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Abstract

Purpose

To identify Myo/Nog cells in the adult retina and test their role in protecting retinal photore-

ceptors from light damage.

Methods

Light damage was induced by exposing albino rats raised in dim cyclic light to 1000 lux light

for 24 hours. In one group of rats, Myo/Nog cells were purified from rat brain tissue by mag-

netic cell sorting following binding of the G8 monoclonal antibody (mAb). These cells were

injected into the vitreous humour of the eye within 2 hours following bright light exposure. Ret-

inal function was assessed using full-field, flash electroretinogram (ERG) before and after

treatment. The numbers of Myo/Nog cells, apoptotic photoreceptors, and the expression of

glial fibrillary acidic protein (GFAP) in Muller cells were assessed by immunohistochemistry.

Results

Myo/Nog cells were present in the undamaged retina in low numbers. Light induced damage

increased their numbers, particularly in the choroid, ganglion cell layer and outer plexiform

layer. Intravitreal injection of G8-positive (G8+) cells harvested from brain mitigated all the

effects of light damage examined, i.e. loss of retinal function (ERG), death of photoreceptors

and the stress-induced expression of GFAP in Muller cells. Some of the transplanted G8+

cells were integrated into the retina from the vitreous.

Conclusions

Myo/Nog cells are a subpopulation of cells that are present in the adult retina. They increase

in number in response to light induced stress. Intravitreal injection of Myo/Nog cells was

protective to the retina, in part, by reducing retinal stress as measured by the Muller cell

response. These results suggest that Myo/Nog cells, or the factors they produce, are neuro-

protective and may be therapeutic in neurodegenerative retinal diseases.
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Introduction

Myo/Nog cells belong to a distinct lineage discovered in the blastocyst of the chick embryo [1–

5]. They were identified by their expression of mRNA for the skeletal muscle specific transcrip-

tion factor MyoD, the bone morphogenetic protein (BMP) inhibitor Noggin and the cell sur-

face protein recognized by the G8 monoclonal antibody (mAb)[1, 4–7]. During gastrulation,

Myo/Nog cells become widely distributed in small numbers throughout the embryo [1, 3, 8].

Depletion of Myo/Nog cells in the blastocyst results in an inhibition of skeletal muscle differ-

entiation, externalization of organs through the body wall and severe malformations of the

central nervous system [1, 3, 8].

Our understanding of Myo/Nog cells was extended when it was discovered that Myo/Nog

cells originating in the epiblast are critical for the development of the eye in chick [1, 8]. The

first evidence of this role came when Myo/Nog cells tagged within the epiblast of the blastula

were detected later in the developing eyecup and lens [1, 8]. Depletion of Myo/Nog cells at this

early embryonic period resulted in eye defects such as anophthalmia, microphthalmia, lens dys-

genesis and abnormalities in the retina (e.g. retinal folding) [1, 8]. Ocular and other malforma-

tions were prevented or reduced in severity with the addition of Noggin or the reintroduction

Myo/Nog cells into the embryo, indicating that Myo/Nog cells’ titration of BMP signalling is

essential for normal development [1, 3, 8].

Recently, our group described the role of Myo/Nog cells in the developing retina under nor-

mal and stressed conditions in neonatal mice [9]. Small numbers of Myo/Nog cells were

detected in the neonatal and adult mouse retina.

A model of retinopathy of prematurity (ROP) was used to study the response of Myo/Nog

cells to stress[9]. It was discovered that Myo/Nog cells were protective, as depletion of these

cells resulted in an increase in photoreceptor death. These studies indicate that Myo/Nog cells

have important functions during embryonic and postnatal retinal development.

The aims of the present experiments were to determine whether Myo/Nog cells are present

in the retina of the adult rat, examine their behaviour in response to light-induced degenera-

tion of photoreceptors and determine whether increasing their numbers affects retinal func-

tion and the Muller cell response to stress.

Methods

Animals

Sprague Dawley rats were sourced from the Animal Resource Centre (Perth, WA, Australia).

They were raised from birth in controlled scotopic conditions (12 hours at 5–8 lux, 12 hour

dark, and 22˚C) to 4 to 6 months of age. Normal chow (WEHI, Barastoc, VIC, Australia) and

water were available ad libitum. All experimental and animal care procedures were approved

by the University of Sydney Animal Ethics Committee.

