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ABSTRACT
Investigating the expression of genes in cancer-associated immune cells 

(immunome) is imperative for prognosis prediction. However, evaluating the 
expression of immune-associated genes within cancer biopsy is subject to significant 
inconsistencies related to the sampling methodology. Here, we present immFocus, a 
method for extracting immune signals from total RNA sequencing of tumor biopsies, 
intended for immunity depiction and prognosis evaluation. It is based on reducing the 
variation which biopsy preparation adds to the apparent expression levels of immune 
genes. We employed immFocus to normalize gene expression with an immune index 
using data obtained from renal clear cell carcinoma biopsies. Genes that became 
less variable due to normalization were found to be preferentially immune-related. 
Moreover, immune-related genes tended to become more prognostic due to the 
normalization. These results demonstrate, for the first time, that whole transcriptome 
sequencing can be used for interrogation of a cancer immunome and for advancing 
immune-based prognosis.

INTRODUCTION

Personalized medicine is a novel approach to patient 
care that is based on fitting a therapy to each patient. In 
precision cancer medicine, this means comprehensive 
evaluation of both tumor and patient properties, choosing 
a therapeutic agent with high likelihood to benefit the 
patient. Major efforts are underway to find specific 
markers that predict prognosis, as well as the benefit 
of a given therapy for an individual patient [1, 2]. This 
approach has been successful in identifying markers that 
have been associated with prognosis and the efficacy 
of several drugs. Most such markers are genetic and 
expressed by tumor cells [3, 4]; in the case of targeted 
therapies, patients often respond if their cancer carries 
a mutation in the targeted gene (e.g. L858R mutations 
or exon 19 mutations in the gene EGFR and Gefitinib). 
For other markers, the level of expression is the best 
indication for or against efficacy (e.g. high levels of HER2 
expression and Herceptin).

While tumor genes have been the source of most 
markers reported so far, a heterogeneous network 
of stromal, endothelial, innate inflammatory cells 
and specific immune cells surround or lay within the 
malignant tumor nests. Intimate interactions between 
the different cells of the microenvironment and the 
malignant cells greatly affect tumor development [5]. 
Therefore, targeting both the malignant cells and their 
microenvironment is critically important to achieve 
effective tumor control and to restrain recurrent cancer 
and micrometastases. Particularly within the cancer 
microenvironment, the cancer-associated immunome is 
associated with cancer prognosis [6, 7]. Recently, various 
targeted immunotherapies have shown efficacy in cancer 
treatment. Specifically, molecules targeting the PD-1/PD-
L1 and the CTLA4/B7 pathways have shown promising 
results [8]. However, accurately evaluating the expression 
of immune-associated genes within a cancer biopsy is 
subject to significant inconsistencies related to the biopsy 
sampling methodology.
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Here, we report a new approach for the normalization 
of tumor expression profiles that emphasizes expression in 
the immunome rather than in the tumor cells. We developed 
immFocus, a method for normalizing the expression 
of immune-associated genes in order to investigate the 
function of the immune system within tumors. This 
method is based on the assumption that a large fraction 
of the variability in apparent expression of genes that are 
transcribed in the immunome of tumors (rather than the 
cancer cells) results from the fraction of immune cells that 
happen to be included in different tumor biopsies due to 
sample choice and random sampling. We thus propose that 
by controlling for this artificial variability we can obtain 
more accurate estimates of immune-related gene expression 
that in turn can be employed for the prediction of prognosis. 
To control for total immune cell contents, we calculated a 
normalization factor by averaging the expression level of a 
group of immune-correlated genes, whose expression was 
expected to correlate well with the total number of immune 
cells in a sample. If our hypothesis is correct, we expect this 
process to cause immune genes to show less variable and 
biologically more meaningful expression levels.

RESULTS

This section is divided into two parts. In the first 
part, we describe the development of the normalization 
method, and in the second, we provide evidence that we 
are indeed detecting immune signals in tumor-derived 
expression profiles.

The immFocus normalization method

Here, we present an immune normalization 
method (Figure 1a and Methods). Briefly, this method 
is based on defining an immune-normalizing gene set 
(INGS) per cancer type, which is defined empirically 
using an expression measurement found by correlation 
with the expression of the gene PTPRC. Also known as 
“Leukocyte Common Antigen”, PRPRC is a tyrosine 
phosphatase that was shown to play a major role in 
several immune pathways. PTPRC was chosen since it is 
currently the best immune cells marker, ubiquitously and 
almost universally expressed in all types of immune cells 
and in few other cell types [9]. We note that this approach 
is likely to be cancer-type specific, as the distribution 
of immune cell types and their states can also be type 
specific. The results described are thus specific to the 
renal clear cell carcinoma (KIRC), which was chosen in 
The Cancer Genome Atlas (TCGA) for having the highest 
quality data, both in terms of the number of patients and 
information about survival.

