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ABSTRACT: Although dystonia represents a
major source of motor disability in Huntington’s disease
(HD), its pathophysiology remains unknown. Because
recent animal studies indicate that loss of parvalbuminer-
gic (PARV1) striatal interneurons can cause dystonia, we
investigated if loss of PARV1 striatal interneurons occurs
during human HD progression, and thus might contribute
to dystonia in HD. We used immunolabeling to detect
PARV1 interneurons in fixed sections, and corrected for
disease-related striatal atrophy by expressing PARV1
interneuron counts in ratio to interneurons co-containing
somatostatin and neuropeptide Y (whose numbers are
unaffected in HD). At all symptomatic HD grades,
PARV1 interneurons were reduced to less than 26% of
normal abundance in rostral caudate. In putamen rostral
to the level of globus pallidus, loss of PARV1 interneur-

ons was more gradual, not dropping off to less than
20% of control until grade 2. Loss of PARV1 interneur-
ons was even more gradual in motor putamen at globus
pallidus levels, with no loss at grade 1, and steady
grade-wise decline thereafter. A large decrease in striatal
PARV1 interneurons, thus, occurs in HD with advancing
disease grade, with regional variation in the loss per
grade. Given the findings of animal studies and the
grade-wise loss of PARV1 striatal interneurons in motor
striatum in parallel with the grade-wise appearance and
worsening of dystonia, our results raise the possibility
that loss of PARV1 striatal interneurons is a contributor
to dystonia in HD.
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Motor disturbances represent a disabling and defin-
ing feature of Huntington’s disease (HD).1,2 Two dis-
turbances receive the greatest attention—the early
occurring chorea/hyperkinesia and the late occurring
bradykinesia/akinesia.1 The chorea has been attributed
to the early preferential loss of enkephalinergic
(ENK1) indirect pathway striatal projection neurons
projecting to the external pallidal segment (GPe),
while the bradykinesia/akinesia has been attributed to
the more slowly occurring loss of substance P–contain-
ing (SP1) direct pathway striatal projection neurons
projecting to the internal pallidal segment (GPi).3–7

The dystonia that invariably develops by HD grade 2
to 3 is, however, also a significant contributor to HD-
related disability and functional decline.8–10 In juvenile
HD and young adult-onset HD, dystonia is, in fact,
the presenting and predominant symptom.8–10

The standard direct-indirect pathway model of basal
ganglia function leaves uncertain the basis of the
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dystonia in HD.3,11,12 Considerable recent attention
has been devoted to the feed-forward inhibitory influ-
ence of parvalbuminergic (PARV1) interneurons on
striatal projection neurons,13–19 and evidence from
rodent models suggests that their loss or hypofunction
can cause dystonia.20–26 Thus, the effect of HD on
PARV1 striatal interneurons is of interest for under-
standing dystonia in HD. Existing published data are,
however, equivocal as to whether PARV1 interneur-
ons are lost from striatum as HD progresses.27–29 In
the present study, we report that PARV1 striatal
interneurons are rapidly lost in HD, and that the pro-
gression of loss from motor striatum coincides with
dystonia emergence.

Materials and Methods

Approach

To quantify PARV1 neuron loss in HD, we deter-
mined PARV1 interneuron abundance in caudate and
putamen of normal humans, and in HD victims span-
ning all 4 symptomatic grades. We also counted inter-
neurons co-containing neuropeptide Y-containing
(NPY) and somatostatin (SS), and expressed PARV1

interneuron abundance as the ratio of PARV1 inter-
neurons to interneurons co-containing NPY and SS.
Since NPY/SS1 interneurons are not lost in HD,4,30 a
decline in the ratio of PARV1 neurons to NPY/SS
neurons linearly reflects PARV1 interneuron loss, by
controlling for the impact of striatal shrinkage due to
advancing HD grade on neuronal spatial density.