Treatment groups

There were five treatment groups used to study the effect of Myo/Nog cells (G8 mAb positive

cells) on uninjured and light damaged (LD) retinas (control, n = 4; G8+, n = 3, LD, n = 18; LD/

PBS, n = 18; LD/G8+, n = 18). Immediately following light induced damage (1000 lux), animals

were injected. At the same time point (day 0) non-injured animals were also injected. Seven days

after bright-light exposure/injection, the flash ERG measurements were recorded and eyes were

harvested for immunohistochemistry. An additional treatment group was used to study the migra-

tion of Myo/Nog cells injected in the LD retina (G8+/bisbenzimide, n = 4). Two days following

injection of bisbenzimide labeled G8+ cells eyes were harvested for microscopy analysis.
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Exposure to bright light

Rats assigned to light damage groups were exposed to bright continuous light for 24 hours to

induce retinal degeneration. Bright light exposure begun at 9:00am, 2 hours after the begin-

ning of the ‘day’ part of the 12h/12h cycle of light in which they were raised. The animals were

separated into individual boxes with transparent plexiglass covers. The light source was a cool

white fluorescent tube (5000 K, 58W, #8137 Philips, Amsterdam, Netherlands) that delivered

1000 lux measured from the rat’s head height within the box. After a 24-hour exposure to this

light, rats were either injected and/or returned to normal housing under the cyclic scotopic

(~5 lux) light/dark conditions in which they were raised (above). Seven days after light expo-

sure, the ERG was recorded and the retinas were harvested for examination.

Preparation for ERG

Rats were dark adapted overnight (12–15 hours) and recordings were performed the following

morning. Under dim red light illumination to minimise adaptation, rats were anaesthetised by

intraperitoneal injection of ketamine (60 mg/kg) and xylazine (7 mg/kg) (Parnell Manufactur-

ing Pty Ltd, Alexandria, NSW, Australia). Mydriasis was achieved with topical application of

atropine sulphate (1.0%) (Bausch & Lomb Australia Pty. Ltd, Macquarie Park, NSW, Austra-

lia). Proxymetacaine (0.5%) (Alcon Laboratories Pty Ltd, Frenchs Forest, NSW, Australia) was

applied topically for corneal anaesthesia. Corneal hydration was maintained during recordings

with Carbomer (2 mg/g) (Novartis Pharmaceuticals, North Ryde, NSW, Australia). A thread

was loosely drawn around the eyeball to minimise lid movement. The animal was supported

on a platform warmed by internal circulating water at 40˚C to maintain body temperature at

37–38˚C, as monitored by a rectal temperature probe (Harvard Apparatus, Holliston, MA).

Full-field ERG recordings

With the animal laid on the warmed platform, the head was positioned with the right eye

exposed to a Ganzfeld integrating sphere (Photometric Solutions International, Huntingdale,

Victoria, Australia). Once the electrode setup was complete and the dim red light removed,

10 minutes (min) were allowed for stabilisation of conditions before commencement of

recording.

The ERG was recorded between a custom-made 4 mm platinum positive electrode lightly

touching the cornea and a 2 mm diameter Ag/AgCl pellet electrode (#E206, SDR Clinical

Technology, Middle Cove, NSW, Australia) placed in the mouth. Both electrodes were refer-

enced to a stainless steel needle (23 g x 1.25 inch) (Terumo Medical, Somerset, NJ, USA)

inserted into the skin of the rump. Signals were recorded with band-pass setting of 0.3–1000

Hz, with a 2 kHz acquisition rate using a PowerLab (4SP system, AD Instruments Pty Ltd,

Bella Vista, NSW, Australia).

The light stimuli used to elicit the ERG were brief flashes from light emitting diodes

(LEDs). The duration and intensity of the flash were 1–2 ms and -4.4–2.0 log scot cd.s.m-2,

respectively. Luminous energy was calibrated (IL1700; International Light Research, Peabody,

MA) to give rodent (λmax = 502 nm) scotopic (Z-CIE luminosity filter) luminous measures

(cd.s.m-2).

