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Abstract

Perception likely results from the interplay between sensory information and top-down sig-

nals. In this electroencephalography (EEG) study, we utilised the hierarchical frequency tag-

ging (HFT) method to examine how such integration is modulated by expectation and

attention. Using intermodulation (IM) components as a measure of nonlinear signal integra-

tion, we show in three different experiments that both expectation and attention enhance

integration between top-down and bottom-up signals. Based on a multispectral phase

coherence (MSPC) measure, we present two direct physiological measures to demonstrate

the distinct yet related mechanisms of expectation and attention, which would not have

been possible using other amplitude-based measures. Our results link expectation to the

modulation of descending signals and to the integration of top-down and bottom-up informa-

tion at lower levels of the visual hierarchy. Meanwhile, the results link attention to the modu-

lation of ascending signals and to the integration of information at higher levels of the visual

hierarchy. These results are consistent with the predictive coding account of perception.

Introduction

Perception is not a simple ‘bottom-up’ mechanism of progressive processing of the sensory

input. Instead, perception is made possible by processing sensory information in the context

of information spanning multiple cortical levels. For example, one way to understand the

visual system’s ability to reach unambiguous representations from highly complex, variable,

and inherently ambiguous sensory inputs is in terms of Bayesian inference and probabilistic

integration of prior knowledge (top-down) with stimulus features (bottom-up). Crucially,

within these kinds of frameworks, the integration of top-down and bottom-up signals is
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dynamically modulated by cognitive and potentially interacting factors such as expectation

and attention [1–5].

While expectation and attention are much studied, attempts to dissociate the two and study

their unique yet interrelated underlying mechanisms are relatively recent and far from com-

plete [6–10]. Great caution in experimental design is required in order to obtain empirical

data that permit a genuine distinction between the neural processes underlying expectation

and attention. A fundamental challenge is to keep expectation and attention sufficiently sepa-

rate; studies tend either to rely on explicit probability cues, which introduces task demands, or

to vary stimulus properties across conditions, which can confound expectation and attention.

The paradigms we introduce in this study were designed specifically to avoid such pitfalls.

The theoretical framework under which we consider the potentially distinct roles of expec-

tation and attention in perception is that of hierarchical perceptual inference. Rather than

focusing on simple feedforward architectures, this framework emphasises the role of recurrent

networks in which signals propagate within and between hierarchical levels through bidirec-

tional bottom-up (ascending) and top-down (descending) pathways. These ideas have been

developed and formalised in various influential predictive coding models [2,5,11–13]. Here,

we specifically appeal to the Bayesian version of predictive coding, in which the brain’s ability

to infer the causes of its sensations is attributed to its ability to embody the statistical structure

in the environment within a generative model describing the hierarchical and dynamic statis-

tics of the external world [2,11]. Such models of predictive coding view perception as a process

of inferring the causes and states in the external world that cause the sensory input. The sen-

sory input, or sensory evidence, is modulated as it ascends through the sensory hierarchy.

Under the predictive coding framework we appeal to here, expectations allow predictive sig-

nals to descend from higher to lower levels in the cortical hierarchy, at which they are used to

filter the sensory evidence such that what remains of it as it ascends through the sensory hier-

archy is conceived as prediction error—the gap between the descending predictions and the

ascending sensory signals (see also Discussion in which we discuss additional models of pre-

dictive coding that propose alternative mechanisms of hierarchical filtering). The prediction

errors, in turn, allow for the higher-level expectations and subsequent predictions to be opti-

mised in an iterative fashion. The outcome of this hierarchical prediction error minimisation

(resolution) process is, according to the predictive coding account described above,

perception.

Prediction errors may result from two related sources: inaccurate top-down predictions

(that do not match the actual state of the external environment) or imprecise or noisy bottom-

up sensory information (such as vision in a foggy day or hearing through a brick wall). An effi-

cient system should therefore incorporate an estimation of the precision (i.e., inverse of vari-

ance) of sensory signals. The more precise a prediction error is estimated to be, the more

‘reliable’ it is considered to be, leading to more revision of the generative model. While atten-

tion is a multifaceted mechanism related to perception and cognition and is yet to be fully

understood, endogenous attention is broadly viewed as a top-down mechanism influencing

the processing of bottom-up signals and perception [14]. This notion has been incorporated in

various ways into different models of perception. For example, under the predictive coding

model described above, some experimental evidence is consistent with the association of atten-

tion with the proposed mechanism for optimising precision estimates and weighting of predic-

tion error (e.g., [15] in the visual domain and [16] in the auditory domain, though cf. [17,18]).

In more mechanistic terms, attention may allow the ‘prioritisation’ of signals expected to be

more precise by means of increasing the synaptic gain of neuronal units encoding precision

estimates (Fig 1A) [3]. Expectation and attention therefore relate, under the predictive coding

framework, to descending and ascending signals, respectively.

Integration of top-down and bottom-up signals in perception
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Several implications follow from this account of expectations, predictions, prediction error

minimisation, and attention. On the one hand, highly predictable stimuli are expected to yield

smaller prediction errors and thus attenuated prediction error–related neural activity. On the

other hand, if attention estimates high precision of the signal (i.e., greater prediction error

impact), then even expected stimuli will yield greater prediction error–related neural activity.

Indeed, various studies suggest an interaction between attention and expectation and have

demonstrated that when stimuli are unattended (e.g., they are task irrelevant), high levels of

expectation can result in reduced sensory signals; however, when stimuli are attended (e.g.,

they are task relevant), expected stimuli can, in fact, result in greater neural activity ([19] but

also see [17]).

The goal of the present study is to elucidate the mechanisms underlying attention and

expectation and to better understand the relationship between these factors in perception. To

do so, we performed three experiments and analyses aimed at comprehensively studying these

factors while avoiding the potential pitfalls described above (Fig 1B).

All experiments utilised the hierarchical frequency–tagging (HFT) method in electroen-

cephalography (EEG) ([22]; Fig 2A, S1 Video, and S2 Video). The HFT method was designed

to investigate hierarchical visual processing. Its strength lies in its ability to distinguish between

neural signals derived from different cortical levels while providing a measure for the integra-

tion of these signals. In brief, two frequency-tagging methods are combined: the steady-state

visual evoked potentials (SSVEP, [23,24]) and the semantic wavelet-induced frequency-tagging

(SWIFT, [25]). While SSVEP originates primarily in lower visual areas in the occipital cortex

[26], SWIFT has been shown to selectively tag high-level object representation areas but not

Fig 1. Theoretical background and experimental strategy. (A) The predictive coding theory of perception describes

perception as the inference made about the state of the external world and the causes of the sensory input. In the predictive

coding model we appeal to in this study, expectations allow predictive signals to descend from higher to lower levels in the

cortical hierarchy, at which they are tested against sensory information. The discrepancy between the two—the prediction

error—propagates up the hierarchy, allowing for the higher-level expectations and subsequent predictions to be optimised.

Expectations and prediction errors are suggested to be coded within each hierarchical level by distinct neural populations

referred to as S and E units, respectively [20,21]. Prediction errors are suggested to be weighted by their estimated (and

expected) precision such that high precision estimates lead to enhancement of prediction error signals via synaptic gain

mechanisms. (B) Conceptual figure of the three experiments used to comprehensively examine the role of expectation and

attention in the integration of top-down and bottom-up signals. In Experiment 1 (red oval), expectation was manipulated

while the visual stimuli were kept constant across conditions. In Experiment 2, attention was manipulated while

expectation and the visual stimuli were held constant across conditions (green oval). In Experiment 3, we applied a novel

analysis method to the data obtained in a previous study (22) in order to simultaneously examine main effects of

expectation and attention as well as the interaction between the two (yellow hourglass shape). For consistency, all figures

in Results use shades of red for expectation and shades of green for attention. E, error; S, state.

https://doi.org/10.1371/journal.pbio.3000233.g001

Integration of top-down and bottom-up signals in perception
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early visual areas in both EEG [25] and functional magnetic resonance imaging (fMRI) [27].

Given this evidence, we interpret the spectral power of the recorded signal at the tagged fre-

quencies for the SSVEP and SWIFT as reflecting lower- and higher-level cortical activity,

respectively.

Crucially, IM components, that is, linear combinations of the fundamental input frequen-

cies, appear in the output of a system when the input frequencies interact or integrate nonli-

nearly within the system. As such, the IMs serve as a measure of nonlinear integration of input

signals. While more theoretically committed notions of the term ‘integration’ can be found in

the literature, we use it here to indicate that the output of the system is jointly determined by

the different signals that feed into it. In the brain, nonlinear neural interactions enable rich,

context-dependent information processing and play a key role in perception [28–30]. Indeed,

several EEG studies have utilized IMs to reveal the mechanisms of visual object recognition

([31–33]; for a recent review of IMs in perception research, see [34]). Previously, the stimulus

modulations used to elicit the SSVEP and the SWIFT responses were shown to tag activity at

lower and at higher visual areas, respectively [27,35]. In the HFT method, we understand the

integration of the signals tagged by the SSVEP and SWIFT frequencies, as manifested by the

IMs, to reflect the integration of top-down SWIFT signals with bottom-up SSVEP signals. This

interpretation was supported by our previous study [22] and further buttressed by the novel

paradigms used here.

