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Introduction
Proteins are products expressed in organisms after gene tran-
scription and translation, and are an important part of organ-
isms. There are many kinds and functions of proteins, including 
almost all life activities such as growth, development, move-
ment, inheritance, and reproduction are completed by proteins. 
There is no doubt that protein is the executor of the physiolog-
ical function of the organism and the direct embodiment of life 
phenomena. The study of protein-protein interactions (PPIs) 
will directly clarify the changing mechanism of organisms 
under physiological or pathological conditions, which is of 
great significance for research and development in the fields of 
disease prevention and drug development.1-3

As a special PPI, a self-interacting protein (SIP) is 1 
where different copies of the same protein interact and play 

an important role in the cell system. Emerging researches 
show that SIP can expand the diversity of proteins without 
increasing the size of the genome, and help increase stability 
and prevent protein denaturation and reduce its surface area. 
In addition, SIPs play a significant role in a wide range of 
biological processes such as immune response, signal trans-
duction, enzyme activation, and gene expression regulation. 
For example, research by Pérez-Bercoff et al4 at the genome-
wide level indicated that the genes of SIPs may have higher 
repeatability than other genes. Ispolatov et al5 found that the 
self-interaction of proteins is an important factor of protein 
function and has great potential for interaction with other 
proteins, which indicated that SIPs play an important role in 
the protein interaction networks (PINs). Hashimoto et  al6 
proposed several self-interacting molecular mechanisms 
including insertions, domain swapping, deletions, and 
ligand-induced to study SIPs.
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So far, many valuable achievements have been made in the 
study of protein interaction, such as the establishment of interna-
tional proteome databases including UniProt,7 PDB,8 and 
SwissProt,9 and the establishment of protein interaction databases 
such as DIP,10 BioGRID,11 and STRING.12 However, with the 
continuous development of sequencing technology, the growth 
rate of protein sequences is accelerating.13 Only relying on biologi-
cal experiment methods to identify SIPs will lead to an increasing 
gap between protein sequence information and interaction infor-
mation. To improve the measurement efficiency of SIPs and 
reduce costs, people began to pay attention to the study of protein 
interaction prediction based on computational methods. For 
example, Li et al14 proposed an ensemble learning method PSPEL 
to predict self-interacting proteins. This method extracts PSSM 
features from known protein sequences and sends them to an 
ensemble classifier to predict self-interacting and non-self-inter-
acting proteins. On Saccharomyces cerevisiae and Human SIPs data 
sets, PSPEL achieved 86.86% and 91.30% prediction accuracy, 
respectively. Chen et al15 combined protein sequence information 
with wavelet transform, and predicted self-interacting proteins 
accurately through deep forest predictor. Wang et al16 proposed a 
prediction model for SIPs based on machine learning algorithms, 
which combines the Zernike Moments (ZMs) descriptor on pro-
tein sequences with the Probabilistic Classification Vector 
Machines (PCVM) and Stacked Sparse Auto-Encoder (SSAE), 
and classifies the self-interaction of proteins by Probabilistic 
Classification Vector Machine (PCVM).

In this study, we propose a novel SIPs prediction model 
NLPEI based on natural language understanding theory and 
protein sequence evolutionary information. Specifically, we 
first interpret protein sequence information as natural language 
and extract its abstract features through natural language pro-
cessing algorithm. Then, we use the Position-Specific Scoring 
Matrix (PSSM) to describe the evolutionary information of 
the protein and use the deep learning Stacked Auto-Encoder 
(SAE) algorithm to extract their hidden features. Finally, we 
fuse the above features and feed them into the Extreme 
Learning Machine (ELM) classifier to predict the protein self-
interaction accurately. On SIPs benchmark data sets Human 
and yeast, NLPEI achieved the prediction accuracy of 94.19% 
and 91.29%, respectively. To further verify the performance of 
the NLPEI model, we compared it with different feature 
descriptor models, different classifier models and other existing 
models. Competitive experimental results show that the 
NLPEI model has high reliability and can effectively predict 
potential self-interactions between proteins. The flowchart of 
NLPEI model is shown in Figure 1.