Eleven intensities of flash were used over the range stated above. At lower flash intensities

(-4.4 to -0.3 log scot cd.s.m-2), responses were averaged from four flashes delivered at 1Hz. At

higher intensities (0.4 to 2.0 log scot cd.s.m-2), fewer responses were averaged and inter-stimu-

lus intervals were increased up to 90s. Outcome measures were the amplitudes of the a- and b-

waves [10].
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Isolation and injection of Myo/Nog cells

Myo/Nog cells were extracted from the rat brain using the G8 mAb [6]. The brain was rinsed

in sterile phosphate buffer saline (PBS), minced in a solution of 0.25% Trypsin-EDTA (Life

technologies Australia Pty Ltd, Mulgrave, VIC, Australia) and incubated at 37˚C for 15 min-

utes. An equal volume of DMEM/F-12/HEPES/10% fetal bovine serum (FBS) containing

medium (Life technologies Australia Pty Ltd, NSW, Australia) was added to the cell suspen-

sion. Following centrifugation, fresh 0.25% Trypsin-EDTA was added to the remaining tissue

pieces and the previous step was repeated. Cells that bound IgMs were removed from the cell

suspension by incubating with non-specific mouse IgM (375 μg/ml; Abcam Inc., Cambridge,

MA) and magnetic beads coated with anti-mouse IgM (Miltenyi Biotec Australia Pty. Ltd,

North Ryde, NSW, Australia). Cells that did not bind the magnetic sorting column (those that

did not bind either the non-specific IgM or anti-mouse IgM) were resuspended in DMEM/F-

12/ HEPES/FBS medium containing the G8 mAb diluted (1:10). Following incubation for 60

min at 37˚C and centrifugation, the cells were resuspended in anti-mouse IgM coated mag-

netic beads diluted 1:5 in PBS. G8+ cells were isolated by magnetic cell sorting and suspended

in PBS. The cells were then counted and kept on ice until injection.

Intravitreal injections were performed 2–4 hours following 24 hours of light exposure fol-

lowing a previously published protocol[11]. Rodents were anesthetized with medical grade

oxygen mixed with 1.5% isofluorane. The cornea was anesthetised by topical application of 1%

proxymetacaine hydrochloride (Allergan, Gordon, NSW, Australia). Gauze soaked in 5% povi-

done-iodine solution was positioned on the lateral surface of the eye for 30-60s to sterilise the

sclera prior to puncturing. A fine needle (30 gauge, Terumo Medical Corporation, Somerset,

NJ, USA) was used to puncture the sclera 2 mm posterior to the limbus and tangential to the

lateral canthus. A Hamilton needle and syringe (35 gauge, Hamilton syringes, Reno, USA) was

used to inject 3 μl of solution. Immediately after injection, a cotton bud was placed on the

injection site for 60 seconds and the site was rinsed with sterile 9% saline. Both eyes were

injected either with PBS or 6,000 G8+ cells.

All intravitreal injected animals were monitored daily to check for signs of an adverse reac-

tion to the injection. If a cataract or haemorrhage was suspected in the injected eye, the eye

was excluded from the study. The proportion of cataract/haemorrhages did not substantial dif-

fer between treatment groups (frequency of cataract/haemorrhages: 25% G8+, 20% LD/G8+,

17% LD/Sham).

Bisbenzimide labeled G8+injection protocol

To determine the final retinal location of injected G8+ cells, live cells were tagged with the

nuclei stain bisbenzimide 33342 and injected into the vitreous[12]. G8+ cells were extracted

and incubated with filter-sterilized 5 ug/ml bisbenzimide 33342 (Sigma, St Louis, MO, USA)

in DMEM/F-12/HEPES/FBS medium for 4 minutes at 37˚C and then thoroughly washed in

DMEM/F-12/HEPES/FBS medium. Cells were washed and suspended in PBS and kept on ice.

3 uL of G8+/bisbenzimide 33342 labeled cells (6,000 cells) were injected into the eye of LD ani-

mals (n = 4). 2 days following the injection, animals were euthanized and eyes were processed

for histology.

Tissue collection

Immediately following completion of the post-treatment ERG, rats were euthanized with an

overdose of 60 mg/kg Lethabarb (Virbac, Regent Park, NSW, Australia). A stitch was sown

into conjunctiva at the superior aspect of the eye, to provide orientation. Prior to enucleation,

the eye was pierced through the anterior chamber with a 25-gauge needle to facilitate fixation.
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Histology

Eyes were fixed by immersion in 4% paraformaldehyde in PBS at 4˚C for 2 hours, rinsed in

PBS and then cryoprotected overnight in 30% sucrose in PBS. Eyes were embedded in OCT

compound (TissueTek, Sakura Finetek Europe, Alphen aan den Rijn, Netherlands) and frozen

indirectly in isopentane cooled with liquid nitrogen. Retinas were sectioned at 20 μm, oriented

from superior to inferior, using a cryostat (CM1850, Leica, North Ryde, NSW, Australia). Sec-

tions passing through the optic nerve head were collected on gelatin and poly-L-lysine coated

slides, and stored at -20˚C.

