanisms endows estrogens with considerable diversity,
range, tissue, and power in modulating neural functions. Such
cooperation may produce long-term changes in neuroplasticity.
In this review, we highlighted the cellular and molecular mech-
anisms, including epigenetic modifications, synaptic protein
synthesis, PTMs, and ER mutations to illustrate how estrogens
induce changes in synaptic morphology and beneficial neuro-
protection. Collectively, these literature investigations argue
that the genomic and nongenomic estrogenic actions should
probably be viewed as a unified mode.
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