The INGS definition process yielded a final list of 108 
genes, of which at least 74 (71%) are annotated as immune-
related (see Supplementary Table S1). Manual inspection 
using GeneCards [10] revealed that many (>95%) of the 

remaining genes are widely and specifically expressed in 
immune cells.

Given the INGS, gene expression levels were 
normalized by using the average expression of the INGS 
genes (see Figure 1a and Methods).

immFocus normalization preferentially reduces 
the variation of immune gene expression levels

A good immune normalization factor is expected 
to reduce the variation in expression levels of immune-
related genes by removing some of the noise contributed 
by immune sampling. In contrast, the variation in the 
apparent expression of non-immune genes should 
increase; as the fINGS is unrelated to these genes, the 
normalization should have the effect of dividing gene 
expression levels by a random factor (which should add 
noise to the apparent expression measurement). From 
this observation, we derived a test for the performance 
of the immFocus normalization method: if our proposed 
approach indeed offers immune normalization, it should 
preferentially reduce the variation of immune genes and 
increase or, at the very least, have little impact on the 
variation of non-immune genes.

To test this prediction, we used the ratio between 
the coefficient of variation (CVR) before and after 
normalization to define three groups, each comprising 
500 genes (Figure 1b): (1) CVRlow, representing the genes 
most responsive to the immFocus normalization; (2) 
CVRhigh, representing the genes with the poorest response 
to immFocus normalization, and (3) CVRrandom, comprising 
genes randomly chosen regardless of CVR values (see 
Methods for more detail). As expected from the way these 
groups were compiled, they differed significantly in their 
average CVR values, from 0.737 ± 0.122 in the CVRlow 
group to 4.457 ± 0.347 in the CVRhigh group (p < 0.0001, 
Student’s t-test) and 2.208 ± 0.829 (p < 0.0001, Student’s 
t-test) in the CVRrandom group (Figure 2). The full gene lists 
are provided in Supplementary Tables S2, S3, and S4.

Comparison of the 3 CVR groups supports the 
prediction that immFocus reflects immune-related 
expression (Table 1 and Figure 2): at least 257 genes 
in the CVRlow group (51.4%) are annotated as immune 
related, compared to 29 in the CVRhigh and 52 in the 
CVRrandom sets (p < 0.0001, χ2 test). Furthermore, manual 
inspection of the remaining 243 genes from the lowest 
CVR group revealed that >70% of remaining genes can 
be clearly associated with immunity. Yet, these genes are 
not annotated as such in the databases used for immune 
enrichment examination, thus suggesting that the observed 
enrichment is an underestimate and the difference between 
the groups is even larger.

To conclude, genes for which the variation in 
expression, as reflected in their CV, was reduced by the 
immFocus normalization are more likely to be immune 
genes than genes for which variation did not decrease.
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Survival analysis

To further demonstrate that the immFocus method 
indeed uncovers true biological signals, we tested the 
association between gene expression and survival for all 
the genes in the CVR groups described above (CVRlow, 
CVRhigh, and CVRrandom), with and without immFocus 
normalization. For this, a stratification-by-expression 
approach was used to define two sets of patients and to 
compare their expression (see Methods).

If indeed immFocus normalization teases out 
immune signals that are relevant to survival, such signals 
should be strongest in the CVRlow group of genes, as this 
group contains the genes most responsive to the immFocus 
method. Indeed, immFocus increased the number of 
genes significantly associated with survival only for the 
CVRlow group (Table 1 and Figure 3), from 39 to 66. 
Moreover, only 27 of the genes associated with survival 
after immFocus normalization were also associated with 
survival without it, while 39 were only significant with 
the normalization. As also expected, CVRhigh genes were 
poorly associated with survival without normalization, 
and no gene was associated with survival in this set after 
normalization.

It is interesting to note that the total number of 
survival-associated genes in the CVRrandom group was 
somewhat higher than in the CVRlow group: a total of 
94 genes were associated with survival in the first group 
(2 + 16 + 76) compared to 78 in the latter group (39 + 
27 + 12). However, 76 (81%) of the CVRrandom genes were 
associated with survival only in the absence of immFocus 
normalization, while just 2 (2%) genes were associated 
with survival only after normalization. In sharp contrast, 
12 (15%) of the CVRlow genes were associated with 
survival only in the absence of immFocus normalization, 
while 39 (50%) genes were associated with survival only 
after normalization.