Subjects and Tissues

Coronal tissue blocks or slide-mounted sections con-
taining caudate and putamen at a level rostral to globus
pallidus, and/or at a level posterior to the anterior com-
missure at which GPe and GPi are well formed (and
henceforth called mid-putamen or motor putamen)
were obtained for 37 HD cases (male 5 18;
female 5 15; unknown 5 3) verified by pathology,
symptoms, family history, and/or CAG repeat, with age
at death ranging from 35 to 87 years (mean
age 5 60.7 6 2.2) (Table 1). Three were obtained from

the University of Michigan Medical Center (Ann Arbor,
MI, USA), 3 from the National Neurological Resource
Bank (NNRB, Los Angeles, CA, USA), 2 from the Har-
vard Brain Tissue Resource Center (HBTRC, Belmont,
MA, USA), 2 from the Douglas Hospital Research Cen-
ter (DHRC, Montreal, Quebec, Canada), 2 from the
University of Rochester (UR, Rochester, NY, USA),
and 25 from the Neurological Foundation of New
Zealand Human Brain Bank (Auckland, New Zealand).
The mean death age for the HD cases was generally
less with advancing grade (Table 1), which reflects the
tendency of disease severity to be associated with
earlier death.31 Mean CAG repeat for the HD allele
also increased with HD grade, ranging from 41.2 for
grade 1 cases to 50.0 for grade 4 cases. This is consist-
ent with prior findings that higher CAG repeats are
associated with greater disease severity.31

Coronal tissue blocks or slide-mounted sections con-
taining caudate and putamen at a rostral basal ganglia
and/or a mid-basal ganglia level were also obtained for
25 control specimens from the University of Michigan
Medical Center (1), the HBTRC (2), the UR (1), The
University of Tennessee Health Science Center
(UTHSC) Department of Pathology (2), and the Neu-
rological Foundation of New Zealand Human Brain
Bank (19). The control cases included 15 males, 6
females, and 4 cases of unknown gender, with age at
death ranging from 15 to 81 (mean 5 60.3 6 3.5) years
(Table 1). All control specimens were neurologically
normal, except for 1 Parkinson’s disease case. Control
specimens were from individuals whose autopsies were
performed within the same range of dates as HD cases.

Brains from all sources other than University of
Auckland were obtained at autopsy and immersion-
fixed in formalin. Brains from the New Zealand
Human Brain Bank were perfused as described previ-
ously through the basilar and internal carotid arteries
with 15% of formalin in 0.1 M phosphate buffer (pH
7.4) for 1 hour.32 Postmortem delay for control brains
ranged from 4.5 to 39 (mean 5 13.8 6 1.6) hours, and
for HD brains from 4 to 31 (mean 5 12.5 6 1.1) hours
(Table 1). Differences in age at death and postmortem
delay between HD cases and controls were not statisti-
cally significant, and HD and control cases were well

TABLE 1. Tabular grade-wise listing of information about the human cases examined here, including gender, age at death,
PMD between death and brain fixation, CAG repeat, and the overall number of cases and the case per striatal region

Grade

Males

(n)

Females

(n)

Gender not

known (n)

Total

cases (n)

Age

(years)

PMD

(hours)

WT allele

CAG

HD allele

CAG

Cases with

rostral

caudate (n)

Cases with

rostral

putamen (n)

Cases with

mid-putamen

(n)

Control 15 6 4 25 60.3 13.8 17.0 20.6 19 19 14
1 5 2 2 9 64.6 9.8 17.8 41.2 5 6 4
2 5 5 0 10 63.5 12.6 20.3 42.9 9 8 3
3 6 7 0 13 55.0 14.0 18.6 45.3 8 8 8
4 2 3 0 5 58.4 17.2 18.0 50.0 3 3 3

PMD, postmortem delay; WT, wild-type; HD, Huntington’s disease.
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matched for agonal status. HD cases were staged
according to Vonsattel et al.,33 and the HD specimens
included 9 grade 1, 10 grade 2, 13 grade 3, and 5
grade 4 cases (Table 1).

As our goal was to determine if loss of PARV1 stria-
tal interneurons helped explain the pathophysiology of
dystonia in HD, information on motor symptoms in
our HD cases was pertinent. Clinical information was,
however, only available for 2 of our 9 grade 1 cases, 4
of our 10 grade 2 cases, 9 of our 13 grade 3 cases, and
2 of our 5 grade 4 cases, and in many cases was not
current with date of death. The limited clinical infor-
mation indicated, as expected, that the prevalence of
dystonia increased with advancing grade, being absent
in our grade 1 cases, present in half of the grade 2
cases, and present in all of the grade 3 and 4 cases.
Due, however, to the facts that the clinical information
was in many cases not current with date of death and
was rarely a quantified dystonia score, we were unable
to statistically correlate degree of dystonia with magni-
tude of PARV1 interneuron loss.