Fig 2. Stimulus construction and analysis methodologies. (A) All experiments implemented the HFT method using face and house images. SWIFT

sequences are presented at given frequencies, allowing tagging of image-recognition activity (red rectangles). Contrast modulation is applied at a

higher frequency, inducing SSVEP (blue sinusoid). When analysing the EEG data in the frequency domain (bottom graph with multiple peaks), peaks

in the power spectrum can be seen at the fundamental frequencies and their harmonics (red bars for SWIFT f1 and blue bars for SSVEP f2).

Additional peaks at IM components (e.g., purple bars for f2 + f1 and f2 − f1) are suggested to indicate integration of bottom-up SSVEP signals with

top-down SWIFT signals. (B) The MSPC [36] quantifies the degree to which an IM frequency component is driven by the phases of the fundamental

input frequencies. In other words, the degree to which the IM component reflects an interaction between those input frequencies. Within each epoch,

we first calculate the difference between the sum of the (weighted) phases of the fundamental input frequencies and the phase of the IM component.

Then, we compute the coherence of this value across multiple epochs applying the same method as in the well-known phase-locking value (see

Methods for a detailed description.) Here, we introduced a novel distinction between two measures—MSPCstim and MSPCres—which differ in what

we consider the ‘input’ signals to be. Specifically, the MSPCstim ties the IM phase to the phases of the stimulus itself (i.e., the images presented on the

screen), while MSPCres ties it to the phases of the tagged neural responses (See Methods). We suggest that these measures distinguish between neural

interactions occurring at lower and higher cortical levels, respectively. EEG, electroencephalography; HFT, hierarchical frequency tagging; IM,

intermodulation; MSPCres, multispectral phase coherency (response); MSPCstim, MSPC (stimulus); SSVEP, steady-state visual evoked potentials;

SWIFT, semantic wavelet-induced frequency-tagging.

https://doi.org/10.1371/journal.pbio.3000233.g002
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IMs can be quantified using amplitude-based measures, as long as the amplitudes of the

fundamental frequencies do not confound the interpretation of the IMs (see [34] for details).

Importantly, we introduce a novel distinction between two phase measures of the IM signal

based on the multispectral phase coherence (MSPC, [36]). The first measure, MSPCstim, ties

the IMs to the phases of the SWIFT and SSVEP stimulus modulation and the second one,

MSPCres, to the tagged SWIFT and SSVEP neural response. We argue that these two phase-

based temporal measures distinguish neural signal integration occurring at different hierarchi-

cal levels (Fig 2B and described in greater detail in Discussion and Methods). We hypothesised

that if expectation and attention indeed relate to descending and ascending signals, respec-

tively, their influence should manifest differently in these two measures.

Two new paradigms were designed to ensure two critical experimental aspects: that expec-

tation and attention are manipulated individually with equivalent visual stimuli and that their

modulatory effects are determined cognitively, minimising any difference in demand charac-

teristics. In addition to these, new analyses performed on previously published data (Gordon

and colleagues, 2017) allowed a direct examination not only of expectation and attention main

effects but of the interaction between the two. Indeed, the two-phase measures we introduce

here were modulated differently by expectation and attention, providing direct physiological

evidence for their distinct hierarchical modulation of perceptual processing.

Results

Expectation: Experiment 1

Behavioral task. Experiment 1 manipulated expectation by using two tasks, specifically

designed to avoid explicit indication of expectation levels in the instructions (thus minimising

demand characteristics), while holding the visual stimuli equivalent across conditions. In each

HFT trial, a series of consecutive SWIFT-scrambled sequences (of one house and one face

image) were presented to participants (S3 Video) who were required to perform one of two

tasks. In the image-repetition (IR) task, participants were requested to press the space bar

when either image repeated itself either three or four times (as instructed before each trial). Sti-

muli in these trials were considered ‘unexpected’ as participants could not predict the upcom-

ing image. In the pattern-violation (PV) tasks, participants were required to memorise a

pattern of 5–6 images presented to them as text (‘Face, House . . .’ etc.) before the trial. When

the trial began, the pattern repeated itself over and over, and participants were instructed to

press the space bar when the pattern was violated. Thus, in PV trials, almost all upcoming

images were highly predictable, so expectations were much more reliable than in the IR trials.

Each series of face and house images (e.g., F, H, H, F, H, F, H, H, F, H. . .) appeared in one PV

and in one IR trial (using different images), such that the series used for both tasks were, in

fact, identical.

Participants were tested for four blocks, in the order of PV, IR, PV, and IR block. After

completing all four blocks, participants were asked to compare the PV and the IR tasks and to

report whether they noticed the underlying patterns in the IR tasks. Indeed, despite the PV

blocks preceding their matching IR blocks (see Methods), only N = 3 out of 15 confirmed

noticing an underlying pattern in a few IR trials. This validates our assumption that the PV

and IR tasks manipulated the expectation for upcoming stimuli. Second, N = 10 out of 15 par-

ticipants reported finding it more difficult to recognise the actual images of the IR compared

to the PV trials. Several participants reported that the house and the face images tended to per-

ceptually ‘blend’ more with each other in the IR trials. (Note that some elements of the images,

such as edges with strong contrasts, may also remain visible to some degree in the ‘scrambled’

frames, accounting for why images could sometimes be perceived as blended; see S3 Video.).

Integration of top-down and bottom-up signals in perception
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Given that the same method was used to construct all stimuli in the experiment, the reported

differences in perception can be strictly attributed to the task instructions, highlighting the

impact of one’s expectation on conscious perception.

EEG analysis: Expectation modulates MSPCstim but not MSPCres

After applying the fast Fourier transform (FFT) on the EEG data of each trial, we verified that

tagging was obtained for both the SWIFT and the SSVEP frequencies (SWIFT = f1 = 1.2 Hz

and SSVEP = f2 = 15 Hz). Peak amplitude signal-to-noise ratios (SNRs) at both fundamental

frequencies and their harmonics were evident in the FFT spectrum averaged across all elec-

trodes, trials, and participants (S1 Fig, top row).

Critically, for the purpose of this paper, we examined the effect of expectation (predictabil-

ity) on the IM signals. Based on the MSPC, we quantified the degree to which the IM phases

were driven by the SWIFT and SSVEP phases. As detailed in Methods, we introduce a novel

distinction between the MSPCstim measure in which the stimulus (image) SWIFT and SSVEP

phases are considered as the inputs, and the MSPCres measure in which the EEG SWIFT and

SSVEP neural response phases are considered as the inputs (both MSPCstim and MSPCres

were computed individually within each electrode). As detailed in Discussion, we suggest

these measures to indicate cortical signal integration occurring at different levels.

MSPC values were calculated individually for each channel (with reference to its own

SSVEP and SWIFT phases) within each trial (see Methods). Analyses were then performed on

the average of both second-order IM components (f2 − f1 = 13.8 Hz and f2 + f1 = 16.2 Hz) in a

posterior region-of-interest (ROI) (17 electrodes), including all occipital (Oz, O1, and O2),

parieto–occipital (POz, PO3–PO4, and PO7–PO8), and parietal (Pz and P1–P8) electrodes. As

shown in Fig 3, MSPCstim was higher for the PV (expected) trials compared to the IR (unex-

pected) trials (χ2 = 22.9, P< 0.001), indicating increased neural integration between the

SWIFT and SSVEP signals when stimuli are expected. This effect was not evident for the

MSPCres measure (χ2 = 1.36, P> 0.05). The significance of the MSPCstim versus MSPCres

result will be discussed later when comparing the relationship between these measures across

all experiments and analyses.

Attention: Experiment 2

Behavioral task. In Experiment 2, HFT trials with house and face images were presented

to participants with contrast modulation (SSVEP) at 12 Hz. Unlike Experiment 1, the two

images used within each trial (one house and one face image) were presented using two differ-

ent SWIFT frequencies (0.8 Hz and 1 Hz, counterbalanced across trials). Importantly, images

were superimposed via alpha blending, enabling simultaneous tagging of both frequencies

(one for each image type) within each trial. In each trial, participants were requested to count

either the faces or the houses or to perform a demanding central-attention task (see further

details in Methods). These behavioural tasks defined each image as either ‘attended’ or ‘unat-

tended’ within each trial. Note that only 70%–85% of the SWIFT cycles contained the face or

house images while the rest of the cycles contained their matching ‘noise’ sequences (See

Methods). This ensured that the attentional task was sufficiently demanding (S4 Video).

EEG analysis: Attention modulates MSPCres but not MSPCstim

First, we verified that we were able to obtain separate tagging for the relevant frequencies (two

SWIFT: 0.8 Hz and 1 Hz and SSVEP: 12 Hz). Indeed, peak amplitude SNRs at all three funda-

mental frequencies were evident in the FFT spectrum averaged across all electrodes, trials, and

participants (S1 Fig, bottom row).