We further tested our results to see if immFocus 
normalization strengthened the association between 
gene expression and survival. For this purpose, we 
employed the log of odds (LOD) ratio of p-values 
for the association with and without normalization. 
Increased significance after normalization (i.e. lower p-
value) would result in a negative LOD and decreased 
significance in a positive LOD. Our results (Table 2) 
clearly show a tendency toward increased significance 
of survival association for normalized genes in the low 
CVR group. A LOD ≤ –2 was obtained for 44 genes 

Figure 1: The INGS method for immune normalization from RNA-seq data. Boxes represent data, and arrows represent 
processes. See Methods for a detailed description of each processing step. a. Immune normalization process. b. Evaluation of the impact 
INGS normalization has on variation in gene expression between samples and on the prognostic power of gene expression.
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Figure 2: Immune enrichment and CVR values for the lowest, highest, and random CVR gene groups. The CV ratio 
(CVR) of each gene (i.e. the ratio between the CV of normalized and raw measurements) is represented as a dot. Each CVR group contains 
500 genes.

Table 1: Low CVR is Associated with Immune Enrichment and Higher Prognostic Power
CVRlow CVRhigh CVRrandom

Immune 
annotation

Non 
immune 

annotation

Total Immune 
annotation

Non 
immune 

annotation

Total Immune 
annotation

Non 
immune 

annotation

Total

Entire 
gene set 257 243 500 29 471 500 52 448 500

Survival* 
immFocus 41 25 66 0 0 0 5 13 18

Survival* 
raw 16 23 39 5 27 32 10 82 92

The counts represent the number of genes from each CVR group that met the mentioned criteria.
*The counts represent the number of genes whose expression was significantly associated with survival (log-rank test) 
following multiple testing adjustments (Bonferroni adjustment).
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(i.e. >7-fold decrease in p-value due to immFocus 
normalization), compared to 12 genes with LOD ≥ 2 
(i.e. 7-fold less significant association with survival 
after immFocus normalization). In comparison, when 
the same definitions were applied to the CVRhigh and 
CVRrandom groups, significance was mostly degraded by 
the immFocus normalization (32 degraded vs. 0 improved 
genes for the CVRhigh group and 78 vs. 3 for the CVRrandom 
group).

As a final test, we hypothesized that genes for 
which immFocus normalization strengthened the 
association with survival should be preferentially 

annotated as immune genes. Our finding supports this 
prediction: of the 44 genes with improved significance 
in the CVRlow group, 31 are immune annotated, 
compared to only 2/12 for the decreased significance 
genes (p = 0.001, Fisher exact test). For the two other 
groups, CVRrandom and CVRhigh, few if any genes had 
improved significance, but the degraded significance 
genes tended to be non-immune (27 vs. 5 and 73 vs. 5, 
Table 2).

The top panel of Figure 4 details the 44 genes which 
belong to the CVRlow group. These genes were chosen since 
(i) their normalized expression was significantly associated 

Figure 3: The number of genes predicting survival with and without immFocus normalization differs between CVR 
gene groups. The number of genes with statistically significant association with survival is shown for the CVRlow, CVRhigh, and CVRrandom 
gene sets. The association is defined as the significance of the difference in survival between patients in the higher and lower tertile of each 
gene expression level. The tests for significance were adjusted for multiple testing using the Bonferroni correction.

Table 2: The Effect of Normalization on the Prognostic Power of Expression Levels
Normalization effect 
on significance of 
survival difference

CVRlow CVRhigh CVRrandom

immune non 
immune

total immune non 
immune

total immune non 
immune

total

Improved 
(LOD ≤ –2) 31 13 44 0 0 0 1 2 3

Degraded 
(LOD ≥ 2) 2 10 12 5 27 32 5 73 78

The counts represent the number of genes from each CVR group that had markedly different prognostic power in 
the raw and normalized datasets. For (p-normalized/p-raw), a LOD ≤ –2 represents a >7-fold decrease in p-value 
due to immFocus normalization, and a LOD ≥ 2 represents >7-fold increase in p-value (7-fold less significant) for 
gene expression predicting survival after immFocus normalization. The prognostic power was taken to correspond 
to the significance of the difference in survival between the upper and lower tertiles (in terms of expression level) 
of each gene. The log-rank test was used to determine the significance, applying the Bonferroni adjustment for 
multiple testing. Note that to consider only prognostic genes in this analysis, only genes that showed significant 
prognostic power in the raw and/or the normalized expression datasets, after Bonferroni adjustment, were 
considered.
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Figure 4: The impact of normalization on the prognostic power of gene expression. Selected results are shown for genes 
from the CVRlow group for which a statistical difference in survival curves between patients with low or high expression value of the 
genes are observed, either in the normalized or in the raw expression data. Genes were further selected by choosing only genes with a 
large difference in survival (as reflected in the p-value of the log-rank test for difference in survival curves). Only genes for which the 
LOD is ≥ 2 or ≤ −2 were selected. Pn = the p-value of the log-rank test with normalized data; Pr = the p-value of the log-rank test for 
the raw dataset. Significant differences in survival, after multiple testing corrections, using the normalized or non-normalized expression 
values, is indicated by an asterisk (on the left for normalized data and on the right for raw data). Bar size represents the LOD value; bar 
color represents immune annotation of the gene (orange = annotated as immune related).
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(after multiple testing adjustment) with survival, and 
(ii) the survival association was >7-fold more significant 
following normalization than before (Figure 4, top). It is 
interesting to note that CTLA4, which encodes an immune-
checkpoint inhibitory receptor, is part of this list. However, 
within this list, CTLA4 is far from being the highest ranking 
gene (Figure 4); thus, it is tempting to suggest that if 
CTLA4 is a successful drug target (i.e. blocking its protein 
products would greatly benefit survival), other genes that 
rank similarly or higher in their immFocus normalization 
response could also serve as intervention targets, with 
similar and perhaps even better impact on survival.