Immunohistochemical Methods

Since our tissue was of diverse types in terms of sec-
tion thickness and disease grade, we chose to express
the abundance of PARV1 neurons in striatum as a
ratio of PARV1 neurons counted to interneurons co-
containing NPY and/or SS counted, adjusted by the
Abercrombie correction for perikarya size. Tissue
blocks for HD and/or control cases from DHRC, UR,
UM, NNRB, and UTHSC were immunostained for
parvalbumin (PARV), NPY, and/or SS at UTSHC
using methods described in Deng et al.,5,13 using anti-
sera whose specificity has been previously shown.4,34–

36 Tissue from the New Zealand Human Brain Bank
was processed by immunolabeling for PARV, NPY,
and/or SS at the Centre for Brain Research of the Uni-
versity of Auckland using described procedures.32,37,74

Further details are provided in the Supporting
Information.

Quantification of Neuronal Abundance

We counted PARV1 interneurons, NPY1 interneur-
ons, and SS1 interneurons in rostral caudate, rostral
putamen, and mid-putamen. After an Abercrombie
double-counting correction, the abundance of the
PARV1 interneurons, NPY1 interneurons, and SS1

interneurons were expressed per mm2 for each region
in each case. The abundance of NPY/SS neurons was
considered to be the average of the NPY and SS
counts in those instances in which both were avail-
able. The final NPY/SS neuron count for each case
and each striatal region was used to express PARV1

interneuron abundance as a ratio to NPY/SS inter-
neuron abundance. For simplicity, we will refer to the
PARV1 interneuron to NPY/SS interneuron ratio as

the PARV/NPY ratio in the Results, as in most instan-
ces only NPY immunolabeling was available. One-
way analysis of variance (ANOVA) with post hoc
analysis (Fischer LSD) was used to evaluate results.
Further details on our neuron counting methods are
provided in the Supporting Information.

Results

Examination of our control and HD cases suggested
that a large decrease in PARV1 interneurons occurs in
striatum with increasing pathological disease grade. In
these same cases, the NPY1/SS1 striatal interneurons
were preserved, as expected based on prior reports.4

PARV1 interneurons were progressively fewer with
advancing HD grade, and they also appeared to be
diminished in size, perikaryal labeling intensity, and
dendritic labeling. The abundance of PARV1 inter-
neurons in grade 1 HD mid-putamen was not notably
different from that in control putamen, although the
labeling intensity of neurons appeared reduced. By
contrast, PARV1 interneuron abundance in caudate at
all grades and in putamen at grades 2 to 4 was clearly
reduced. Examples of immunolabeling for PARV1 and
NPY/SS1 interneurons in control, grade 1 HD, and
grade 3 HD are shown in Figure 1.

Quantitative analysis confirmed and extended these
observations. As shown in Figure 2A, NPY/SS1 neu-
ron abundance showed a trend toward an increase in
spatial density across advancing HD grades, although
the differences were only significant between control
and grade 4 for rostral striatum. Note that because of
the relatively few grade 4 cases for each region, the
grade 4 NPY/SS1 neuron counts tended to be vari-
able, but still significantly more than in control in the
case of the rostral caudate and putamen.