Integration of top-down and bottom-up signals in perception
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As in Experiment 1, MSPC values were calculated individually for each channel within each

trial (see Methods) and statistical analyses were performed on the average of both second-order

IM components in a posterior ROI. (Note that in Experiment 2, there were two second-order IMs

for the attended SWIFT stimuli and another two distinct second-order IMs for the unattended

SWIFT stimuli. For example, if the attended stimuli appeared at 0.8 Hz and the unattended at 1

Hz, then the 12.8 Hz and 11.2 Hz IMs would relate to the attended stimuli while the 13 Hz and 11

Hz IMs would relate to the unattended stimuli.) Interestingly, as opposed to results from Experi-

ment 1, the effect of attention was evident in the MSPCres measure but not MSPCstim (Fig 4).

Specifically, MSPCSres was higher for the attended compared to the unattended images (χ2 = 41.4,

P< 0.001). This effect was not evident for the MSPCstim measure (χ2 = 1.21, P> 0.05).

Further analysis of the data from Experiments 1 and 2 show comparable results for various

higher-order IMs and is consistent with the suggestion that the attentional modulation mani-

fests at higher cortical levels (S4 Text and S2 Fig). In brief, the effect of attention was most

notable for the fourth order IMs (2f2 ± 2f1), and additional analysis suggests this effect to

reflect interactions occurring at later rather than earlier processing stages.

Interaction of attention and expectation: Reanalysis of previous study

After differentiating expectation and attention in Experiments 1 and 2 and establishing that

both expectation and attention are associated with enhanced IMs, we returned to our

Fig 3. Expectation modulates MSPCstim but not MSPCres. MSPC averaged across the two second-order IM

components (f1 + f2 and f1 − f2) in the expected and the unexpected conditions. Results are shown for a posterior ROI

(17 electrodes, top) and the scalp topographies (bottom). Error bars represent standard error across subjects (N = 15).

The MSPCstim measure (left) quantifies IM responses by examining the degree to which the IM phase is driven by the

phases of SWIFT and SSVEP stimulus (image) modulation. Conversely, the MSPCres measure (right) examines the

degree to which the IM phase is driven by the tagged SWIFT and SSVEP neural response phases. These measures are

therefore suggested to indicate signal integration occurring at earlier and at later stages of cortical processing,

respectively. MSPCstim (left) was higher for the PV (expected) trials compared to the IR (unexpected) trials (χ2 = 22.9,

P< 0.001), indicating increased neural integration between the SWIFT and SSVEP signals when stimuli are expected.

This effect was not evident for the MSPCres measure (χ2 = 1.36, P> 0.05). The data underlying this figure is available

in FigShare at DOI: 10.26180/5b9abfe5687e3. IM, intermodulation; MSPCres, multispectral phase coherency

(response); MSPCstim, MSPC (stimulus); SSVEP, steady-state visual evoked potentials; SWIFT, semantic wavelet-

induced frequency-tagging.

https://doi.org/10.1371/journal.pbio.3000233.g003
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previously published data [22] to examine the interaction between these factors and to evaluate

the consistency of the results from that study with those of Experiment 1 and Experiment 2

here (S2 Text). In the previous study, house and face SWIFT cycles were presented in each

trial in a pseudorandom order, and participants were asked to count either the houses or the

faces. Certainty (expectation) levels were categorised based on the proportion of house and

face images appearing in each trial. The behavioural task was introduced to ensure participants

were engaged with the task, yet it also introduced a within-trial difference between the

attended (counted) and unattended images, which was not analysed in that study. Here, we

added an additional attention variable allowing examination of the interaction between expec-

tation and attention (see Methods).

The interaction between expectation and attention was not significant for MSPCstim

(χ2 = 3.47, P> 0.05), but it was indeed highly significant for MSPCres (χ2 = 19.56, P< 0.001)

(Fig 5). In fact, the slope of MSPCres against expectation was negative for unattended images

(χ2 = 5.05, P< 0.05). Additional posthoc analyses performed individually for expectation and

attention (S2 Text) were consistent with the results from Experiment 1 and Experiment 2, for

which MSPCstim showed greater enhancement with expectation and MSPCres showed greater

enhancement with attention. These results are interpreted further in Discussion.

Finally, we performed several analyses to examine the relation between the MSPC and

amplitude measures. Specifically, we examined whether reduced SWIFT, SSVEP, and/or IM

response amplitudes can account for the reduction of MSPCres in the unattended compared

Fig 4. Attention modulates MSPCres but not MSPCstim. MSPC averaged across the two second-order IM

components of the attended and the unattended images. (Note that within each trial, different SWIFT frequencies were

used for the attended and the unattended images, each resulting in a different set of second-order IMs.) Results are

shown for a posterior ROI (17 electrodes, top) and the scalp topographies (bottom). Error bars represent standard

error across subjects (N = 11). The MSPCstim measure (left) quantifies IM responses by examining the degree to

which the IM phase is driven by the phases of the SWIFT and SSVEP stimulus (image) modulations. Conversely, the

MSPCres measure (right) examines the degree to which the IM phase is driven by the tagged SWIFT and SSVEP

neural response phases. MSPCres (right) was higher for the attended compared to the unattended images (χ2 = 41.4,

P< 0.001), indicating increased neural integration between the SWIFT and SSVEP signals when stimuli are attended.

This effect was not evident for the MSPCstim measure (χ2 = 1.21, P> 0.05). The data underlying this figure is available

in FigShare at DOI: 10.26180/5b9abfe5687e3. IM, intermodulation; MSPCres, multispectral phase coherency

(response); MSPCstim, MSPC (stimulus); ROI, region of interest; SSVEP, steady-state visual evoked potentials;

SWIFT, semantic wavelet-induced frequency-tagging.

https://doi.org/10.1371/journal.pbio.3000233.g004
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to the attended conditions. While we expect the MSPC and amplitude measures can, in theory,

be correlated to some degree, we confirmed empirically that the amplitude measures

accounted for no more than 20% of the MSPC variance. Further details of the analyses are pro-

vided in S1 Text.

Discussion

The goal of this study was to examine the mechanisms underlying attention and expectation in

perception, focusing on their modulation of top-down and bottom-up signal integration. All

experiments utilised the HFT method [22] in which SSVEP- and SWIFT-tagged signals reflect

activity at lower (V1/V2) and higher levels of the visual hierarchy, respectively [25,27]. Impor-

tantly, IM frequency components are a distinct and objective indicator for nonlinear integra-

tion of multiple input frequencies. Accordingly, we hypothesised the IMs here to be influenced

by, and provide an indication of, the level of integration between top-down, semantically rich

SWIFT-tagged signals and bottom-up, SSVEP-tagged sensory signals (see Introduction).

Two new experiments and a reanalysis of an existing data set with two novel phase-based

measures (MSPCres and MSPCstim) were examined in this study, covering a range of experi-

mental modulations of expectation and attention. The first experiment modulated expectation

while keeping the motivational (task) relevance constant, and the second experiment modu-

lated attention while holding expectation levels constant. Critically, each experiment used the

same type of sensory input across the different conditions within the experiment, while cogni-

tive modulations were achieved only by means of the behavioural tasks at hand. Our results

provide direct neural evidence for the increased integration of bottom-up and top-down sig-

nals through modulation of expectation and attention.

Importantly, we argue that the dissociation between the MSPCstim and MSPCres measures

found here relates expectation and attention to distinct mechanisms impacting the integration

Fig 5. The expectation–attention interaction is significant for MSPCres but not MSPCstim. Predicted MSPCstim

(left) and MSPCres (right) values obtained from a full Linear Mixed Effects interaction model, with their standard

error indicated by the shaded area. The model included expectation, attention, and an expectation–attention

interaction term as the fixed effects, while the random effects included a random intercept for frequency nested within

channels nested within participants and random expectation and attention slopes for each participant. Consistent with

the colours used in the previous figures, attended images are represented by the dark green lines and unattended

images by the light green lines, while the pink–red gradient indicates increasing expectation. The significance of the

interaction term was tested using the likelihood ratio test between the full model and the reduced model, which

excluded the interaction fixed effect. The expectation–attention interaction was not significant for MSPCstim

(χ2 = 3.47, P< 0.05) but was highly significant for MSPCres (χ2 = 19.56, P< 0.001). The data underlying this figure is

available in FigShare at DOI: 10.26180/5b9abfe5687e3. MSPCres, multispectral phase coherency (response);

MSPCstim, MSPC (stimulus).

https://doi.org/10.1371/journal.pbio.3000233.g005
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of descending and ascending signals at lower and at higher levels of the visual hierarchy,

respectively.

Our results lend strong support to models of perceptual inference that emphasise the role of

recurrent networks and the bidirectional flow of both bottom-up and top-down signals. We

believe this study provides the first direct demonstration of the different neurophysiological

manifestations of the mechanisms by which expectation and attention change the very integra-

tion of such top-down signals with bottom-up signals in perception.

As we show below, among the various models of perception that assume recurrent neural

architectures, those predictive coding models that postulate expectation as top-down signals

and attention as a mechanism for modulating bottom-up signals (Fig 1A) provide a particu-

larly suitable framework under which our results can be interpreted.

Terminology and theoretical background

The terms expectation and attention have been confounded in various cognitive studies (for

discussion, see [8]). Furthermore, both attention and expectation are composed of many dif-

ferent aspects (e.g., spatial- versus feature-based attention, selective versus sustained attention,

etc. Expectation can result from implicit learning of statistical contingencies or through

explicit instruction, etc.), which can have distinct neural origins and underlying mechanisms.