Materials and Methods
Gold standard data sets

The data we used were downloaded from 20199 human pro-
tein sequences provided by UniProt database.7 These high-
quality data are integrated from different databases including 

DIP,10 InnateDB,17 MINT,18 PDB,8 BioGRID,19 MatrixDB,20 
and IntAct.21 In the experiment, we only select those PPIs 
whose interaction type is marked as “direct interaction” and the 
2 interaction partners are the same. Thus, 2994 human protein 
sequences were determined.

We followed the method of Liu et al22 to construct the gold 
standard data set from 2994 SIPs to measure the performance 
of NLPEI. The steps are as follows: (1) we first remove protein 
sequences less than 50 residues and greater than 5000 residues 
from all human proteomes; (2) The positive data set used to 
construct the gold standard must meet 1 of the following con-
ditions: (a) the protein declared as homo-oligomer (containing 
homodimer and homotrimer) in UniProt; (b) having been veri-
fied by more than 1 small-scale experiment or more than 2 
large-scale experiments; (c) At least 2 published studies have 
reported the self-interaction; (3) The negative data used to 
construct the gold standard were all the proteins with known 
self-interaction removed from the human proteome and 
UniProt database. Finally, 1441 human SIPs and 15936 human 
non-SIPs were selected as the gold standard positive and nega-
tive data sets. Furthermore, to further evaluate the model, we 
used the same strategy to create yeast data set containing 710 
positive SIPs and 5511 negative non-SIPs.

Natural language feature

Protein sequences are composed of amino acids arranged and 
combined according to certain rules, which contain a wealth of 
information.23 In this study, we regard amino acid fragments as 
words in natural language, and protein sequences as sentences, 
and analyze the protein sequence through natural language 
understanding theory to obtain the effective features. Specifically, 
we first perform word segmentation in the way of k-mers,24 con-
verting amino acid fragments in protein sequences into words in 
natural language. For example, 4-mers of protein sequences can 
be represented as AAAA AAAC YYYY, ,..., . Since there are 20 
kinds of amino acids in the protein sequence, 20 1600004 =  

Figure 1.  The flowchart of NLPEI model.
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words can be generated in this way. Taking the MSATLFNNIEL  
sequence as an example, it can be converted into the form of 
MSAT SATL ATLF TLFN LFNN FNNI NNIE NIEL, , , , , , ,{ }

after the word segmentation through 4-mers.
After word segmentation, protein sequences are converted 

into sentences that can be processed by natural language pro-
cessing algorithms. We then use the skip-gram in word2vec 
algorithm to learn the distributed representation of protein 
sentences. Word2vec is a shallow neural network, which can 
express words from the context information of neighboring 
words through the optimized training model according to a 
given corpus, thus expressing a word into a vector form quickly 
and effectively. Given a word sequence w w wn1 2, , ,… , skip-
gram uses the co-occurrence information of the words in the 
context window to learn the word representation and calculates 
the parameter set θ  to maximize the product of the following 
conditional probabilities.

arg p c w
w T c C w

max ;
θ

θ
∈ ∈ ( )
∏ ∏ ( )
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Here w  represents the word, T  represents the text set, c  
represents the word included in the context, C w( )  represents 
the word set included in the context, and p(*)  represents the 
conditional probability, which is calculated as follows:
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Here c  represents the set of words in all contexts, equiva-
lent to v ; vc ; and vw  represent the column vector of c  and 
w , respectively; θ  represents the specific value of each 
dimension in vc  and vw . For example, given a sentence “I 
love natural language processing,” suppose the dictionary 
library is {“I,” “love,” “natural,” “language,” “processing”}, these 
words are encoded in advance. If the center word “natural” is 
used as the input and the window value is 2, then what the 
skip-gram algorithm does is to predict that the context of the 
center word “natural” is “I,” “love,” “language” and “process-
ing.” Therefore, skip-gram needs to maximize the probability 
p I love language processing natural" "," "," "," " " "|( ) . Since 

words are independent of each other, the probability formula 
can be converted to p p(" "|" ") (" "|" ")I natural love natural⋅ ⋅
p p(" "|" ") (" "|" ")language natural processing natural⋅ .