The bottom panel of Figure 4 details the 12 genes that 
belong to the CVRlow group, for which (i) raw expression 
was significantly associated (after multiple testing 
adjustment) with survival, and (ii) the survival significance 
was at least 7 times worse following normalization. In 

both panels of Figure 4, thick bars represent genes that 
are immune annotated. As aforementioned, immune-
annotated genes are abundant in the top panel (31/44) 
and are rare in the bottom panel (2/12). As before, careful 
examination of the other 13/44 genes that are non-immune 
annotated revealed that 12/13 are associated with immunity 
(Supplementary Table S5). 

To further examine the source of association 
between survival and immFocus-normalized expression, 
we examined the association of other parameters of each 
biopsy. Specifically, the association between expression 
and gender, and age and tumor stage was examined. 
A significant association between expression level and 
stage (I + II vs III + IV) was found for 30/44 immFocus 
responsive genes described above (Table 3). No significant 
association was detected between expression and age or 
gender (Supplementary Table S6).

Table 3: Differences in Stage Distribution of Expression-Stratified Populations
# Direction 

with 
survival

Gene name Lower expression Higher expression p-value for differences 
between Stages 1 + 2 vs. 

3 + 4 (χ2) 
Stages 
1 + 2

Stages 
3 + 4

Stages
1 + 2

Stages 
3 + 4

1 + HLA-DRA 85 87 115 57 0.066

2 – GPR84 129 43 78 94 p < 0.0001

3 – FCGR1B 130 42 72 100 p < 0.0001

4 – FCGR1C 128 44 69 103 p < 0.0001

5 – AIF1 119 53 88 84 0.044

6 – IL10RA 113 59 87 85 0.2772

7 – SP140 118 54 75 97 p < 0.0001

8 – LAIR1 122 50 81 91 p < 0.0001

9 – FCGR1A 132 40 72 100 p < 0.0001

10 – SLAMF8 122 50 88 84 0.0132

11 – BATF 126 46 69 103 p < 0.0001

12 – HAMP 133 39 77 95 p < 0.0001

13 – CD72 124 48 75 97 p < 0.0001

14 – PARVG 113 59 82 90 0.0484

15 – TRPM2 114 58 91 81 0.6864

16 – HCST 124 48 81 91 p < 0.0001

17 + XCR1 86 86 116 56 0.066

18 – FCGR3A 116 56 93 79 0.6644

19 – LILRB1 121 51 86 86 0.0088

20 – ZNF80 111 61 80 92 0.0484

21 – RAC2 113 59 74 98 p < 0.0001

(Continued )
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Figure 5 shows normalization-mediated survival 
prediction improvement for 3 genes (from the 44-gene 
list) that represent different outcomes. These genes 
were chosen because (i) a statistically significant 
difference in survival (with multiple testing adjustment) 
was found between high-expressing and low-expressing 
samples in both raw and normalized data, but with 
a better significance for normalized data (CTLA4 
panel, Figure 5a); (ii) the difference in survival was 
significant in both raw and normalized data, but after 
adjusting for multiple testing, the difference was 
only significant for normalized data (LILRB1 panel, 
Figure 5b); and (iii) the difference in survival was not 

significant in raw data, but significant in normalized 
data even after multiple testing adjustment (IL10RA 
panel, Figure 5c).

DISCUSSION

Cancer therapy in general, and personalized/
precision cancer therapy in particular, should consider 
the tumor microenvironment and particularly the cancer-
associated immunome that is intimately associated with 
cancer prognosis and its sensitivity to different therapeutic 
regimens [2, 5, 11–15]. The immFocus approach was 

# Direction 
with 

survival

Gene name Lower expression Higher expression p-value for differences 
between Stages 1 + 2 vs. 