Sections were doubled labeled with the terminal deoxynucleotidyl transferase dUTP nick

end labeling (TUNEL) technique to detect apoptotic cells (Roche, Basel, Switzerland), and

an antibody against glial fibrillary acidic protein (GFAP) (1:1000, Dako, Glostrup, Den-

mark) to label activated Muller cells. The TUNEL technique used a Tetramethylrhodamine

(TMR) labelled dUTP reporter system for 1 hour at room temperature [13]. The G8 mAb

(1:50) that binds to Myo/Nog cells, Noggin (1:100, Jackson ImmunoResearch Laboratories

Inc., West Grove, PA, USA) and Myosin D (1:20, Jackson ImmunoResearch Laboratories

Inc.) antibodies were used to confirm the specificity of the G8 mAB for binding Myo/Nog

cells in rodent. Sections were blocked with 10% goat serum (Sigma) in PBS for 30 min at

room temperature and incubated with primary antibodies overnight at 4˚C in 1% goat

serum. Secondary antibodies, including goat anti-rabbit IgG AlexaFluor 488 (1:500; Life

technologies, Carlsbad, CA, USA), goat anti-mouse IgG Rhodamine (1:600; Jackson Immu-

noResearch Laboratories Inc) or goat anti-mouse IgM rhodamine (1:100; Jackson Immu-

noResearch Laboratories Inc), were applied overnight at 4˚C. Negative control experiments

for the G8 mAb included a non-specific mouse IgM (1:100; Abcam Inc.) or incubation in

secondary antibodies only. After washing in PBS, sections were incubated for 2 minutes

with the nuclear label bisbenzimide (1:10,000 w/v, Sigma). Sections were mounted in glyc-

erol/gelatin (1:1 v/v, Sigma) and cover-slipped.

Sections were imaged on a Zeiss Axioplan 2 upright microscope (Carl Zeiss, Gottingen,

Germany). Images were subsequently adjusted for contrast and brightness using Adobe

Photoshop CS4 (Adobe Systems, San Jose, CA). The retinal span was sampled systematically

in 400 μm steps along sections cut from superior to inferior. At each field sampled, the

thickness of the outer nuclear layer (ONL) was measured and normalised to retinal thick-

ness, measured between the inner limiting membrane (ILM) and outer limiting membrane

(OLM). GFAP labeling of Muller cells was quantified by measuring the length of GFAP

expression along the Muller cell normalised to the thickness of the retina from the inner to

the outer limiting membranes (ILM-OLM). TUNEL+ cells were identified by homogeneous

labeling of the nucleus, as described previously [14]. The number of TUNEL+ cells was

quantified in the ONL. Counts and measurements were averaged over 3 sections per eye,

for 6 animals per group. G8/bisbenzimide cells were identified in unstained sections by

using fluorescent microscopy (UV-excitation) and transmitted light to determine the retinal

location.

Statistical analysis

Comparisons between the number of Myo/Nog cells in the LD and control retinas used a two-

tailed Student’s t-test. The relationship between Myo/Nog cell counts and TUNEL+ cell counts

was analysed using linear regression and Pearson correlation test. Two or more treatment

groups were compared using a one-way ANOVA with Dunnett’s post-hoc analysis and a two-

way ANOVA with Bonferroni post-hoc testing for a second independent variable. All analysis

was performed using statistical software (Graph Pad V5.01, La Jolla, CA, USA).
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Results

Myo/Nog cells are present in the unstressed retina and their numbers

increase following light injury

Myo/Nog cells in the adult rat retina where detected using the G8 mAb and antibodies to

MyoD and Noggin. Consistent with previous studies in chick, mouse, and human [8, 9, 15],

the G8 mAb detected cells that also expressed MyoD and Noggin in the rat retina (Fig 1). In

control retinas, G8+ cells were found in low numbers in the OPL (Figs 1F–1H, 2B and 3B),

INL (Figs 1B–1H, 2A and 2B) and choroid (Fig 3B). Damaging light caused an increased in the

numbers of Myo/Nog cells in the choroid (Figs 2C, 3C and 3D) and OPL layers (Figs 2C, 2D,

3C and 3D) and ganglion cell layer (GCL; Fig 2D). There was a significant increase in the num-

ber of G8+ cells in the light damaged retina compared to control retinas (Fig 2E). Damaging

light also caused an increase in the number of TUNEL+ cells (Fig 3C and 3D) in the outer

nuclear layer. This result is consistent with previous studies in which light damage caused the

death of photoreceptors [16–18]. G8 and TUNEL labeling did not co-localise and the numbers

of the two cell classes positively correlated (Fig 3E), indicating that Myo/Nog cells increased in

number as the photoreceptors die.