The PARV/NPY ratios revealed a profound and
highly statistically significant loss (P<0.0077) of
PARV1 neurons in the rostral caudate nucleus at all
grades, with an approximately 75% loss evident
already at grade 1 (Fig. 2B). The grade 1 loss of
PARV1 interneurons was less prominent for the ros-
tral putamen than for the rostral caudate, but signifi-
cant nonetheless (P< 0.0120). The losses at HD
grades 2 to 4 for rostral putamen were substantial
(>80%), and the difference between control and HD
grades 2 to 4 was highly significant (P<0.0001). In
the case of mid-putamen, PARV1 neuron abundance
was indistinguishable from control at grade 1, but
then significantly and progressively less than control
over grades 2 to 4 (Fig. 2B). Table 2 shows the loss of
PARV1 interneurons per grade and per region
expressed as a percent of control for that region. Note
also that NPY/SS1 interneuron abundance in control
cases was similar for all 3 striatal regions examined
(Fig. 2A), while PARV1 interneuron abundance was
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FIG. 1. Series of images showing NPY1 striatal interneurons (A-C) and PARV1 striatal interneurons (D-F) in putamen of a control case (A, D), grade
1 HD case (B, E), and grade 3 HD case (C, F). Note that NPY neurons show no alteration in size, abundance, or labeling intensity with HD progres-
sion, while PARV1 interneurons show progressive decline in all 3 parameters. Magnification is the same in all images. NPY, neuropeptide Y; PARV,
parvalbumin; PARV1, parvalbuminergic; HD, Huntington’s disease.

FIG. 2. Graphs showing the mean abundance (6SEM) of NPY/SS interneurons across control and HD symptomatic grades in rostral caudate, rostral
putamen, and mid-putamen (A), and the mean abundance (6SEM) of PARV1 interneurons across control and HD symptomatic grades for rostral
caudate, rostral putamen, and mid-putamen (B). No decline occurs for NPY/SS interneurons, but PARV1 interneurons show prominent loss in HD
that is greatest for rostral caudate, and more gradual for mid-putamen. NPY, neuropeptide Y; SS, somatostatin; HD, Huntington’s disease; SEM,
standard error of the mean; PARV, parvalbumin; PARV1, parvalbuminergic.



significantly greater in mid-putamen than rostral cau-
date (P< 0.0001), and intermediate in rostral putamen
(Fig. 2B).

Discussion

Our analysis indicates a large decrease in PARV1

striatal interneurons during HD progression. Even
prior to loss, PARV1 interneurons appear to show
shrinkage and diminished PARV content, indicative of
disease-related dysfunction. As in rodents and nonhu-
man primates, the fast spiking PARV1 interneurons
are twice as abundant in motor putamen as in caudate
or more rostral putamen,13–15 and their loss seems
slower in this region than in caudate or more rostral
putamen. The loss from motor putamen coincides
with the transition from chorea to dystonia in HD,8–10

with dystonia typically becoming prominent by grade
3 and PARV1 interneuron abundance in motor puta-
men dropping below 50% after grade 2.

Recent animal studies show that dysfunction of the
PARV1 striatal interneurons can yield dystonia. For
example, dystonic attacks in dtsz mutant Syrian ham-
sters occur during their first 2 months of life, and are
associated with abnormalities in striatal projection
neuron function attributable to a developmental delay
in the maturation of PARV1 interneurons in dorsolat-
eral somatomotor striatum.20–25,38 The overall evi-
dence indicates that a transient 20% deficiency in
PARV1 interneuron maturation causes spasmodic
dystonia due to deficient feed-forward inhibition of
SP1 striato-GPi neurons, leading to significantly
decreased basal discharge in GPi.21–25,39–41 The find-
ing of normalized PARV1 striatal interneuron
abundance and activity in GPi following remission of
dystonia further supports the role of the PARV1

interneuron deficiency and the reduced GPi activity in
dystonia in the dtsz hamster.20 Similarly, Gittis et al.26

reported that infusion of IEM-1460 (an inhibitor of

GluA2-lacking 2-amino-3-(3-hydroxy-5-methyl-isoxa-
zol-4-yl)propanoic acid [AMPA] receptors) into mouse
sensorimotor striatum, which preferentially blocks
excitation of PARV1 interneurons, elicits dystonia.
Moreover, haploinsufficiency of the Nkx2.1 gene in
humans causes dystonia,42 which may stem from defi-
cient migration of PARV1 neurons from the medial
ganglionic eminence into striatum during develop-
ment. Finally, recording studies in humans show that,
like in dtsz hamsters, GPi neuronal firing is reduced in
dystonic individuals.43–47