Like Summerfield and colleagues [8], we use the term attention to denote the motivational rel-

evance of an event and the term expectation to denote its conditional probability.

The terms ‘predictions’ and ‘expectations’ can be used in the more technical predictive cod-

ing literature to denote somewhat different aspects of the perceptual circuitry. Predictions, in

classical predictive coding models [2,11,37], are the descending signals that are used to explain

away sensory or neural input in lower areas. Expectations on the other hand are described in

some models as the inferences made about the state of the external world (or more technically

speaking, the inferred values assigned by the generative model to the hidden causes and states

in the external world). In that sense, predictions are compared against sampled sensory inputs

in the sensory cortex or against expectations at intermediate hierarchical levels [3,20]. We use

‘expected’ and ‘predictable’ interchangeably here.

Attention, in the cognitive neuroscience literature, is commonly viewed as mechanisms

which 1) increase baseline neural activity, sometimes referred to as arousal or alertness; 2)

selectively enhance relevant neural responses; and 3) selectively inhibit irrelevant responses

[38]. In Experiment 2, participants had to count only one of the two image categories in each

trial. Here, we use the term ‘attended’ to refer to the counted object (a potential target for such

attentional enhancement) and the term ‘unattended’ to refer to the object that was not counted

(a potential target for such attentional inhibition). In some predictive coding models, such sig-

nal modulation is suggested to be achieved by means of internal estimates (and expectations)

of precision (the inverse of signal variability). Greater precision estimates lead to greater

weighting of the prediction error, effectively serving as a gain control for the bottom-up signals

and allowing greater modification of higher-level expectations and predictions [39,40]. Atten-

tion, under this framework, enables signal enhancement by modulating the gain on the predic-

tion errors obtained through varied estimations of prediction error precision estimations [3].

EEG signals are thought to be generated by the spread of postsynaptic potentials along the

apical dendrites of pyramidal cells [41]. In other words, they are generated by activity at affer-

ent rather than efferent pathways. The implications of this can be illustrated by assuming a

process involving, for example, three hierarchical levels, with the lowest level sending bottom-

up signals to the levels above, the highest level sending top-down signals to the levels below,

and the middle level sending both bottom-up and top-down signals to the levels above and
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below, respectively. The lowest level in this case can be expected to primarily receive (and

manifest the effects of) the top-down signals, while the highest level can be expected to primar-

ily receive (and manifest the effects of) the bottom-up signals. We later argue that our results

can be explained using such a simplified hierarchical structure in which expectation effects

top-down signals while attention modulates the propagation of feedforward signals. (Later in

this section, we show a simplified version of this with only two levels.)

What can be learnt from the IM components?

As the IM components are key to our analysis, it is important to clarify several issues. The first

issue relates to the dependency of the IM signals on two main factors: the amplitude and phase

of the input signals and the specific mechanism of signal integration at hand. The former factor

is straightforward, as changing the power or shifting the phase of the input can lead to a shift

in output power or phase, respectively. Using IMs to infer something about the latter factor is,

however, less trivial since nonlinear neuronal dynamics may be consistent with various models

of neural processing, ranging from cascades of nonlinear forward filters (e.g., convolution net-

works used in deep learning) to the recurrent architectures implied by models of hierarchical

perceptual inference [5,11,13]. It is therefore not easy to link specific computational or neuro-

nal processes to the IM responses, and IMs can only provide indirect evidence for predictive

coding as well as other theories of perception. However, as we will argue, various arguments

indeed point to the recurrent and top-down mediation of the IM responses in our data.

The second issue to consider are the benefits afforded by the phase-based MSPC measure.

For example, when using amplitude-based measures (power, etc.), one can only interpret

changes in the IMs in respect to the fundamental frequencies (and their harmonics) since

changes in the power of the fundamentals can lead to changes in the power of the IMs even

without any essential changes in the integration process itself (for details, see [34]). It is there-

fore important when using amplitude-based measures to dissociate between the effects of the

IMs and those of the fundamentals and harmonics (as we did in the previous study [22]). Con-

versely, the MSPC in itself quantifies the degree of temporal consistency of the relationship

between the phases of the fundamental frequencies and the phase of the IMs. The MSPC can

therefore be interpreted even if the amplitudes of the IMs and the fundamentals do not dissoci-

ate between conditions (see also the last part of Result).

In addition, unlike traditional amplitude measures, MSPC enabled us to make the novel

distinction between MSPCstim and MSPCres, which was essential to this study. As mentioned,

the MSPC measure aims to quantify the degree to which the phase of an IM component is

driven by the phases of the input frequencies. The question then is what we consider those

inputs to be. SSVEP and SWIFT phases can be quantified either by the stimulus itself or by the

EEG response signal (as tagged and obtained by the FFT). We term these options MSPCstim

and MSPCres, respectively. When considering these two measures, one may a priori expect

them to behave quite similarly. After all, the stimulus (image) and the response (EEG) phases

can be expected to be highly correlated with each other, leading to highly correlated MSPCstim

and MSPCres measures. Therefore, our finding here is highly nontrivial; the expectation and

attention manipulations influenced these measures in a highly different manner (Figs 3–5),

directly indicating distinct neural processes for expectation and attention.

Our understanding of the IMs in this study as reflecting recurrent hierarchical interactions

therefore stems from the combination of two main arguments. First, the SSVEP and SWIFT

EEG signals have been shown to primarily originate from lower and higher visual areas,

respectively (see Introduction). That said, the SSVEP and SWIFT signals likely travel across

and may potentially interact at multiple hierarchical levels. As we describe in greater detail in
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Methods, we reason that since MSPCstim and MSPCres are computed based on the phases of

the stimulus and the EEG response, respectively, MSPCstim most likely picks up interactions

occurring at earlier stages than those picked up by MSPCres. Hence, while MSPCstim and

MSPCres can in theory be correlated, our empirical findings across the three experiments

strongly dissociated them, implying distinct underlying neural correlates spanning multiple

hierarchical levels.

To account for these findings, we need a theoretical framework. As we propose in this

paper, we find predictive coding to be particularly suitable for this matter.

Expectation and attention: Main effects and their interaction

Our results demonstrate that expectation and attention reflect distinct elements of the percep-

tual circuitry. Combining results from all experiments, we show that the MSPCstim and

MSPCres measures are more strongly related to the expectation and to the attention modula-

tion, respectively.

The MSPCstim measure demonstrated a consistent increase with expectation, as evident in

the data obtained from Experiment 1 and from Gordon and colleagues [22]. Describing a stim-

ulus as being predictable implies that the prediction signal precedes the onset of the stimulus

itself. Hence, when the sensory input arrives, the prediction can be tested against (interact

with) the incoming sensory-driven information in a highly ‘online’ manner. In such condi-

tions, as in the PV trials in Experiment 1 and the ‘high-certainty’ trials by Gordon and col-

leagues [22], top-down predictions and bottom-up sensory evidence can interact quickly at

early visual areas, and the resulting IM phase can be expected to be strongly related to the stim-

ulus phase (see suggested primary source of MSPCstim in Fig 6). This observation is consistent

with various studies demonstrating effects of expectation at early visual areas [42–44].

The MSPCres measure, on the other hand, showed a greater increase with attention in

Experiment 2 and the Gordon and colleagues data compared to the MSPCstim, with no con-

sistent modulation by expectation. Here, we have suggested MSPCres to be more strongly

related to signal integration occurring at higher levels of the visual hierarchy. Attention is gen-

erally viewed as a mechanism that constrains the processing and propagation of bottom-up

signals [14]. This idea has been incorporated into some predictive coding models by suggesting

that attention optimises perception by allowing the ascending error signals to exert a greater

influence on the expectations at the higher cortical level [40]. Under such a framework,

attended (compared to unattended) images should allow greater integration of bottom-up

error signals with higher-level expectations, as reflected by the MSPCres (see suggested pri-

mary source of MSPCres in Fig 6). Additional support for this claim is provided by the

MSPCres analysis of the fourth-order IMs, which suggests that the modulatory effect of atten-

tion involves interactions occurring at a later stage than initial sensory processing (see S3 Text

and S2 Fig).

In addition, an interesting relationship between expectation and attention follows the

account of precision-weighted prediction errors (Fig 1A). On the one hand, highly predictable

stimuli will yield small prediction errors. On the other hand, if a stimulus is highly relevant

(attended), the influence of the prediction errors on the higher-level expectations will be

enhanced [40]. Indeed, the significant interaction found for the MSPCres measure (Fig 5, right

panel) supports such a relationship between expectation and attention. When stimuli are

expected, predictions become more accurate, and their integration with sensory evidence at

low visual areas improve. Hence, the MSPCstim response, which we suggest reflects neural

integration at early visual areas, is enhanced with expectation, regardless of attention. In turn,

when stimuli are attended, the propagation (or influence) of ascending error signals to (or on)
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the higher hierarchical level is enhanced. Hence, the MSPCres response, which we suggest

reflects neural integration at later visual areas, is enhanced with attention. In contrast, when

the expected stimuli are unattended (not task relevant), not only are the prediction errors

gated out by (un)attention, they are also smaller to begin with, hence the reduced MSPCres.