Extracted G8+ cells were incubated with bisbenzimide 33342, a cell tracking dye and

injected in light damaged eyes. Some G8+ cells labeled with bisbenzimide dye prior to injec-

tion were detected in the retina. In Fig 2G–2I we observe one of these cells, a G8+/bisbenzi-

mide 33342 cell, within the OPL (Fig 2G–2I). This is a similar region to were endogenously

located G8+ cells in light damaged retinas (Figs 2C, 2D, 3C and 3D) are usually found. This

Fig 1. Identification of Myo/Nog cells in the rat retina. Sections of adult rat retinas were double labeled

with the G8 mAb and antibodies to Noggin and MyoD to localize Myo/Nog cells. Nuclei were stained with

bisbenzimide dye (blue: A, D, E, H, I, L, M and P). Co-labeling with the G8 mAb (green: B and red: G) and

antibodies to Noggin (red: C and D) and MyoD (green: F, H) identified Myo/Nog cells in the outer plexiform

and inner nuclear layers. Incubation with a non-specific IgM primary antibody and the AlexaFluor 488 IgM

secondary antibody showed no visible labeling in the “green channel” (green: J, L) or “red channel” (red: K, L).

Incubation with only the AlexFluor 488 IgM secondary antibody showed no visible labeling in either channel

(N-P). ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; GCL, ganglion cell layer.

doi:10.1371/journal.pone.0169744.g001
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finding indicates that G8+ cells are capable of migrating from the vitreous into an injured

retina.

Myo/Nog cells mitigate functional loss following light injury

Light injury severely reduced the a-wave and b-wave components of the ERG measured 7 days

following return to scotopic light (Fig 4). These effects are quantified for the a-wave in Fig 4B.

Light damage induced approximately a 50% reduction in the amplitude of the a-wave. Intravi-

treal injection of brain-derived G8+ cells 7 days following light damage improved the ERG a-

wave to only a 20% loss of function. A sham intravitreal injection did not improve the a-wave.

Mean b-wave amplitudes for retinas from the 5 experimental groups, normalised to the

mean b-wave amplitude before treatment. Error bars show SEMs. Control rats that did not

receive light damage or the ones that did not received light damage, but were injected with G8

+ cells, showed no significant change in the a-wave between the two ERG measurements.

Visual function, as measured by the b-wave, was significantly improved with injection of G8

+ cells compared to LD alone and LD/sham (LD/G8+ vs. LD�� p < 0.01, vs. LD/Sham�

�p< 0.01.

The same analysis for the b-wave showed the same trends (Fig 4C). These ERG analyses

demonstrate that intravitreal addition of Myo/Nog cells improves retinal function.

The injection of Myo/Nog cells in normal eyes showed no aberrations in retinal function

when tested at 7 days as demonstrated in the a-wave (Fig 4B) or b-wave (Fig 4C). Suggesting

Fig 2. Endogenous Myo/Nog cells increase following light damage. Sections from light damaged and control retinas were labeled with the G8 mAb

(red) and bisbenzimide dye (blue). (A, B) Representative section of from a control retina showing the presence of Myo/Nog cells in the OPL. C/D:

Representative section of a light damaged retina showing G8+ cells Myo/Nog cells in the OPL, INL, RPE (*) and GCL (˂). E: The numbers of G8+ cells

per section of control (squares) and LD retinas More G8+ cells were present in the LD than control retinas. **p = 0.02 (n = 8). F: Distribution of Myo/Nog

cells per retinal layer in control and LD retinas. (G-H) LD eyes were injected with Myo/Nog cells that had been prelabeled with bisbenzimide 33342 (blue).

At 2 days post-injection, eyes were sectioned and labeled with the G8 mAb. Myo/Nog cells were identified by localizing bisbenzimide. (G) Brightfield

image, (H) Fluorescent image showing the presence of a bisbenzimide 33342+/G8+ cell s (red arrow). (I) Merged image showing the location of the

bisbenzimide labeled Myo/Nog cell within the OPL. LD, light damage; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; GCL,

ganglion cell layer.

doi:10.1371/journal.pone.0169744.g002
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that Myo/Nog cells are harmless to the retina under homeostatic conditions and beneficial

when the retina is injured.