Evolutionary feature

Position-specif ic scoring matrix.  We use PSSM to describe the 
evolutionary information of protein sequences in the experi-
ment, and extract their features through the Stacked Auto-
Encoder algorithm of deep learning. PSSM is a sequence 
matrix proposed by Gribskov et al25 for effectively discovering 

Figure 2.  Structure of auto-encoder.

similar proteins of distantly related species or new members of 
a protein family.1,13 By using the Position Specific Iterated 
BLAST (PSI-BLAST) tool, we compare the given protein 
sequence with the homologous protein in SwissProt database 
to extract its evolutionary information and generate the PSSM 
matrix PSSM i j( , )  of N ×20 , which can be described as 
follows:

PSSM
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Here δi j,  represents the probability that the ith residue being 
mutated into the jth naive amino acid during the evolutionary 
process of protein multiple sequence alignment. To obtain 
homologous sequences effectively, we set the iteration number 
of PSI-BLAST to 3 and its parameter e to 0.001. The PSI-
BLAST tool and the SwissProt database can be gained at 
http://blast.ncbi.nlm.nih.gov/Blast.cgi/.

Stacked auto-encoder.  The evolutionary information generated by 
the PSSM matrix contains some noise, so we use the deep learn-
ing SAE algorithm to reduce noise and extract their features. 
SAE is a deep neural network constructed by multiple Auto-
encoders (AE).26,27 It automatically learns features from the data 
in an unsupervised way and can give a better description of fea-
tures than the original data. AE, the basic component of SAE, 
can be regarded as a shallow neural network with 1 input layer, 1 
hidden layer, and 1 output layer. Its structure is shown in figure 2.

Suppose a training sample X Rd∈ 0  is input, AE first 
encodes it as the representation Y Rd∈ 1  of hidden layer 
through the mapping function f c :

Y f X S W X bc c
T= ( ) = +( )1 1 	 (4)

Here, Sc  represents the activation function of encoder, and 
W Rd d

1
0 1∈ ×  and b r d1

1∈  represent the set of weights and the 
set of bias, respectively. Then the decoder uses the mapping 
function f d  maps the representation of hidden layer Y  to 
output layer Z Rd∈ 0 .

http://blast.ncbi.nlm.nih.gov/Blast.cgi/
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Z f Y S W Y bd d
T= ( ) = +( )2 2 	 (5)

Here, Sd  represents the activation function of decoder, and 
W Rd d

2
0 1∈ ×  and b r d2

0∈  represent the set of weights and the set 
of bias, respectively. By minimizing the loss functionΘ( , )X Z , 
and using backpropagation to adjust the above parameters.

Θ ΘX Z X Z W Wr, , . ( )( ) = ( ) + +0 5 12
2

22
2τ 	 (6)

Here, τ  represents the weight decay cost and Θr X Z,( )  
represents the reconstruction error. To minimize the recon-
struction error, it is necessary to describe the original input data 
in the hidden layer as much as possible. Thus, the hidden layer 
can learn the features of the original input to the maximum.

The complete SAE is constructed by combining multiple 
AEs, and its structure is shown in figure 3. SAE learns from 
the bottom up in a hierarchical form. The detailed steps are as 
follows: The original data is first fed into the first layer of SAE 
and sent to the hidden layer through learning; then the second 
layer of SAE receives the data from the first layer and then 
sends it to the hidden layer through learning. In this way, SAE 
learns the depth features of the original data in a layer-by-layer 
iterative manner. After all layers of SAE have learned the fea-
tures of the data, the entire neural network fine-tunes the 
parameters of each layer by minimizing the loss function to 
effectively extract advanced features.

Feature fusion

In this study, we constructed the natural language feature NF  
based on natural language understanding theory and the evolu-
tionary feature EF  based on protein evolutionary information. 