3 + 4 (χ2) 
Stages 
1 + 2

Stages 
3 + 4

Stages
1 + 2

Stages 
3 + 4

22 – WAS 117 55 77 95 p < 0.0001

23 – CYTH4 114 58 84 88 0.0704

24 – SPI1 120 52 83 89 0.0044

25 – TNFSF13B 126 46 72 100 p < 0.0001

26 – MYO1F 115 57 88 84 0.1936

27 – GNA15 109 63 89 83 1

28 + LILRA4 92 80 115 57 0.6776

29 – CTLA4 115 57 81 91 0.0132

30 – CCL5 122 50 76 96 p < 0.0001

31 – IFNG 121 51 76 96 p < 0.0001

32 – CXCL13 128 44 72 100 p < 0.0001

33 – FERMT3 112 60 86 86 0.2816

34 – C1QA 114 58 84 88 0.0704

35 – IL2RG 125 47 77 95 p < 0.0001

36 – CD80 108 64 89 83 1

37 – C1QB 116 56 87 85 0.0924

38 – PTPN7 125 47 73 99 p < 0.0001

39 – FCER1G 126 46 80 92 p < 0.0001

40 – ARHGAP9 120 52 85 87 0.0088

41 – LILRB2 106 66 89 83 1

42 – DERL3 119 53 79 93 p < 0.0001

43 – LILRB3 117 55 80 92 0.0044

44 – JSRP1 122 50 78 94 p < 0.0001

The counts represent the distribution of patients who were diagnosed with the mentioned pathological stages. Values in the 
column “direction with survival”: “–” = more survivors in the low-expression third. “+” = more survivors in the higher-
expression third. Significance values in the right column are shown after multiple testing correction and the p-values in 
bold were significant after correction.
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Figure 5: Survival curves for selected genes, with and without immFocus normalization. For each gene, two subgroups 
of patients were defined by selecting the patients from the lowest and highest tertiles of that gene’s expression level. The survival of the 
patients from the two groups was compared, both graphically with the Kaplan-Meyer plot and statistically using the log-rank test. Left 
column: using immFocus normalized expression levels. Right column: using raw expression values.
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designed to help shed new light on immune-associated 
genes. Specifically, we have identified a set of genes whose 
immune normalized RNA-based expression within the 
tumor microenvironment is correlated with survival. There 
appear to be two main principles for elucidating relevant 
immune-associated genes in the cancer immunome:

i. Quantitation of cancer immunome RNA 
expression in a specific biopsy by employing the immFocus 
normalization method, which reduces the noise added to 
the apparent expression level by immune sampling—The 
immFocus method is based on defining a set of immune-
associated genes per cancer type with a relatively universal 
and consistent expression. This set is defined empirically 
by detected correlated expression with a common immune-
related gene known as PTPRC. In the current study, we 
employed the lowest common denominator to attain a broad 
spectrum of significant genes within the cancer immunome; 
by starting with a gene, which is expressed abundantly on 
most if not all immune cells, we were not focusing on any 
particular subpopulation of such cells. However, immFocus 
can be extended to study specific subsets of the cancer 
immunome by generating a normalization set correlated 
with specific markers of an immune-cell subpopulation. This 
approach could be employed for cases in which the presence 
and/or absence of a specific immune cell subtype is reported 
to be imperative in a cancer immunome associated with 
survival [16].

ii. Picking the genes with narrower spread in 
expression levels following the normalization using 
expression profiles from clinical samples—For this, 
we proposed to use the CV ratio (CVR) between the 
normalized and raw data. In accordance, low CVR indicates 
the reduction of expression spread for a specific gene, which 
should be associated with successful normalization. Indeed, 
the majority of genes that manifested reduced CVR are 
associated with the immune system.

 The results presented in this work clearly suggest 
that the immFocus approach teases biologically significant 
immune signals from whole-tumor expression profiles. 
First and foremost, we showed that the majority of the 
normalization-responsive genes (in terms of CVR) are 
more likely to be immune associated, as compared to genes 
that are not responsive. Second, we showed that genes 
most responsive to normalization are more likely to be 
associated (positively or negatively) with survival. Finally, 
we show that those survival-associated genes that were 
favorably affected by the normalization (in terms of survival 
association strength) are almost exclusively immune genes.

For the favorably affected genes, we can define 3 
different outcomes with regard to prediction of survival 
and the statistical significance. Considering adjustment 
for multiple testing, normalization of expression-mediated 
significance of prediction to 33/44 genes, while only 11/44 
were significant without normalization. Overexpression 
of 41/44 genes is significantly associated with higher 

virulence of the cancer. The other 3/44 genes, HLA-DRA, 
XCR1, and LILRA4, manifest the opposite phenotype: 
overexpression is significantly associated with higher 
survival. Interestingly, these 3 are also the only genes from 
the 44-gene list on which overexpression is associated with 
survival, rather than with cancer virulence. It is worth noting 
that XCR1 and LILRA4 are expressed by conventional or 
plasmacytoid DC, and their expression is correlated with 
induction of potent CTL activity and with activation of an 
ITAM-mediated signaling pathway [17, 18]. MHC class II 
expression including HLA-DR is directly associated with 
positive anti-tumor response [19, 20].