Questions for future research

Our results, we argue, empirically support two main ideas. First, that perception is realized by

a recurrent hierarchical neural network in which interactions between bottom-up and top-

down signals play a crucial role. Second, that these interactions are influenced by expectation

and attention which reflect intrinsic yet distinct components of the perceptual network.

We further proposed a more fine-grained interpretation of our results by appealing to the

free energy predictive coding model of perception and attention as formulated by Feldman

and Friston [3]. We appeal to this particular model as it explicitly incorporates expectation

and attention in a manner consistent with our results. Nevertheless, additional models of hier-

archical perceptual inference incorporate interactions between top-down and bottom-up sig-

nals and, as such, should be considered as well.

Other Bayesian models such as that proposed by Lee and Mumford [5] also emphasize the

critical functional roles of top-down probabilistic priors fed-back from the higher to lower

hierarchical levels and, as such, can also account for the expectation-dependent integration of

Fig 6. Expectation, attention, MSPC, and predictive coding. Results presented in this study can be accounted for by

the predictive coding framework of perception as follows: 1) Expectation (the probability for the appearance of specific

stimuli) relates to descending prediction signals. 2) Better predictions (as afforded by the PV trials in Experiment 1)

increases the efficiency of top-down and bottom-up signal integration at low-level visual areas, as reflected by the

increased MSPCstim with expectation (Figs 2 and 4). 3) Attention reflects a (precision-weighted) control mechanism

for the propagation of prediction error signals. 4) Attention effectively increases the influence of prediction error

signals on expectations at higher hierarchical levels, as reflected by the increased MSPCres with attention (Figs 3 and

4). 5) The effect of expectation on the integration of top-down and bottom-up information at lower visual areas is less

dependent on attention than the integration at higher levels. Hence, while MSPCstim increased with expectation for

both attended and unattended stimuli (Fig 5), the influence of expectation on MSPCres was attention dependent (Fig

5). MSPCres, multispectral phase coherency (response); MSPCstim, MSPC (stimulus); PV, pattern violation.

https://doi.org/10.1371/journal.pbio.3000233.g006
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top-down and bottom-up signals, which we suggest here to be reflected by the IMs. Attention,

however, is formulated in Lee and Mumford’s model as a ‘subset’ of such top-down priors,

rendering the model less capable of accounting for the dissociation between expectation and

attention found here.

In the predictive coding model proposed by Spratling [12], predictions exert their effect on

the hierarchical level below, while object-based attention exerts its effect on the higher hierar-

chical level. This distinction is consistent with our interpretation of the MSPCstim and

MSPCres measures and their distinct modulation by expectation and attention. Nevertheless,

Spratling’s model [12] may be less suitable to account for the expectation–attention interaction

shown in Fig 5.

Non-Bayesian models of hierarchical perceptual inference may also be consistent with our

association of the IMs in the HFT paradigm with the integration of higher-level, more abstract,

and semantically meaningful signals, with lower-level features extracted from the sensory

input. Such a representational approach is set forward, for example, in the structural coding

theory of perception [45], which also incorporates task-relevant attention into its view of hier-

archical visual processing. Nevertheless, in structural coding, top-down signals (or hypotheses)

are understood to be constructed on the fly from the sensory data, rather than reflecting expec-

tations derived from past experience. It is therefore less clear how well structural coding lends

itself to explaining the effect of Experiment 1 in which the prior expectations are not directly

related to the complexity of the stimuli.

While we find the predictive coding model set forward by Feldman and Friston [3] particu-

larly capable of accounting for our results, our experiments were not designed specifically to

validate or test aspects of the model such as precision weighting.

Alternative explanations, unrelated to predictive coding, should be considered as well. One

possibility is that some of the differences between the MSPCstim and MSPCres responses may

be attributed to the locations of the neural generator sources mediating our expectation and

attention modulations. For example, the posterior ROI used in our analyses may have captured

attention-related parietal activity more so than expectation-related frontal activity.

Certainly, it would be interesting to see how additional modelling and theoretical studies

may better explain our results and make further predictions about potential variants of the

HFT method, the experimental paradigms used in this study, and the MSPC analyses we have

implemented.

Another aspect that should be considered is the potential contribution of additional cogni-

tive factors besides expectation in Experiment 1 and attention in Experiment 2. These may

include, for example, differences in work load, spatial attention, and working memory in

Experiment 1 or postperceptual counting effects in Experiment 2. In the current study, we use

the term attention synonymously with task relevance, and the images presented in both tasks

of Experiment 1 were indeed task relevant. Nevertheless, the different nature of the tasks can

perhaps lead a participant to adapt different strategies. For example, they may pay more atten-

tion to the global aspects of the image in the PV trials and to the more local features in the IR

trials.

These possibilities notwithstanding, there are several reasons to believe expectation is

indeed the primary factor underlying the observed effects in Experiment 1. First, the modula-

tion of the MSPCstim in Experiment 1 is consistent with the changes observed for the expecta-

tion factor in the analysis performed on the data from Gordon and colleagues [22]. There, a

single behavioural task was used throughout the experiment. (Expectation was operationalised

based on changes in the proportion of the images presented in each trial.) Second, the effect of

attention in Experiment 2 and in the data from Gordon and colleagues [22] was fundamentally

different and was manifested primarily in the MSPCres measure. These results suggest that it
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is very unlikely that the effects found in Experiment 1 can be explained solely by changes in

the nature of attention between the PV and IR tasks. In addition, while all participants

reported that the images in the IR trials were much less predictable than those of the PV trials,

there were mixed reports about which of the tasks felt harder or more demanding. We did not

formally collect the latter reports about the subjective level of difficulty from all participants so

we cannot run a formal analysis to test the potential relationship between task difficulty and

the modulation of the EEG measures; nevertheless, this may provide additional anecdotal evi-

dence arguing against such dominant effects of workload, working memory, etc.

Concluding remarks

Whether and how expectation and attention interact in perception is an ongoing debate in the

scientific literature. Several studies have demonstrated a relationship between expectation and

attention consistent with the interaction reported here. For example, using multivariate pat-

tern analysis in fMRI, Jiang and colleagues [15] demonstrated that the ability to discriminate

expected and unexpected stimuli was notably enhanced with attention. In a different fMRI

study, Kok and colleagues [46] showed that a significantly reduced neural response to pre-

dicted stimuli was observed in V1 (but not in V2 and V3) only for the unattended stimuli.

Attention, on the other hand, was shown to correlate with an enhancement of the forward

drive of information from V1 to V2 and V3 and was therefore proposed to reflect an increase

in the postsynaptic gain of prediction error neurons. Expectation–attention interactions have

also been demonstrated in several EEG studies focusing on event-related potential (ERP) com-

ponents occurring within 100–200 ms after stimulus onset [47].

Critically, the methods used in the current study avoid some of the principal limitations of

those studies:

1) The effects of expectation and attention were not inherently confounded neither with each

other (though see cautionary note above) nor by changes in low-level properties of the sensory

stimuli. This was accomplished by designing the paradigms of Experiment 1 and Experiment 2

such that the cognitive domain was manipulated by changing the behavioural task at hand.

2) The primary variable used in our analyses provides a direct neural measure of signal integra-

tion within the context of hierarchical processing. This was accomplished by using the HF T

method and by focusing analysis on IM components using the MSPCstim and MSPCres measures.

The above, with the combined results from multiple experiments, offer a unique advantage:

the ability to obtain a direct and objective neurophysiological measure for the influence of

expectation and attention on the integration of distinct streams of neural information in

perception.

Instead of formulating the question at hand as whether expectation and attention increase

or decrease neural activity, we place a spotlight on the role of signal integration in perception.

In line with the predictive coding framework of perception, we view expectation and attention

as distinct yet related mechanisms serving the common goal of approximating Bayes optimal

perceptual inference. Our results highlight the role of feedback loops and integration of infor-

mation across multiple hierarchical levels in the cortex and relate expectation and attention to

descending and ascending signals, influencing information integration at lower and higher

cortical levels, respectively.

Methods

Ethics statement

Experimental procedures were approved by the Monash University Human Research Ethics

Committee (10994), which adheres to the Australian Code for the Responsible Conduct of
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Research, 2018. Participants gave their informed consent in writing to participate in the

experiment.

HFT

The HFT method is based on the combination of two frequency-tagging methods: a contrast

modulation inducing SSVEP tagging activity at lower visual areas and an object-recognition

modulation inducing SWIFT tagging activity at higher visual areas.

A detailed description of the method for creating SWIFT sequences can be found elsewhere

[25]. The crux of the SWIFT method is that it scrambles contours while conserving local low-

level attributes such as luminance, contrast, and spatial frequency. A SWIFT ‘sequence’ is a

series of frames that, when presented sequentially, create a ‘movie’ that starts from a scrambled

frame, progresses toward the middle (‘peak’) of the sequence where the original image can be

briefly identified, after which the image becomes scrambled again. When such a SWIFT

sequence is presented repetitively at a given frequency, the original images peaks at that fre-

quency (i.e., once each SWIFT ‘cycle’), allowing the SWIFT tagging to be obtained (if the

image is recognised).