To fully describe protein self-interaction and accurately predict 
them, we need to fuse these 2 types of features. The fused fea-
tures have the advantage of being able to fully reflect the prop-
erties of proteins from different aspects, helping to dig deep 
into potential protein self-interaction and effectively improve 
model performance. Since the dimensions of the natural lan-
guage features and evolutionary features we extracted are dif-
ferent, we use the additional rules that can adapt to different 
dimensions to fuse them. The formula is described as follows:

F p i p i NF p i EF p i( ) ( )( ) = ( )( ) ( )( ), [ , 	 (7)

Here F p i p i( ) ( )( ),  represents the fusion feature of the 
self-interaction of protein p i( ) , NF p i( )( )  represents the 
natural language feature of protein p i( )  and EF p i( )( )  rep-
resents the evolutionary feature of protein p i( ) .

Extreme learning machine classif ier

In the experiment, we use the Extreme Learning Machine 
(ELM) classifier to classify the fused features to accurately 
predict whether there is self-interaction between proteins. 
ELM is a single hidden layer feed forward neural network 
algorithm proposed by Huang et al28 The core advantage of 
ELM lies in the ability to randomly set the hidden layer 
parameters for network initialization settings, without the 
need for continuous adjustment by humans, and has nothing 
to do with the training sample data, therefore, greatly reducing 
the network training time.

For N  arbitrarily different samples ( , )x ti i , where 
x x x x Ri i i in

T n= ∈…[ ], , , ,1 2  and t t t t Ri i i im
T m= … ∈[ , , , ]1 2 , the 

number of hidden layer nodes is N  and the activation function 
is g x( ) , the ELM can be modeled as:

Figure 3.  Structure of stacked auto-encoders.
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Here w w w wi i i in
T= …[ , , , ]1 2  represents the weight vector 

connecting the ith  hidden layer node and the input layer 
node, β β β βi i i im

T= …[ , , , ]1 2  represents the weight vector con-
necting the ith  hidden layer node and the output layer node, 
and bi  represents the threshold value of the ith  hidden layer 
node. The learning goal of ELM is to fit the given n samples 
with zero error:
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H  is the output of the hidden layer node, β  is the output 
weight, and T  is the expected output. When training the 
ELM network, the input weights and offsets are first randomly 
set, and the determined hidden layer output matrix H  can be 
obtained according to equation 12, Thus, the learning and 
training problem of ELM is transformed into a least-square 
norm problem of solving the output weight matrix β , that is, 
solving the least-square norm solution β  of formula 11.

β = H T 	 (14)

Here H   is the Moore-Penrose generalized inverse matrix of 
the hidden layer response matrix H .

Results
Evaluation criteria

To verify the ability of the model to predict SIPs, we use  
the evaluation criteria accuracy (Acc.), specificity (Spe.), 

negative predictive value (NPV), and area under the receiver 
operating characteristic curve (AUC) to evaluate the model 
performance.27,29-31 These evaluation criteria can be described 
by formulas as follows:

Acc TP TN
TP TN FP FN

. = +
+ + + 	 (15)

Spe TN
TN FP

. =
+

	 (16)

NPV TN
TN FN

=
+

	 (17)

F TP
TP FP FN

1
2

2
=

+ +
	 (18)

Here TP represents the number of proteins with self-inter-
actions that are correctly predicted, TN represents the number 
of proteins with self-interactions that are erroneously pre-
dicted, FP represents the number of proteins without self-
interactions that are correctly predicted, and FN represents the 
number of proteins without self-interactions that are errone-
ously predicted.

To get a reliable and stable model, we use the five-fold 
cross-validation method to perform the experiments.32,33 
Specifically, we first divide the initial protein self-interaction 
data set into 5 independent and disjoint subsets on average. 
Then use a separate subset to verify the model, and the other 
4subsets are used for training. This process is repeated 5 
times until each subset is used as the verification set only 
once. Finally, the average of the 5 experimental results and 
the standard deviation are used as the evaluation criteria of 
the model.