Effects of intravitreal injection of Myo/Nog cells on photoreceptor survival

The effects of Myo/Nog cells on photoreceptor survival were assessed morphologically and by

the number of dying photoreceptor cells. The thickness of the ONL was measured to assess the

number of photoreceptors remaining following light damage. The ONL was thinner 7 days fol-

lowing light damage (Fig 5B and 5E). Consistent with our previous studies the thinning was

markedly worse in the superior retina (Fig 5B and 5C)[17, 18]. Intravitreal injection of G8

+ cells mitigated this thinning (Fig 5C and 5F). Fig 5G and 5H show the trend in ONL thick-

ness (photoreceptor survival) quantitatively. In the control retina, ONL thickness normalised

to retinal thickness was ~0.4, confirming previous reports[18] (Fig 5H). Within the superior

retina, where light damage effects on photoreceptor survival is greater than in the inferior ret-

ina, there was statistical difference between ONL thickness of sham injected and Myo/Nog cell

injected light damaged retinas at 2.0,2.4 and 3.6 mm from the superior edge (Fig 5G). Light

damage reduced the overall ONL thickness to 0.3 and intravitreal injection of G8+ cells miti-

gated this reduction (Fig 5H).

TUNEL+ (dying) cells were rare in the control retina and increased in the light-damaged

retina where they localized mostly in the ONL (Fig 5B, 5C and 5E). Fig 5I shows the trends in

TUNEL labeling (photoreceptor death) quantitatively, with the LD/Sham group containing

the highest amount of TUNEL cells (Fig 5B and 5E). Intravitreal injection of G8+ cells miti-

gated this increase and these eyes contained ~30% fewer TUNEL+ cells than light damaged

sham injected eyes (Fig 5C, 5F and 5I).

Fig 3. Severity of light-induced cell death correlates with an increase in the number of Myo/Nog cells. Light damage and

control retinas were labeled using G8 mAb (green), a marker of Myo/Nog (cells detonated with a white ˂), DAPI (blue) a marker

of cell nuclei and TUNEL (red) a maker of dying cells. (A,B) Representative image of control retina. Myo/Nog cells (green) are

rare, but will occasionally appear in locations like the OPL and CC. We rarely, if ever will observe dying photoreceptors in control

animals. (C, D) Representative image of LD retina. In the light damaged retinas, we observed an increase in the TUNEL positive

cells (red) and also an increase in the number of Myo/Nog cells in the all layers, but particularly in the OPL and RPE. (E)

Correlation between G8+ (Myo/Nog cells) and TUNEL+ cells (dying photoreceptors) in LD retinal section (n = 8). r2 = 0.78,

p < 0.01 (slope significantly non-zero). CC, choriocapillaris; ILM, inner limiting membrane; INL, inner nuclear layer; ONL, outer

nuclear layer; OLM, outer limiting membrane.

doi:10.1371/journal.pone.0169744.g003
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Effects of light damage and intravitreal injection of G8+ cells on retinal

stress

The intrinsic neuroglia of the retina, the Muller cells, respond to various forms of injury,

including bright light exposure, by increasing their expression of GFAP[19]. In the unstressed

rat retina, Muller cells do not express GFAP and expression of GFAP is limited to astrocytes at

the inner surface of the retina (Fig 6A and 6D). Light damage has been shown to cause an ele-

vation in GFAP expression in Muller cell processes and at its most extreme, GFAP expression

extends from the inner to outer limiting membrane (Fig 6B and 6E). The length of GFAP

expression along the radial process can be quantified and has been shown to correlate to level

of retinal damage[20].

The length of Muller cells’ staining by GFAP was quantified in each experimental animal

and normalized to the thickness of the retina measured from the ILM to the OLM. The label-

ing on the Muller cells was minimal in control retinas and was increased by light damage,

extending ~60% of the retinal thickness (Fig 6G) and intravitreal injection of G8+cells miti-

gated the increase in GFAP expression, to ~25% of retinal thickness.

Fig 4. Intravitreal injection of Myo/Nog cells partially preserved visual function after light damage. Visual

function was assessed using the ERG 7 days after light damage. The a-wave and b-wave amplitudes in response to

bright flash were normalised to baseline (before light damage) bright flash responses and averaged for each treatment

group. Control animals suffered no injection and no light damage. G8+ animals suffered no light damage but were

injected with purified G8+ cells and assessed 7 days after injection. LD stands for Light damage. (A) Representative

ERG traces from eyes with LD alone, LD eyes injected with PBS (LD/sham) and LD eyes injected with G8+ (LD/G8+).