To create a SWIFT sequence, we first scrambled the original image using the discrete

Meyer wavelet and six decomposition levels. The local contour at each location and scale was

then represented by a 3D vector. To create the sequence of frames, we then randomly selected

two additional vectors of identical length and origin and defined the circular path that con-

nected the three vectors (maintaining vector length along the path). We then performed addi-

tional cyclic wavelet-scrambling by rotating each original vector along the circular path and

applying the inverse wavelet transform to obtain the image in the pixel domain. This way, we

were able to smoothly scramble the original image by destroying contour information while

conserving the local low-level attributes. The Matlab script for creating SWIFT sequences can

be found at Koenig-Robert and colleagues [25].

In all experiments described here, we constructed each trial using SWIFT sequences created

from one face and one house image, randomly selected for each trial from a pool of images.

SWIFT sequences were presented consecutively, resulting in a ‘movie’ in which the original

images (either the house or the face) were identifiable briefly around the peak of each such

cycle (S1 Video).

The SWIFT method preserves the low-level local visual properties across all frames within

each sequence (cycle). These properties could differ significantly between a pair of SWIFT

sequences used within a single trial (one for a face and the other for a house). Therefore, to

preserve the low-level local visual properties across the whole trial, regardless of the recognisa-

ble image in each cycle, it was essential to alpha-blend (with equal weights) frames from both

the house and the face sequences. As described below, a single SWIFT frequency was used in

Experiment 1 (S3 Video), with either the face or the house image appearing in each cycle. To

allow only one image to be recognised in each cycle, we created additional ‘noise’ sequences

and alpha-blended them with the frames of the ‘image’ sequences presented in that cycle. This

was done in the following way: First, we selected one of the scrambled frames from each of the

original SWIFT sequences (the frame most distant from the original image presented at the

peak of the cycle). Then, we created noise sequences by applying the SWIFT method on the

selected scrambled frame. In this way, each original ‘image’ sequence had a corresponding

‘noise’ sequence that matched the low-level properties of the image sequence. Finally, during

the actual presentation of the stimuli, we alpha-blended (with equal weights) the frames of the

‘image’ sequence that appeared in that cycle with the ‘noise’ frames of the other image category

(see Fig 2A at Gordon and colleagues [22]). In experiment 2, 15%–30% of ‘image’ cycles were
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replaced with ‘noise’ cycles to make the counting task attentionally demanding (S4 Video; see

further details below). We performed this noise replacement separately for the face cycles and

for the house cycles, which cycled at different frequencies (see below). This way, the overall

low-level visual attributes were constant across all frames within the trial, regardless of the

identifiable image in each cycle.

To minimise the possibility of confounding our results with the tagging of low-level visual

features (specifically, by the cyclic repetition of the scrambled frames presented in between

peaks) we created three sets of ‘image’ and ‘noise’ SWIFT sequence variants for each of the

original images and continuously alternated between the sets during the trial. The timing of

the transition between SWIFT variants (of a single original image) was designed to allow

smooth transitions. This was done as follows: 1) If the image to be presented in the coming

cycle is the same as the one presented in the current cycle (e.g., face-face), then the SWIFT var-

iant of the ‘image’ sequence would be swapped at the peak of the current cycle (i.e., at the

frame containing the original image). 2) If the image to be presented in the coming cycle is not

the same as the one presented in the current cycle (e.g., face-house in experiment 1 or face-

noise in experiment 2), the transition between the image and its matching noise sequences

would occur at the frame from which the ‘noise’ sequence was created. This way, we could bet-

ter control for potential tagging of low-level visual features while ensuring smooth transitions

between cycles.

For SSVEP, a global sinusoidal contrast modulation was applied on the whole movie. To

avoid both excessively strong SSVEP signals and total blanks of the SWIFT sequences, the con-

trast modulation was limited to 70% of the full contrast range (from 30% to 100% of the origi-

nal image contrast) (S2 Video).

Participants and experimental procedure

All participants were university students aged between 18 and 34 years. A total of n = 15 out of

24 participants were included in the analysis of Experiment 1, and n = 11 out of 16 in Experi-

ment 2. Exclusion criteria were based on EEG quality and on task performance (see below.) In

all experiments, participants were comfortably seated in a dimly lit room 55–60 cm in front of

the monitor (LCD, 120 Hz refresh rate). Stimuli were presented at the centre of the screen over

a grey background, and participants were asked to keep their fixation at the centre of the dis-

play. Participants were asked to minimise blinking or moving during each trial but were

encouraged to do so if needed in the breaks between trials. Trials always began by the partici-

pant pressing the space bar.

Importantly, both new experiments performed in this study were designed such that the

high-level factor was manipulated without modifying the stimuli used across experimental

conditions. In other words, the predictability of the stimuli in the Experiment 1 and the rele-

vance of the stimuli in Experiment 2 were manipulated through task instructions, without any

confounds introduced by changes in low-level visual features.

Behavioral tasks

Experiment 1: Expectation. Images appeared at 1.2 Hz, alternating between a face and a

house image in specific orders. In each trial, participants were required to perform one of two

tasks such that each task was performed in half the trials.

In the IR task, participants were asked to press the space bar when they identified any

image repeating itself either three or four times in a row. The specific number (three or four)

was displayed on the screen prior to each trial. For example, for a trial in which the participant
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was instructed to look for an image repeating itself three times in a row, the face (F) and house

(H) images may have been presented in the following order:

F, H, H, F, F, H, F, H, H, F, F, H, F, H, H, F, F, F. . .

The ‘target’ image would then be the eighteenth image (F shown in bold). Throughout the

paper, these trials are referred to as the IR trials.

In the PV task, participants were provided a pattern describing a series of 5–6 images prior

to each trial and were instructed to memorise the pattern well. Participants were told that the

images presented in the trial would follow the given pattern, which will repeat itself over and

over again. The task was then to press the space bar as soon as they identified an image that

violated the expected pattern.

For example, the following pattern may be verbally presented on the screen before a trial:

‘Face, House, House, Face, Face, House’

After memorising the pattern, participants would begin the trial by pressing the space bar.

Images would then appear in the following order:

F, H, H, F, F, H, F, H, H, F, F, H, F, H, H, F, F, F. . .

The ‘target’ image in this case would be the eighteenth image shown in bold. The spaces

between each pattern in the above example are provided here for illustration alone. In the

actual trials, images appeared consecutively as per the 1.2 Hz SWIFT frequency. Throughout

the paper, these trials are referred to as the PV trials.

As can be seen, the sequence of images and the target image are identical in both above

examples, allowing differences in conscious perception, behavioural performance, and evoked

neural activity to be attributed strictly to the task-related requirements rather than the visual

stimuli. We hoped that participants would not be aware of the underlying pattern when per-

forming the IR task, rendering the series of images appear more random. As detailed in

Results, this was indeed the case.

A global SSVEP contrast modulation was applied at 15 Hz in all trials.

After 1–2 training trials, four 11-trial blocks were administered in the following order: PV

block, IR Block, PV block, IR block. Every series that appeared in the PV block was repeated in

the following IR block in a random order of trials, using a different set of face and house

images. PV and IR trials were then analysed as paired.

Within 3 minutes from completing the experiment (i.e., after the end of the fourth block),

participants were asked to compare the difficulty level between the PV and IR tasks and to

report whether they had noticed the underlying patterns in the IR tasks.

Experiment 2: Attention. HFT trials were constructed using house and face images. Con-

trary to Experiment 1, here, the two image categories were presented at different SWIFT fre-

quencies. In other words, the house and face images each cycled at its own frequency (0.8 Hz

and 1 Hz, counterbalanced.) (S4 Video). Each SWIFT frequency interacted independently

with the SSVEP frequency, yielding its own set of IMs. Therefore, in Experiment 2, we had two

second-order IMs (SSVEP + SWIFT) for each SWIFT–SSVEP combination. For example, in

trials for which the SWIFT frequency of the attended image was 0.8 Hz, that of the unattended

image was 1 Hz and the SSVEP frequency was 12 Hz. In those cases, the second-order IMs

11.2 Hz and 12.8 Hz indicated an interaction between the SSVEP and the SWIFT of the

attended image, while the second-order IMs 11 Hz and 13 Hz indicated an interaction between

the SSVEP and the SWIFT of the unattended image. This allowed us to separately tag the EEG

responses associated with the recognition of each image.

Participants were instructed before each trial to count one of the image categories (e.g.,

‘count houses’). Each image was therefore considered attended or unattended depending on

what the participant was instructed to count during the trial. To ensure participants were

actively paying attention to only one of the categories, rather than just following a certain
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‘rhythm’, images were presented in only 70%–85% of their respective cycles and were substi-

tuted with their matching ‘noise’ sequence in the remaining cycles (S4 Video). Trials were 31.5

seconds long, allowing the total amount of counted images to range from 17 to 26 images per

trial. Participants were instructed not to expect trials with less than 10–15 images and were

requested to be as accurate as possible when counting.

To further verify the dependence of the SWIFT response on attention, we added a third

condition in which participants were required to perform a demanding central-attention task,

leaving only minimal spatial attention elsewhere on the screen [48,49]. In this task, participants

were instructed to attend to a central cross that varied in the height of the horizontal line

(above or below the midline) and colour (red, green, or blue). The cross was updated at pseu-

dorandom times, jittering over 850–1,000 ms to reduce frequency tagging by this stimulus (a

constant time interval would yield an excessively strong tagging of the cross frequency). Partic-

ipants were instructed to count the number of occurrences of two conjunction targets, defined

as an upward and red cross or a downward and green cross. These central stimuli were also

present in the count-face and count-house tasks, but they were irrelevant and ignored (S4

Video).