The anatomy and physiology of PARV1 striatal
interneurons is consistent with the idea that their loss
can lead to dystonia. PARV1 interneurons fire repeti-
tively when depolarized by cortical stimulation, with a
shorter latency and lower threshold than striatal pro-
jection neurons.14,48 As a consequence, cortical activa-
tion of PARV1 neurons prevents or reduces the
response to this same cortical activation of the striatal
projection neurons to which the PARV1 interneurons
project.16,19,48 PARV1 interneurons have much of
their axonal arborization beyond their own dendritic
field,16 and PARV1 interneurons preferentially inhibit
SP1 striato-GPi neurons.49,50 Given the reported small
size of the cortical terminals ending on PARV1 inter-
neurons, it seems likely that they receive their cortical
input from the intratelencephalically projecting type
(IT-type) corticostriatal neurons, which also preferen-
tially innervate SP1 striatal neurons.51,52 Thus, SP1

neurons lying within the dendritic field of a given
PARV1 neuron would be activated by convergent
input from diverse cortical areas, as would be the
given PARV1 interneuron itself.51,53,54 The SP1 neu-
rons outside the PARV1 interneuron domain, how-
ever, also receive input from some of the same IT-type
neurons due to the diffuse nature of the IT-type axo-
nal arborization (Fig. 3). As a result, both sets of SP1

neurons can be activated, though to differing degrees,
by the same IT-type input, potentially leading to facili-
tation of conflicting movements.3,11 If the cortical acti-
vation within the domain of a particular PARV1

interneuron exceeds that to other nearby domains,
rapid feed-forward inhibition of the SP1 neurons in
neighboring domains from this activated PARV1

interneuron may serve to suppress their responses,
ensuring that only a narrow set of SP1 neurons is suf-
ficiently activated to trigger a particular movement.
Consistent with this interpretation, Gage et al.55 found
that PARV1 striatal interneurons in behaving rat
were active at choice points, suggesting PARV1 inter-
neurons suppress nonpreferred behaviors.

Thus, PARV1 interneurons may act locally56 to reg-
ulate nearby SP1 striatal neuron activity in response to
cortical input. Studies in monkeys have shown that the
putamen contains somatotopically organized microex-
citable zones from which body movement can be eli-
cited,57 supporting the view that cortical activation of

TABLE 2. Tabulation of PARV1 striatal interneuron abun-
dance in rostral caudate and putamen, and mid-putamen,

for controls and each HD grade

PARV neuron

abundance in

rostral caudate (%)

PARV neuron

abundance in

rostral putamen (%)

PARV neuron

abundance in

mid-putamen (%)

Control 100.0 100.0 100.0
HD grade 1 25.9 59.0 87.3
HD grade 2 3.9 19.1 53.1
HD grade 3 7.8 13.9 36.8
HD grade 4 17.5 16.8 3.6

Results are expressed as a percent of control per region, and the PARV
interneuron abundance is based on the ratio of PARV1 interneurons to
NPY/SS interneurons.
PAV, parvalbmin; PARV1, parvalbuminergic; HD, Huntington’s disease; NPY,
neuropeptide Y; SS, somatostatin.
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striatal projection neuron sets can trigger movement.
Moreover, fMRI studies show participation of motor
putamen in humans in movement sequencing during
task execution.58 Given the apparent role of PARV1

interneurons, therefore, it would be predicted that their
loss with preservation of SP1 neurons (as occurs in
mid-HD) should yield a basal ganglia that simultane-
ously initiates conflicting motor routines, exhibiting as
dystonia. With the extensive loss of enkephalinergic
striatal projection neurons by mid-grade HD, it may be
that loss of PARV1 interneurons mainly affects SP1

neuron activity during HD progression.
Thus, PARV1 striatal interneuron loss would be

expected to contribute to dystonia in HD. Existing
published data had, however, been equivocal as to
whether PARV1 interneurons are lost from the stria-
tum as HD progresses.27,28 In the present study, we
found that PARV1 striatal interneurons are rapidly
lost as HD progresses, especially from caudate. The
loss in putamen is more gradual, especially for motor
putamen. Nonetheless, the loss even for motor puta-
men was >50% by grade 3 HD, and PARV1 inter-

neuron shrinkage and PARV loss appeared to occur
even before then. In general, the loss of PARV1 stria-
tal interneurons per grade and region seems as promi-
nent as the overall loss of striatal projection
neurons.2,33 The vulnerability of PARV1 striatal inter-
neurons in HD stands in contrast to the resistance of
2 other striatal interneuron types to loss, namely cho-
linergic interneurons and interneurons co-containing
SS, NPY, and/or neuronal nitric oxide synthase.4,30,59