We further explored the other 41/44 genes whose 
overexpression is associated with cancer virulence. Following 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) annotation, we identified 21/41 genes 
that encode for proteins associated with the cell membrane. 
Immune checkpoints refer to a plethora of inhibitory pathways 
hardwired into the immune system that are crucial for 
maintaining self-tolerance and modulating the duration and 
amplitude of physiological immune responses in peripheral 
tissues in order to minimize collateral tissue damage [21]. 
Therefore, these 21 genes could be candidates for immune-
checkpoint receptors. CTLA4 and PD-1 are two leading 
immune-checkpoint receptors with clinically-approved anti-
CTLA4 and anti-PD-1 drugs [22–26]. CTLA4 did appear in 
the final 44-gene list; CTLA4 expression inducing suppression 
was reported for tumor-draining lymph nodes, but was also 
reported for cancer microenvironment. E.g. higher expression 
of CTLA4 predicts worse survival in Non-Small-Cell Lung 
Cancer [27]. PD-1 did not appear in the final 44-gene list: the 
CVR of PD-1 was 0.75, and its LOD score was well below –2 
(–3.27). Yet, its significance of survival prediction for KIRC 
did not reach the p-value threshold following multiple testing 
adjustment. This result could indicate that in KIRC, PD-1 
is less influential as an immune-checkpoint inhibitor and/
or enlightens the physiological significance of the other 21 
candidates for immune-checkpoint receptors in KIRC. Should 
we chose to perform a less-stringent adjustment for multiple 
testing (e.g. false discovery rate (FDR) method), PD-1 would 
be in the final gene list as a gene that its higher expression 
is associated with cancer virulence. Notably, our method 
also did not report PDL-1, the ligand for PD-1. In the cancer 
microenvironment, both cancer cells and antigen-presenting 
immune cells could express PDL-1. Frequently, genes that 
are expressed by either tumor cells or immune cells did not 
pass the first threshold of immFocus, which is a significantly 
reduced CVR. This is consistent with our approach, since 
normalizing PDL-1 expression according to the level of cancer 
immunome should not reduce its CV since it is likely to be 
expressed on tumor cells in some or most samples.

As expected, the bulk of the cell-surface proteins 
encoded by these 21 genes were already reported to 
be involved in suppression of immunity; CTLA4 is 
the dominant representative of this group, but also 
LAIR1, LILRB1, LILRB2, IL10RA, and others 
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appear in the list. One of the 21 proteins associated 
with cell membrane was CD80, which is a ligand for 
both activating CD28 and inhibitory CTLA4 immune 
receptors. Yet, CTLA4 binds to the B7 family molecules 
CD80 and CD86 with higher affinity than CD28 [28]. 
Moreover, expression of CTLA4 and CD80 was directly 
correlated. Unexpectedly, IFNγ also appears in the 41-
gene list whose overexpression is associated with cancer 
virulence. However, a recently published paper showed 
that in clear cell renal cell carcinoma, IFNγ expression 
in T cells purified from the microenvironment is 
associated with poor prognosis [29]. The immFocus 
approach resulted in the same conclusion for IFNγ, 
but without the need to specifically test it in T cells 
purified from the cancer microenvironment. Purifying 
infiltrating immune subsets and phenotyping them for 
evaluating cancer immunome of each specific patient 
can be performed only in advanced clinical institutes, 
while analyzing RNA expression from a formalin-fixed 
paraffin-embedded biopsy or a resected tumor can be 
performed as external central service. Thus, immFocus 
approach could be applied in a broad spectrum of 
clinical institutes.

Why higher expression of the immunomodulator 
IFNγ is associated with cancer virulence for this 
type of kidney cancer is not clear. Cytokine-based 
immunotherapy with either IFN-α or high-dose 
interleukin (IL)-2 is a valid treatment option for renal 
cell carcinoma (RCC). On the basis of its similarity 
to IFN-α, the immunomodulator IFN-γ was evaluated 
in several clinical trials for RCCs. A large multicenter 
phase III trial using IFN-γ as a monotherapy for RCCs 
was conducted, but this trial found no significant 
difference between IFN-γ and placebo in overall 
response rates, time to disease progression, or median 
survival [30]. Though IFN-γ modulates T cell function, 
it also modulates MDSC function that suppress immune 
responses within the cancer microenvironment. RCC is 
frequently infiltrated with tumor-associated macrophages 
including MDSC [31].