Ten trials were administered in a random order for each of the three behavioural tasks

(counting houses, faces, or crosses), reaching 30 trials in total. The two images were presented

at SWIFT frequencies of 0.8 Hz and 1 Hz, counterbalanced across trials. The global SSVEP

contrast modulation was applied at 12 Hz.

Data acquisition and processing

Data were collected at two facilities, both using BrainProducts 64 scalp electrode EEG systems.

Data for half of the participants from Experiment 1 (n = 12) and all participants from Experi-

ment 2 (n = 16) were collected using an active-electrode actiCHamp system. Data for the other

half of Experiment 1 (n = 12) were collected using a passive-electrode BrainAmp-MR system

(not within an MR environment). Continuous EEG was sampled at 1,000 Hz for all

participants.

Data processing was performed using the EEGLAB toolbox [50] in MATLAB. All data were

resampled to 500 Hz. A high-pass filter was applied at 0.3 Hz and data was converted to aver-

age reference after replacing noisy electrodes. To define noisy electrodes, each sample point

was regarded as being noisy if it was either greater than +80 μV (or lower than −80 μV), con-

tained a sudden fluctuation greater than 30 μV from the previous sample point, or if the signal

was more than ±5 STD from the mean of the trial data in each channel. Cycles in which over

2% of sample points were noisy were regarded as noisy cycles. Channels were replaced using

spherical spline interpolation if they were considered noisy in over 10% of cycles. An addi-

tional CleanLine procedure was then applied to reduce AC power artefacts around 50 Hz and

100 Hz. The CleanLine plugin for EEGLAB (Mullen, 2012. Available online at http://www.

nitrc.org/projects/cleanline) reduces sinusoidal (line) noise while avoiding typical phase dis-

tortions that can be caused by notch filters.

Exclusion criteria

Exclusion criteria were defined based on the quality of the EEG recording and the behavioural

results. For the former, individual trials were marked for exclusion if over 10% of channels

were considered noisy in that trial after preprocessing (as described above). Participants with

over 20% of bad trials were excluded from the analysis. A total of five participants from Experi-

ment 1 and four participants from Experiment 2 were excluded based on these criteria for

poor EEG recordings.
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To ensure participants were sufficiently engaged with the tasks, we excluded participants

whose responses were considered invalid in over 30% of trials. For Experiment 1, responses

were considered invalid if the space bar was not pressed during the trial or if it was pressed

before the appearance of the target image (this criterion was applied on the PV trials). For

Experiment 2, responses were considered invalid if they differed by more than ±3 from the

correct number (i.e., the actual number of times the attended image appeared in the trial). A

total of four additional participants from Experiment 1 and one additional participant from

Experiment 2 were excluded based on these criteria for poor response accuracy.

Spectral analysis

EEG amplitudes and phases were extracted for each trial at the tagging and intermodulation

frequencies by applying the FFT over a predefined subset period. For Experiment 2, the FFT

was applied on the 25-second epoch ranging from 3–28 seconds from trial onset, yielding a

half-bandwidth of 0.04 Hz (= 1/25 s) (12,500 sample-points). For Experiment 1, we applied the

FFT on either 10 or 20 seconds of data, depending on the amount of data available in each trial

(trial lengths in this experiment varied according to the location of the target image and the

participant’s response). To reduce onset effects and the nosier signals often seen near trial

onsets, we excluded the first SWIFT cycle of each trial from all analyses. Trials with more than

17 seconds of available data were zero-padded to 20 seconds and analysed as a 20-second trial,

with a half-bandwidth of 0.05 Hz (= 1/20 s). Trials with less than 17 seconds of data (but more

than 10) were analysed using the first 10 seconds, with a half-bandwidth of 0.1 Hz (= 1/10 s).

SNRs were computed by dividing the amplitude at any given frequency by the arithmetic

mean amplitude across its neighbouring frequencies [51,52]. The specific number of neigh-

bouring frequencies used for the SNR calculation depended on the length of data used in each

analysis (as described above), ranging from 4 on each side (from f − 0.4 Hz to f + 0.4 Hz) for

the 10-second epochs to 8 on each side (from f − 0.32 Hz to f + 0.32 Hz) for the 25-second

epoch. Any neighbouring harmonic or IM frequency falling within that range was removed

from the SNR calculation.

While a theoretically limitless number of IM components exist (all combinations of non-

zero integer-multiples of the fundamental input frequencies: n1f1 + n2f2, n = ±1, ±2, ±3. . .),

we focused our primary analyses on the two lowest (2nd) order components (f1 ± f2), which

tended to have the highest amplitude SNRs (as in [22]). Additional analyses were then per-

formed on third- and fourth-order IMs to broaden the scope of our investigation, as described

in greater detail in S3 Text.

MSPC

Distinct aspects of nonlinear interactions may be revealed by examining both phase and ampli-

tude information. Applying phase analyses rather than amplitude analyses alone may have sev-

eral advantages. First, amplitude and phase information may indicate different aspects of

neural processing, with the phase-coherence believed to reflect the relative timing of neural

activity [53]. Second, noise that is not associated with stimulus processing is (by definition)

not time-locked to stimulus onset and is therefore not expected to demonstrate any phase con-

sistency across trials. Consequently, phase analyses may be more robust to noise, potentially

allowing the detection of genuine response components even when the amplitude is low.

The phase-coupling measure we use in this study is the MSPC introduced by Yang and col-

leagues [36]. The MSPC is especially useful for the study of IM components since rather than

comparing a frequency phase to a time-locked event, it allows it to be compared against the

phases of the fundamental frequencies. In that sense, instead of asking ‘how consistently is the
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IM phase related to a given event in time’ (as with the classic phase-locking factor), the MSPC

asks ‘how consistently is the IM phase related to the phases of the input frequencies for the

IM’. The MSPC can be calculated between input (I) frequencies f1,f2 . . .fr and any given output

(O) IM (or harmonic) frequency fƩ ¼
PR

r¼1
nrfr (in which fƩ is the sum of the non-zero inte-

ger-multiples of the input frequencies with weights n1, n2 . . .nr). Mathematically, this is given

by the formula

CIO ¼
1

k

Xk

k¼1

eið
PR

r¼1
nr;IkðfrÞ� ;OkðfƩÞÞ

�
�
�
�
�

�
�
�
�
�

in which ;Ik(fr) is the phase of the input frequency fr (in epoch k), and ;Ok(fƩ) is the phase of

the output IM (in that same epoch).

There are various additional conceptual differences between the more commonly used

phase-locking value (PLV) and the MSPC measure we apply here. First, for PLV, the phase of

only one frequency of interest is extracted from each epoch to calculate PLV values. Here, for

each MSPC calculation, we extract the phases of three frequencies from each epoch: two fun-

damental and one IM component phase (Fig 7). Second, PLV is often used to examine the

coherence between different neural signals by testing the consistency of the difference (Δφ)

between phases of distant channels. Here, we test the consistency of the difference between the

phases of the fundamental frequencies and the IM component within a channel.

The logic behind performing within-channel calculations is that the sources associated with

the SWIFT, the SSVEP, and the IM responses should, in principle, have an additive (and there-

fore separable) influence on the resulting EEG signal at each channel. Moreover, if we assume

that for any given channel, the phase of the signal associated with the activity of a particular

source depends on a characteristic time delay, then the dynamics of a single electrode should

contain information about the dynamics of multiple electrodes [54]. Therefore, we used

within-channel data to examine the relationship between the IM and the SWIFT and SSVEP

phases while avoiding the complexity involved in cross-channel computations.

A novel distinction we introduce here is between the calculation of the MSPC based on the

stimulus and the response (Fig 7). We define the stimulus phase as the phase of the SSVEP

contrast modulation and the phase of the SWIFT sequence relative to the original image. We

define the response phase as the phases of the FFT of the EEG at the relevant frequencies (i.e.,

the SWIFT and the SSVEP frequencies). MSPC values were calculated for each channel

individually.

We reasoned that separately considering the stimulus phase and the response phase as the

‘inputs’ of the IM response may allow a distinction between interactions occurring at lower

and higher levels of hierarchical processing, respectively. The logic behind this is as follows:

while the stimulus phases should relate consistently to the phases of low-level retinal signals,

the response phases reflect activity occurring farther up the visual pathway. Importantly, how-

ever, the primary sources of the SSVEP and SWIFT EEG signals are not the same but rather

low and high visual levels, respectively [25]. If the processing time delays between retinal input

and activity at SSVEP-generating regions and SWIFT-generating regions were different, yet

constant, the MSPC measure should not differ when calculated based on the stimulus or based

on the response phases of the SSVEP and SWIFT. This is because MSPC measures the degree

of consistency between an IM frequency phase and the combined SSVEP and SWIFT phases

across epochs, which should not depend on the addition of constants. However, the processing

times leading to activity at SSVEP- and SWIFT-responsive regions may not be constant across

all stimuli. For example, the timing can vary depending on factors such as expectation, atten-

tion, image visibility, recognition, etc. Therefore, when examined across multiple epochs, the
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IM response phase may relate differently to the SSVEP and SWIFT stimulus phases than to the

SSVEP and SWIFT response phases. This is the logic behind our assumption that these two

measures, which we denote MSPCstim and MSPCres, may reveal different information about

interactions occurring at lower and at higher levels of the visual hierarchy, respectively.