Performance on gold standard data sets

We verify the ability of the NLPEI model to predict SIPs on 
gold standard data sets human and yeast. Table 1 lists the 
results of five-fold cross-validation obtained by NLPEI on 
human data set. As can be seen from the table, NLPEI 
achieved prediction accuracy of 94.25%, 94.02%, 94.42%, 
94.45%, and 93.82% in 5 experiments, and its average accu-
racy and standard deviation reached 94.19% and 0.27%, 
respectively. Among the evaluation criteria specificity, nega-
tive predictive value and AUC, the average values of NLPEI 
were 99.42%, 94.56%, and 67.46%, and the standard devia-
tions of NLPEI were 1.24%, 1.27%, and 5.34%, respectively. 
Table 2 summarizes the five-fold cross-validation experi-
mental results of NLPEI on yeast data set. We can see from 
the table that NLPEI achieved 91.29%, 99.19%, 91.67%, and 
66.55% of average accuracy, specificity, NPV, and AUC in 
the experiment, and their standard deviations were 0.28%, 
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0.66%, 0.74%, and 5.83%, respectively. The AUC curves gen-
erated by NLPEI on human and yeast data sets are shown in 
Figures 4 and 5.

Comparison with different classif ier models

In the experiment, we use ELM as classifier to construct the 
NLPEI model. To verify whether the ELM classifier can 
help improve the performance of the model, we use 
K-Nearest Neighbor (KNN) and Random Forest (RF) clas-
sifiers to replace it to build new models and implement 
them on human and yeast data sets. Table 3 summarizes the 
five-fold cross-validation results of the KNN and RF classi-
fier models on human data set. It can be seen from the table 
that KNN classifier model achieves 91.35%, 99.05%, 

92.12%, and 52.49% accuracy, specificity, NPV, and AUC. 
And the RF classifier model achieved 89.58%, 96.83%, 
92.21%, and 52.99% accuracy, specificity, NPV, and AUC. 
For the convenience of comparison, we show the results 
obtained by different classifier models in the form of histo-
grams. As can be seen from Figure 6, the NLPEI model 
achieved the best performance and obtained the highest 
experimental results among all evaluation criteria.

The results generated by the KNN and RF classifier mod-
els on yeast data set are listed in Table 4. It can be seen from 
the table that the KNN classifier model obtained 87.57%, 
97.70%, 89.29%, 55.10% accuracy, specificity, NPV, and 
AUC. The RF classifier model achieved values of 85.44%, 
94.85%, 89.37%, and 55.12% among these evaluation crite-
ria. Figure 7 shows the comparison results of different 

Table 2.  The five-fold cross-validation results performed by NLPEI on yeast data set.

Testing 
set

First 
fold (%)

Second 
fold (%)

Third fold 
(%)

Fourth 
fold (%)

Fifth fold 
(%)

Average (%)

Acc. 91.24 91.64 91.48 91.16 90.92 91.29 ± 0.28

Spe. 99.64 99.44 98.12 99.02 99.73 99.19 ± 0.66

NPV 91.23 91.64 92.81 91.80 90.86 91.67 ± 0.74

AUC 68.44 75.27 65.15 64.39 59.49 66.55 ± 5.83

Figure 4.  ROC curves of five-fold cross-validated performed by NLPEI 

on human data set.

Figure 5.  ROC curves of five-fold cross-validated performed by NLPEI 

on yeast data set.

Table 1.  The five-fold cross-validation results performed by NLPEI on human data set.

Testing 
set

First 
fold (%)

Second 
fold (%)

Third 
fold (%)

Fourth 
fold (%)

Fifth 
fold (%)

Average (%)

Acc. 94.25 94.02 94.42 94.45 93.82 94.19 ± 0.27

Spe. 100.00 99.97 97.20 99.94 100.00 99.42 ± 1.24

NPV 94.11 93.90 96.78 94.34 93.66 94.56 ± 1.27

AUC 63.22 65.39 74.63 71.51 62.55 67.46 ± 5.34
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classifier models on yeast data set. It can be seen from the 
figure that the NLPEI model also achieved the best results 
among all evaluation criteria. Through the experimental 
results on 2 gold standard SIPs data sets, we can see that the 
proposed model achieved the best results among all the eval-
uation criteria and showed the best performance. This result 
indicated that the ELM classifier we introduced is very suit-
able for the proposed model and can help to significantly 
improve the model performance.