When we further explored cellular immune 
distribution of the 44-gene list, we could define 
representation for most prominent immune cell subsets. 
Yet, in accordance with the presence of tumor-associated 
macrophages discussed above, the Gran/Mono cell 
subset had the highest representation. Novershtern et 
al. published gene sets that are positively or negatively 
associated with the development of human hematopoietic 
immune cell subsets [32]. For hematopoiesis of most 
immune subsets, the 44-gene list (Figure 4, top panel) 
included a similar small number of genes that were 
reported to be involved either of the induction or 
suppression of subset development [32]. Noticeably, 
for the genes reported to be involved in the induction 
of Gran/Mono development [32], 14 appeared in the 
44-gene list. Strikingly, for the genes suppressing 

Gran/Mono development [32], none appeared in the 
list. An almost universal feature of tumor progression 
is the activation of abnormal myelopoiesis and the 
recruitment of immature myeloid cells into tissues [33]. 
Our results clearly support this known recruitment of 
newly generated Gran/Mono cells and further indicate 
that the expression of 14 genes associated with the 
induction of Gran/mono cell myelopoiesis in the cancer 
microenvironment are associated with cancer virulence.

The difference in survival based on immune-related 
expression levels could result directly from the state of 
the immunome, or could reflect other differences in the 
tumor that impact both survival and the immunome. 
While no association between expression and gender or 
age was found (Supplementary Table S6), a significant 
association between expression and the distribution of 
stages (stages 1–2 vs. 3–4) was found for 30 out of the 
44 (66%) genes that responded positively to immFocus 
normalization (in terms of survival association) (Table 3). 
This suggests that the immunome-based difference in 
survival can be explained, at least in part, by different 
immune responses at different tumor stages. In fact, this 
finding could be key to understanding the immune-tumor 
interactions: these 30 genes might be useful for defining 
stage-associated differences in the cancer immunome. 
Moreover, the observed association with survival could 
be explained, either in part or in full, by stage-specific 
immune response.

For the remaining 14 genes, no statistically 
significant association was found between expression 
and stage. Interestingly, 3/14 genes were the same: 
HLA-DRA, XCR1, and LILRA4. As discussed above, 
their overexpression is associated with survival. The 
overexpression of the remaining 11/14 genes was 
significantly associated with higher virulence of the cancer. 
These genes could be considered as better candidates for 
stage independent “suppressive immunity driver” genes, 
i.e. immune-associated genes whose overexpression 
drives stage-independent cancer virulence and thus could 
be targets for cancer therapeutics. Interestingly, 9/11 
were cell-surface proteins and thus could be defined as 
promising therapeutic targets for the blockade of immune-
checkpoint receptors in KIRC [21].

We are not the first to use expression profiles to 
estimate the immune fraction of a tumor biopsy from 
expression data. Yoshihara et al describe a method that 
is based on choosing “known” immune gene sets, and 
averaging their expression to estimate immune cell content 
[34]. Our work greatly expands on their work: we utilize 
a direct method to derive the gene expression signatures 
from the data rather than rely on generic knowledge 
of immune cells, as we expect cancers with abnormal 
immune regulation to present non-canonical patterns. In 
addition, we continue to utilize an estimated immune cells 
content to normalize the expression level of all genes, 
to discover which immune genes are most prominent in 
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the tumors, and to demonstrate their relevance to tumor 
biology and survival.

It is interesting to note that a rather large number of 
genes are associated with survival without normalization 
(Figure 3). This is not surprising; Venet, Dumont 
and Detours (2011) show that more than 50% of the 
transcriptome differ between breast cancers tumors 
that differ in their cell proliferation phenotype. They 
go on to show that this phenotype is in turn associated 
with prognosis [35]. The high proportion of genes that 
are associated with survival in our analysis prior to 
normalization may thus reflect a similar property of 
renal cancer tumors, namely an altered expression of 
many genes in tumors due to some underlying phenotype 
that also affects prognosis. It is not impossible that the 
improvement we observe in the prognostic power of 
selected (mostly immune-related) genes is also the result 
of some underlying phenotype, although it is reasonable to 
expect immune response to be more complexly controlled 
by the tumor. However, even if this improved prognostic 
power reflects an immune response to a common 
phenotype, it could be very useful: exploring immune-
effecting phenoytpes in situ without the immFocus 
approach is extremely difficult.

The current study is exploratory, and involves only 
a single cohort (from TCGA). To validate the clinical 
value of the proposed methods it should be validated 
with independent data sets, or better still through a 
prospective study. However, correlations with otherwise 
unrelated features are observed: a clear association was 
found between normalized expression and immunity and/
or survival. It is difficult to contemplate a cohort-specific 
bias that will result with such associations. As a result 
we conclude that at least in this cohort of patients, the 
proposed normalization process helps tease out immune 
signals from the expression profiles. Obviously, further 
research is required to assess the generality and clinical 
applicability of this approach.

To summarize, altogether, our results indicate that 
immFocus preferentially teases out clearer signals for 
immune-related genes and could be employed for better 
characterization of differential immune status in cancer 
stages and for the elucidation of promising targets for 
cancer therapeutic approaches based on the blockade of 
immune checkpoints.