A vulnerability of PARV1 interneurons, and a resist-

ance of cholinergic interneurons and somatostatinergic

interneurons, however, also is evidenced following

transient global ischemic insult to striatum,36,60,61 and

intrastriatal injection of the NMDA-receptor excito-

toxin quinolinic acid.26,35 The basis of the vulnerabil-

ity of PARV1 striatal interneurons in HD is

uncertain, but given their prominent excitatory input,

their enrichment in Ca21-permeable AMPA receptors

and their BDNF dependence, excitotoxicity, Ca21-

mediated injury, or BDNF deprivation could be candi-

date pathogenic mechanisms.13,35,62

FIG. 3. Schematic illustrating hypothesized role of PARV1 striatal interneurons in controlling the responses of nearby SP-containing direct pathway
striatal neurons to their driving input from IT-type corticostriatal neurons. Rapid feed-forward inhibition of SP1 neurons by cortically activated
PARV1 neurons is hypothesized to suppress the responses of SP1 striatal neurons in nearby domains but not within the domain of the PARV1
interneuron itself. In the illustration, by suppressing cortical activation of SP1 neurons controlling behavior B, the PARV1 interneuron ensures that
IT-type cortical input activates SP1 neurons controlling behavior A. In the absence of the PARV1 interneuron, the conflicting behaviors A and B
would both be initiated, leading potentially to dystonia if A and B involve opposing muscle groups. PARV, parvalbumin; PARV1, parvalbuminergic;
SP, substance P; IT, intratelencephalically projecting.
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Nonetheless, it is not established that PARV1 stria-
tal interneuron loss explains HD dystonia. Another
possible explanation could be that GPi output is
diminished, not because of increased striato-GPi neu-
ron activity due to PARV1 interneuron loss, but due
to GPi neuron loss, leading to disinhibition of motor
thalamus domains controlling antagonistic muscle
groups. The observation that GPi hypoactivity occurs
in human generalized and segmental dystonia,44–

46,63,64 as well as in mouse models of DYT1 human
dystonia,65 is consistent with this possibility. Addition-
ally, 35% deficiency in PARV1 putamen interneurons
has been reported in Tourette syndrome,66,67 without
evidence of dystonia. These studies, however, also
found a 2.5-fold elevation in PARV1 neurons in the
GPi, and they attributed the GPi excess and putamen
shortfall in PARV1 neurons to a possible migration
defect during development. Thus, the absence of dys-
tonia despite the deficiency in striatal PARV1 inter-
neurons and the occurrence of Tourette symptoms
may stem from an alteration in GPi function stemming
from its PARV1 neuron excess. Finally, it is also pos-
sible that the extensive loss of SP1 neurons by grade
3 HD plays a role in the observed dystonia, since
mutant mice with prenatal or postnatal ablation of D1
dopamine receptor-possessing neurons (mainly SP1

neurons) typically have dystonia as a symptom.68–70

These results must be viewed with caution, however,
since ablation of neurons possessing D1 receptors also
eliminates D1 receptor-bearing cortical neurons. Thus,
it is uncertain if the dystonic phenotype in these mice
is attributable to loss of SP1 striatal neurons, or
whether loss of cortical D1 neurons accounts for the
phenotype.71 In any event, the present findings show
that PARV1 striatal interneuron loss is prominent in
HD, and available animal data on basal ganglia func-
tion are consistent with the view that this loss in
motor striatum might contribute to dystonic symp-
toms. Further studies are, however, needed to evaluate
the possible contributions of GPi neuron loss or stria-
tal SP1 neuron loss to the pathophysiology of dysto-
nia in HD. Similarly, characterization of PARV1

striatal interneuron loss in HD cases with quantitative
assessment of dystonia near the time of death, such as
possible for HD patients enrolled in the COHORT
and Enroll-HD observational studies,72,73 would aid
evaluation of the role of PARV1 striatal interneuron
loss in HD, since it would enable correlation between
such neuron loss and the degree of dystonia.
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