(B) Mean change in a-wave amplitudes for retinas from the 5 experimental groups, from before treatment. Error bars

show SEMs. Control rats that did not receive light damage showed no significant change in the a-wave between the

two ERG measurements (n = 4). Control rats that did not receive light damage, but were injected with G8+ cells also

showed no significant change in the a-wave between the two ERG measurements (n = 3). Visual function, as

measured by the a-wave, was significantly improved following light damage with injection of G8+ cells (n = 18)

compared to LD alone (n = 18) and LD/sham (n = 18) (LD/G8+: vs. LD ** p < 0.01, vs. LD/Sham * p < 0.05).

doi:10.1371/journal.pone.0169744.g004
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Discussion

The present experiments elucidate several features of Myo/Nog cells and their relationship to

retinal stability. First, Myo/Nog cells, identified by expression of the G8 antigen, MyoD and

Noggin, are present in low numbers in the unstressed, adult rat retina. This study extends our

previous reports documenting their presence in the retinas of the chick embryo and neonatal

and adult mouse [1, 8, 9]. Second, the number of Myo/Nog cells in the retina increased when

the photoreceptors were damaged by exposure to damaging levels of light. Third, Myo/Nog

cells were found near the layer of dying photoreceptors in the OPL or RPE layers. Fourth,

intravitreal injection of Myo/Nog cells harvested from the brain mitigated the loss of function

and death of photoreceptors induced by light damage. And finally, Myo/Nog cells reduced the

stress associated with light damage, as evidenced by a reduced Muller cell response.

Exposure to damaging light causes a degeneration of the retina that is specific to photore-

ceptors [21]. This form of retinopathy also induced an increase in Myo/Nog cells, which

Fig 5. Myo/Nog cell injections mitigated photoreceptor loss. (A-F) Representative sections from superior and inferior retina of non-light

damaged control (control), light damage + injection of PBS (LD/Sham) and light damage + injection of g8+ cells (LD/G8+). Dying cells were labeled

with TUNEL (red) and cell nuclei were stained with bisbenzimide dye (blue). The arrows at the left of D show how the thickness of the ONL (shorter

arrow) and of the nuclear layers of the retina (longer arrow) was measured. Retinas without light damage showed no labeled cells with TUNEL

reagents (A and D). TUNEL+ cells were mostly present in the ONL of retinas with light damage in the superior retina when injected with PBS or G8

+ cells (B, C and E). TUNEL+ cells were present in the sham injected eye (E) but not present in these control and G8+ injected sections (D and F).

The ONL was disorganized in the LD/Sham retina, but not in the control and LD/G8+ retinas. (G) Normalized ONL thickness for the non-light

damaged) control (black line), LD/Sham (Gray line) and LD/G8+ (blue line) groups from superior to inferior areas of the retina. Error bars show

SEMs. Significant difference in retinal thickness were seen between LD/Sham and LD/G8+; * p < 0.05; **p<0.01. (H) Normalised ONL thickness for

control, LD/Sham and LD/G8+ groups. Error bars show SEMs. The ONL is significantly thicker in LD retinas treated with G8+ cells than those

injected with PBS. No difference was seen in ONL thickness between control and LD/G8+ sections. **p<0.01. (I) Number of TUNEL+ cells in the

ONL/section for the same three groups. Error bars show SEMs. Significantly more TUNEL+ cells were present in the LD retinas than control retina

(asterisk p value). Fewer TUNEL+ cells were present in the retinas injected with G8+ cells than those injected with PBS (asterisk p value). (G-I:

Control = 5, LD/Sham = 4, LD/G8+ = 5). ***p < 0.001; ** p < 0.01. ILM, inner limiting membrane; INL, inner nuclear layer; ONL, outer nuclear layer;

OLM, outer limiting membrane.

doi:10.1371/journal.pone.0169744.g005
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correlated with the loss of photoreceptors and the thinning of the outer nuclear layer. Their

accumulation near the site of cell death in the rat retina is consistent with the attraction of

Myo/Nog cells to sites of injury in the neonatal mouse retina [9]. Myo/Nog cells have also

been observed to concentrate at sites of injury in the embryo, skin, lens and tumors [15, 22,

23]. Additional analyses are needed to establish whether the increase in Myo/Nog cells in the

stressed retina is due to the proliferation of resident Myo/Nog cells or their migration into the

retina from neighboring tissues or the vasculature.