MATERIALS AND METHODS

TCGA samples

Level 3 RNA-Seq-V2 data (Illumina HiSeq RNA-
Seq platform, Illumina, Inc.; San Diego, CA, USA) and 
corresponding clinical data were downloaded from the 
TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/) 
[36] in August 2014. A total of 480 patients from the 
renal clear cell carcinoma (KIRC) study were analyzed. 

Only patients with samples from primary solid tumors 
were considered. RNA-Seq-V2 results were quantified 
through RNA-Seq by Expectation-Maximization 
(RSEM) [37] using the “rsem.gene.normalized_results” 
file type.

immFocus normalization

The normalization is based on defining an immune-
normalizing gene set (INGS), using this set to estimate the 
fraction of immune cells in the sample and to adjust the 
measured expression with this fraction.

Defining INGS: A preliminary INGS was defined 
by using PTPRC as an anchor, choosing all the genes with 
highly correlated expression (R2 > 0.5) to PTPRC. The CVR 
of each gene in this provisional INGS was then calculated 
(using the normalization methods described below), and 
genes with CVR > 0.8 were omitted from the set, yielding a 
new smaller set which served as the final INGS.

Normalizing gene expression levels: Given the 
INGS, a biopsy-specific immune normalization factor 
(fINGS) was calculated using the averaged expression 
of the INGS genes. The expression level of each gene 
i was than normalized by dividing the raw expression 
level by fINGS. For genes included in the INGS, self-
normalization was avoided by calculating a special 
normalization factor for every gene i including fINGS(i), 
which averaged all the genes in the INGS except for 
gene i as the biopsy-specific immune normalization 
factor for gene i.

CVR gene group selection

Similarly to Yap et al. 2004 [38], a CVR value 
was calculated for each gene using the ratio between the 
coefficient of variation of raw and normalized expression 
levels. With this statistic, 3 groups of genes were defined 
(Figure 1b): (1) CVRlow - the 500 genes with the lowest 
CVR values, representing the genes most responsive 
to the immFocus; (2) CVRhigh - the 500 genes with the 
highest CVR, representing the genes with the poorest 
response to immFocus normalization, and (3) CVRrandom 
- a sample of 500 genes randomly chosen regardless of 
CVR values.

Survival analysis

For each studied gene, patients were stratified into 
two groups: the “high expression” group, containing the 
top tertile in terms of this gene’s expression, including the 
patients with the highest expression levels of that gene; 
and the “low expression” group, containing the bottom 
tertile, i.e. those with the lowest expression of that gene. 
Survival of patients in the low and high expression groups 
was compared using the Kaplan–Meier estimator [39] 
to visualize survival kinetics and the log-rank test for 
significance of the difference (see the statistics section 
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below for additional details). Significance was estimated 
using the Bonferroni adjustment for multiple testing. The 
effect of normalization on significance was calculated as 

the log-odds (LOD), using a natural base: LODg = In p′g
p

g

were g denotes a gene, pg denotes the results of the 
log-rank test for difference in survival using the raw 
expression levels for gene g and p′g denotes the same test 
results using normalized expression values.

Immune enrichment

Genes were annotated as immune related if (1) 
they had been found to be associated with the term 
“immune response” using the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID) (http://
david.abcc.ncifcrf.gov/) [40] and AmiGO2 (http://amigo.
geneontology.org/amigo) to search for assignment, or 
(2) if they had been found in the immunogenetic-related 
information source (IRIS) [41].

Comparing the clinical parameters of “high 
expression” and “low expression” sets

Differences in clinical parameters between gene-
expression subsets (high expression and low expression) 
were performed similarly to the survival examination 
(based on upper and lower gene expression), replacing 
survival time with other variables in the subsequent 
analyses. We tested the parameters: age, gender, and 
pathological stage distribution. In order to avoid small 
numbers, pathological stages 1 & 2 were combined into 
one group and stages 3 & 4 in another. For details regarding 
the specific statistical test we used, see the next section.

Statistical analyses

All the data preprocessing and mentioned analyses 
except for functional analysis were performed in the R 
statistical environment (http://www.r-project.org). The 
Pearson product-moment correlation coefficient was used 
to measure the correlation between PTPRC and other gene 
expression. The “raster” package was used to calculate the 
coefficient of variation (CV). The “beeswarm” package 
was used to visualize the connection between the CVR and 
the immune enrichment results. The “survival” package 
was used to calculate and plot Kaplan–Meier survival 
curves. Overall survival was examined for significance 
using the log-rank test. Multiple testing corrections 
were performed using the Bonferroni adjustment. Thus, 
the initial significant threshold p-value (p = 0.05) was 
divided by the number of examined genes. The difference 
between the average age of patients from different tertiles 
was examined using Student’s t-test, and the differences 
between the gender and pathological distributions for the 
same patients were examined using a chi-square test.
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