MSPC measures were calculated in a within-trial manner by dividing each trial into a series

of 5-second (Experiment 1) or 10-second (Experiment 2) epochs, with a 1-second step from

epoch to epoch. (Shorter epochs were used for Experiment 1 since the average length of data

available for each trial was shorter than those of Experiment 2).

Expectation–attention interaction (reanalysis of eLife)

In addition to the two experiments described above, new analyses were performed on the data

published in Gordon and colleagues [22]. A detailed description of the paradigm and analysis

Fig 7. Multispectral phase coherence. The method for calculating MSPC. (A) Schematic example of stronger (left)

and weaker (right) phase coherence. Both the PLV and the MSPC measures examine the consistency of a given phase

term across multiple epochs. This can be visualised by first converting the phase term from each epoch into a unit

(length = 1) vector pointing at its phase angle. Phase coherence is then obtained by computing the average vector (the

sum of all vectors divided by the number of epochs). The result is a vector whose length can vary from 0 (each vector

pointing at random directions, no phase consistency across epochs) to 1 (all vectors pointing at the same direction,

perfect consistency across epochs). (B) The primary difference between PLV and MSPC measures is the phase term

used for each epoch. For the PLV, only the phase of one specific frequency (or frequency band) is extracted for each

channel/epoch and is used as the phase term for computing phase locking. When examining consistency between

distant channels, the phase term used for the PLV would be the difference (Δφ) between the phases extracted from the

different channels. In contrast, the phase term used for the MSPC calculations here is based on the difference (Δφ)

between the phase of a specific IM component and the (weighted sum of) phases of the fundamental frequencies

within each channel/epoch. In other words, the MSPC can be understood as a measure of the extent to which the IM

phases are driven by the phases of the fundamental frequencies. Our distinction between MSPCstim and MSPCres is

reflected by the two MSPC formulas shown at the bottom of the figure. Specifically, MSPCstim defines the phases of

the stimuli (the on-screen image) as the input (or ‘driving’) fundamental frequencies (left formula, upper case F1 and

F2), and MSPCres defines the EEG response phases as the input fundamental frequencies (right, lower case f1 and f2).

Note that the weights of the fundamental frequencies in those formulas (n1 and n2) are the coefficients that define the

IM frequency (e.g., given F1 = 1.2 Hz and F2 = 15 Hz, the weights for the third-order IM component 2�F1 + F2 = 17.4

Hz would be n1 = 2 and n2 = 1). EEG, electroencephalography; IM, intermodulation; MSPCres, multispectral phase

coherency (response); MSPCstim, MSPC (stimulus); PLV, phase-locking value.

https://doi.org/10.1371/journal.pbio.3000233.g007
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methods can be found in the original publication. In brief, house and face SWIFT cycles were

presented in each trial in a pseudorandom order and participants were asked to count either

the houses or the faces. Certainty (expectation) levels were categorised based on the proportion

of house and face images appearing in each trial and ranged from low certainty (faces and

houses appeared at nearly 50% of cycles each) to high certainty (one of the two images

appeared in nearly 100% of cycles).

Importantly, while the behavioural task allowed us to verify that participants were engaged

with the task, it introduced a within-trial difference between the attended (counted) and unat-

tended images, which was not analysed in that study. Given that one underlying SWIFT fre-

quency was used (each cycle peaking at either the face or the house image) and the spectral

analysis was performed on full trials, face- and house-driven EEG responses could not be dis-

tinguished from each other in the frequency domain. The effect of expectation on amplitude

SNRs was examined in the original study using the linear mixed-effects (LME) analyses with a

model that included certainty as the fixed effect and channels nested within participants as

random effects.

Here, we first calculated new MSPCstim and MSPCres measures for the second-order IM

components. Then, to allow the additional examination of potential interactions between

expectation and attention (counted versus uncounted images), an additional attention-depen-

dent variable was added: the attentional category of the more frequent (higher-certainty)

image. In other words, this variable indicated whether the image presented in most cycles

(above half) in any given trial was the counted or the not-counted image. This way, we could

now distinguish between the effects of high expectation for attended versus for unattended

images. In the new LME model, expectation, attention, and an expectation–attention interac-

tion were included as the fixed effects. Random effects included a random intercept for fre-

quency nested within channels nested within participants and random expectation, attention,

and interaction slopes for each participant.

To examine the consistency of the full interaction LME model with the results from Experi-

ment 1 and Experiment 2, we performed additional posthoc tests to individually examine

expectation and attention. For conditions similar to those of Experiment 1, we first tested the

effect of expectation within the attended condition. Then, for conditions similar to those of

Experiment 2, we used a median split to reduce expectation to two bins (expected and unex-

pected), and we tested the effect of attention within the expected condition.

As in the original study, we tested for the significance of a given factor or interaction by per-

forming a likelihood ratio test between the full model, as described above, and the reduced

model, which did not include the factor in question [55].

Supporting information

S1 Fig. Amplitude SNRs demonstrate successful frequency tagging in Experiments 1 and 2.

Results of the FFT averaged across all electrodes, trials, and participants. Amplitude SNR

peaks can be seen at the tagging frequencies (solid lines) and their harmonics (dashed lines) in

both Experiment 1 (A) (SWIFT: 1.2 Hz and SSVEP: 15 Hz, N = 15) and Experiment 2 (B) (two

SWIFT: 0.8 Hz and 1 Hz and SSVEP: 12 Hz, N = 11). Note that in Experiment 2, no SWIFT

tagging was obtained when counting crosses. (The peak at approximately 1.08 Hz matches the

average amount of time between cross presentations which was 925 ms.) The data underlying

this figure is available in FigShare at DOI: 10.26180/5b9abfe5687e3. FFT, fast Fourier trans-

form; SNR, signal-to-noise ratios; SSVEP, steady-state visual evoked potential; SWIFT, seman-

tic wavelet-induced frequency tagging.

(TIF)
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S2 Fig. The fourth-order IMs reflect a late interaction (the second-order IM between the

second harmonics). Additional analyses of the fourth-order IMs were performed to compare

between two potential two-stage second-order sequences: nonlinear processing of each of the

input signal followed by an interaction between the two (i.e., F2,F1! 2f2, 2f1! 2f2 + 2f1, left

bars) or an interaction between the input signals followed by an additional nonlinear process

(i.e., F2,F1! [f2 ± f1]! 2[f2 ± f1], right bars). Higher MSPCres values were obtained for

both the attended and the unattended images when defining the second harmonics of the

SWIFT and SSVEP response frequencies as the driving input signals. This indicates that the

fourth-order IMs are driven more by these second harmonics than by their second-order IMs.

Furthermore, attention had a significantly greater influence on the degree to which the fourth-

order IMs were driven by the 2f1 and 2f2 harmonics than by the f1 + f2 IMs. These results are

consistent with the notion that the attention modulation influences processes occurring at

later stages than where initial input processing and interactions occur. The data underlying

this figure is available in FigShare at DOI: 10.26180/5b9abfe5687e3. IM, intermodulation;

MSPCres, multispectral phase coherency (response).

(TIF)

S1 Text. MSPC and amplitude measures. MSPC, multispectral phase coherency.

(PDF)

S2 Text. Interaction of attention and expectation.

(PDF)

S3 Text. Higher-order IMs. IM, intermodulation.

(PDF)

S1 Video. The SWIFT method. A slow-motion demonstration of two SWIFT ’cycles’ pre-

sented sequentially. SWIFT, semantic wavelet-induced frequency tagging.

(AVI)

S2 Video. The HFT method. An 8-second demonstration of the HFT method combining two

SWIFT images cycling at 0.8 Hz and a global SSVEP contrast modulation at 6.5 Hz. HFT, hier-

archical frequency tagging; SSVEP, steady-state visual evoked potential; SWIFT, semantic

wavelet-induced frequency tagging.

(AVI)

S3 Video. Experiment 1: Expectation. A demonstration of one ’Expectation’ trial (Experi-

ment 1). The same stimuli can be used in both the IR and PV tasks. For the IR task, partici-

pants in this example trial need to press the space bar when any of the images repeats itself

three times in a row. For the PV task, before this example trial, participants are presented with

the words ’Face, House, House, Face, House, Face’ and are required to memorise the pattern

well. During the trial, images appear according to this pattern, and the pattern repeats itself

over and over. Participant needs to press the space bar the moment the pattern is violated (i.e.,

when a face appears instead of a house or vice versa). This occurs in this example trial in the

second before last image. IR, image repetition; PV, pattern-violation.

(AVI)

S4 Video. Experiment 2: Attention. A 10-second demonstration of one ’Attention’ trial

(Experiment 2). One face image and one house image cycle at different frequencies. Images in

this trial appear in only 70% of their respective cycles. Participants are instructed before each

trial to count either the face or the house image. After each trial, participants enter the number

of images they have counted throughout that trial. Note that this demo is greyscale. In the
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actual trials, the central-fixation cross alternated between the colours red, green, and blue.
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