Prolonged exposure to bright light is a reliable, predictable and well-characterized model of

retinopathy that affects photoreceptors[24, 25]. This model was used to test whether exoge-

nous Myo/Nog cells harvested from the brain and injected into the vitreous, affect tissue dam-

age and function. Addition of Myo/Nog cells reduced cell death and consequently, improved

retinal function as measured by ERG analyses. In parallel with these neuroprotective effects,

intravitreal injection of Myo/Nog cells mitigated retinal stress that was revealed by a decrease

in the extent of GFAP staining, cell death and reducing the stress response of the Muller cells.

Mitigation of retinal stress suggests that Myo/Nog cells act; either directly or indirectly, on

Muller cells that have been shown to release protective factors to promote photoreceptor sur-

vival following light induced degeneration[26–28]. Thus, the neuroprotective function of

Myo/Nog cells may be secondary to their effect on Muller cells; however, additional studies are

required to rule out a direct influence on photoreceptors.

Some Myo/Nog cells that were injected into the vitreous were found within the retina, and

therefore, had penetrated the inner limiting membrane (ILM). This was unexpected, as other

studies in adult rodents have shown that mature cells injected into the vitreous are typically

prevented from migrating into the retina, due to the presence of the ILM [29–31]. However in

light induced damage, the blood retinal barrier becomes permeable and there is evidence the

inner retina can also be damaged hence making it possible for exogenous cells to enter the ret-

ina [32–34]. Regardless of whether Myo/Nog cells influence Muller cells or photoreceptors

Fig 6. Myo/Nog cell injections mitigated retinal stress following LD, as measured by GFAP expression. (A-F) Representative

sections from superior and inferior retina of control (non-light damaged) and light damaged eyes injected with PBS (LD/Sham) or G8

+ cells (LD/G8+). Sections were labeled with an antibody to GFAP (white). ILM–inner limiting membrane; INL- inner nuclear layer;

ONL–outer nuclear layer; OLM–outer limiting membrane. (G) Normalised length of GFAP labeling for control as measured by the

length of the labeled Muller cells normalized to the length of the nuclear retina. Error bars show SEMs. Non-LD retinas had significantly

shorter GFAP+ labeled Muller cells than LD retinas (asterisk with p value). Injection of G8+ cells following LD had significantly shorter

Muller cells than LD retinas injected with PBS. (Control, n = 5; LD/Sham, n = 4; LD/G8+ = 9). *** indicates p < 0.001; ** indicates

p < 0.01.

doi:10.1371/journal.pone.0169744.g006
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externally, or within the retina itself, it is likely that the effect involves release of factors that dif-

fuse locally within the tissue.

A potential mediator of Myo/Nog cells’ neuroprotective effect is Noggin, a BMP inhibitor

[8]. Noggin is released from Myo/Nog cells during development and in adult tissues, including

eyes of humans and mice [1, 3, 8, 9, 15, 22]. This release is critical for morphogenesis, eye

development and skeletal muscle differentiation [1, 8]. Overexpression of Noggin has been

shown to act as a neuroprotectant in rodent models of stroke[35–37]. Astrocytes, Muller cells

and microglia exhibit a gliotic reaction in response to BMPs, and Noggin circumvents gliosis

[36–40]. Thus, Myo/Nog cells’ release of Noggin may be at least partially responsible for the

reduction of Muller cell stress response.

Previous studies have shown that Myo/Nog cells in the lens proliferate, migrate to sites of

injury, synthesize skeletal muscle proteins and display a myofibroblast phenotype [15, 23].

Additionally, myofibroblasts are present in contractile membranes that can detach the retina

in diabetic retinopathy or proliferative vitreoretinopathy[41, 42]. Although contractile mem-

branes were not evident in the present study, the ability of Myo/Nog cells to develop into myo-

fibroblasts must be considered when gauging their therapeutic potential for neuroprotection

in the retina. Therefore, identification of the factors released by Myo/Nog cells that mediate

neuroprotection may be a more viable approach for the treatment of retinopathy.

In conclusion, this study documents the protective action of intravitreally injected Myo/

Nog cells for photoreceptors damaged by light. Identification of the neuroprotective factor(s)

released by Myo/Nog cells may lead to new therapeutic approaches to preserve photoreceptors

and dampen gliosis.
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