Comparison with different feature descriptor models

In the experiment, we fused natural language features and evo-
lutionary features to construct the NLPEI model. To verify 
whether the fused features can help improve the performance 
of the model, we conducted experiments using Auto Covariance 
(AC), Discrete Cosine Transform (DCT), and separate natural 
language (NL) feature models. Table 5 summarizes the five-
fold cross-validation results generated by the different feature 
descriptor models on human data set. It can be seen from the 
table that the AC, DCT, and NL feature models have achieved 
91.81%, 91.05%, and 91.68% prediction accuracy, respectively. 
Table 6 lists the five-fold cross-validation results generated by 
different feature descriptor models on yeast data set. Among 
them, the AC, DCT, and NL feature descriptor models 
achieved 87.64%, 88.31%, and 88.41% prediction accuracy, 
respectively.

Figures 8 and 9 show the comparison results of the evalua-
tion criteria by different feature descriptor models on human 
and yeast data sets, respectively. From these 2 figures, we can 
see that the NLPEI model has achieved the best results in 
accuracy, NPC and AUC. In general, NLPEI is the most com-
petitive among all feature descriptor model comparisons. This 
result shows that the feature we use that combines natural lan-
guage information and evolutionary information can better 
describe the distribution law inside the protein, which is of 
great help to improve the overall performance of the model. In 
addition, we also see that the NL feature descriptor model 
achieved the best results compared to the AC and DCT feature 
descriptor models. This shows that treating protein sequences Ta
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Figure 6.  Comparison of different classifier models on human dataset.
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as features extracted from natural language has great potential 
and can effectively describe protein information.

Comparison with other existing methods

To evaluate the performance of NLPEI model more compre-
hensively, we compare it with the existing methods including 
SPAR,22 PSPEL,14 SLIPPER,34 LocFuse,35 and PPIevo.36 
These methods are implemented on SIPs data sets human 
and yeast, and use five-fold cross-validation. Table 7 sum-
marizes the accuracy of the above methods and the proposed 
model. As can be seen from the table, NLPEI achieved the 
highest accuracy on human data set, which is 2.1% higher 
than the second-highest SPAR method and 7.55% higher 
than the average. On yeast data set, NLPEI also achieved the 
highest accuracy, 4.43% higher than the second-highest 
PSPEL method, and 17.56% higher than the average. This 
comparison result indicates that NLPEI can more accurately 
predict whether there is self-interaction between proteins 
compared with other methods.

Independent data set assessment

To evaluate the performance of NLPEI model on independent 
data sets, we conducted independent data set experiments. 
Specifically, we first train NLPEI with yeast data as training 
set, and then implement the trained model on human data to 
evaluate its performance. Similarly, we also use human data as 
the training set, but the test evaluates the model performance 
on the yeast data set. The results of the independent data set 
experiments are summarized in Table 8. As can be seen from 
the table, NLPEI achieved 90.73% and 88.18% accuracy, 
99.65% and 99.82% Spe., 91.02% and 88.33% NPV, 47.96% 
and 50.24% AUC on human and yeast data sets respectively. 
The experimental results show that NLPEI has high accuracy 
in independent data sets and can accurately predict the poten-
tial protein self-interaction.

Conclusion
As a major component of cell biochemical reaction network, 
protein self-interaction plays an important role in regulating Ta
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Figure 7.  Comparison of different classifier models on yeast dataset.
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cell and their signals. In this study, we designed a computa-
tional model NLPEI based on protein sequence to accurately 
predict SIPs. The model treats protein sequences as natural 
language, extracts its features through natural language pro-
cessing algorithms, and fuses with protein evolutionary infor-
mation to effectively predict whether there is protein 
self-interaction. In comparison with different classifier models, 

different feature descriptor models, and other existing meth-
ods, NLPEI has shown strong competitiveness. These experi-
mental results indicated that NLPEI was very suitable for 
predicting potential SIPs and can provide highly reliable can-
didates for biological experiments.
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