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Abstract: Differences in the incidence of spontaneous intracerebral hemorrhage (ICH) between
ethnicities exist, with an estimated 42% of the variance explained by ethnicity itself. Caucasians have
a higher proportion of lobar ICH (LICH, 15.4% of all ICH) than do Asians (3.4%). Alterations in
the causal factor exposure between countries justify part of the ethnic variance in ICH incidence.
One third of ICH risk can be explained by genetic variation; therefore, genetic differences between
populations can partly explain the difference in ICH incidence. In this paper, we review the
current knowledge of genetic variants associated with ICH in multiple ethnicities. Candidate gene
variants reportedly associated with ICH were involved in the potential pathways of hypertension,
vessel wall integrity, lipid metabolism, endothelial dysfunction, inflammation, platelet function,
and coagulopathy. Furthermore, variations in APOE (in multiple ethnicities), PMF1/SLC25A44
(in European), ACE (in Asian), MTHFR (in multiple ethnicities), TRHDE (in European), and COL4A2
(in European) were the most convincingly associated with ICH. The majority of the associated genes
provide small contributions to ICH risk, with few of them being replicated in multiple ethnicities.
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1. Introduction

Spontaneous intracerebral hemorrhage (ICH) is a devastating stroke subtype, which accounts for
8–10% and 22–35% of all stroke patients in Western countries [1–3] and in the Asian population [4–6],
respectively. An estimated 42% of the variance in ICH incidence was explained by ethnicity, given that ICH
incidence in the Asian population (51.8 per 100,000 person-years) doubled that seen in Caucasians (24.2) [7].
The majority of ICH (65–80%) occurs in deep brain regions (DICH), including the basal ganglia, thalamus,
brainstem, and cerebellum. Further, lobar ICH (LICH) and DICH differ based on both their risk factors
and pathogenesis [8,9]. Risk factors for ICH vary by location of hemorrhage. Specifically, while LICH
was partially attributable to cerebral amyloid angiopathy (CAA), particularly in the elderly, considering
that the amyloid deposits are primarily located in cortical vessels, hypertension is the main cause of
DICH instead (>80%) [10]. Other risk factors of ICH include excessive use of alcohol, which impairs
coagulation and directly affects cerebral vessel integrity, low serum cholesterol levels, and other factors
which cause coagulopathy or vasculopathy [8]. Interestingly, Caucasians reported a higher proportion of
LICH (15.4% of all ICH) than did Asians (3.4%) [10]. Additionally, American blacks have higher ICH rates
in young and middle-aged people than whites, particularly for DICH [11]. Further, men have younger
age of ICH than women among Asians [12]. Differences in the exposure to causal factors, the control
of hypertension and cholesterol, and the anticoagulant and antiplatelet treatment for stroke between
countries and genders explain an important portion of the variance observed in ICH incidence between
ethnicities [10] and genders [13–16]. However, a significant part of this variation remains unexplained.
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Approximately 30% of the risk factors of ICH were estimated to be undefined, or a result of a family history
of such a condition [17]. ICH in a first-degree relative was reported to increase an individual’s odds for
developing ICH six-fold. [18]. Additionally, monogenetic disorders associated with ICH account for less
than 1% of all ICH and typically occur in childhood or young adults, such as genes related to cerebral
cavernous malformations (CCMs) and cerebral autosomal dominant arteriopathy with subcortical infarcts
and leukoencephalopathy (CADASIL) [19,20]. Given that one-third of the risk factors related to ICH can
be explained by both common and rare genetic variations, the genetic differences between populations
can partly elucidate the variation in ICH incidence observed [21]. Prior reports of ICH genetics are mainly
approached by selecting candidate genetic variations, which are involved in the possible underlying
pathogenic pathways and associated with potential environmental risk factors. However, many of the
candidate genetic studies were limited by the small sample size, ethnicity disparities, and selection bias for
phenotypes, leading to inconsistent results. Because of the advance in genotyping technologies, which
are capable of assessing more than 500,000 to 1 million single nucleotide polymorphisms (SNPs) in a
single sample, genome wide association studies (GWA) are now able to extensively examine the genetic
factors of common diseases. The benefit of GWA is that it permits thousands of genome wide comparisons
without a priori knowledge of target genetic function. Identification of genetic risk factors may shed
light on possible underlying pathogenesis, potential therapeutic targets, and disease prevention strategies.
Therefore, this review focuses on the available data reported in English on the PubMed, including candidate
genetic studies (with number of ICH cases > 100), meta-analysis, and GWA to discuss the common genetic
variations associated with ICH between ethnicities.

2. Common Genetic Predisposition of ICH

Candidate gene variants reported to be associated with ICH were potentially involved in the
following pathways: hypertension, vessel wall integrity, lipid metabolism, endothelial dysfunction,
inflammation markers, platelet function, and coagulopathy [22,23]. We will discuss the reported genetic
variations according to the underlying mechanisms in the following sections. Genome Reference
Consortium Human Build 38 (GRCh38) is used for denoting the genomic positions of the variations.

2.1. Genetic Variants Related to the Renin–Angiotensin System (Table 1)

Hypertension represents the most critical risk factor of ICH, accounting for about 54% of ICH
cases [18]. In fact, the renin–angiotensin system controls BP by regulating the volume of fluids in
the body. Further, the angiotensin I converting enzyme (ACE) is an integral membrane protein
which converts angiotensin I, a hormone, to angiotensin II, an active vasoconstrictor, leading to
vasoconstriction and inhibition of bradykinin.

Angiotensin I Converting Enzyme (ACE)

Cytogenetic location: 17q23.3, 21 kb, main risk variant: rs1799752 (chr17:63488530–63488543, intron
variant: Alu sequence). The rs1799752 variant implies either an insertion (I allele) or a deletion (D allele,
lacks the repetitive element) of an Alu repetitive sequence in intron 16. When compared to the II genotype,
the DD genotype correlates with increased ACE activity [24]. Additionally, increased vasoconstriction
results in an increased risk of developing ICH. The largest meta-analysis [25] examined 33 studies (3355 ICH
cases and 4722 controls), and reported the D allele to be a risk factor of ICH in the Asian population only
(28 of 33 studies), as the same was not valid for the Caucasians [25,26]. In fact, Asian ICH patients were
more likely to have hypertension than Caucasian patients [10]. Although we indicated the association
between the D allele and DICH to be mediated by hypertension [27], the mechanisms that link the rs1799752
polymorphism to ICH, especially to LICH, are yet to be defined. Additionally, the D allele was described
as the major allele in Caucasians [28], regardless of the absence of association between rs1799752 and the
risk of developing ICH. Other mechanisms including inflammation [29], vascular remodeling [30], and the
amyloid-β (Aβ) metabolism [31] may cause the disparities in ACE susceptibility found between ethnicities.
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Table 1. Variants associated with spontaneous intracerebral hemorrhage (ICH): hypertension and vascular integrity.

Gene Name and
Abbreviation Protein Function Variant Locus Population No of

Cases/Controls
MAF of

Cases/Controls OR (95% CI) Ref Notes

Angiotensin-converting
enzyme (ACE)

Converts
angiotensin I to
angiotensin II

rs1799752: intron
variant: Alu

sequence

Asian 2941/3715 D 0.44/0.37 Rec: 1.98 (1.53–2.57);
Dom: 1.31 (1.18–1.45) [25] Meta-analysis in

LICH + DICH;

Caucasian 414/1007 I 0.36/0.48 [28]
I 0.57/0.47 [32] No significance [25,26] Meta-analysis in

LICH + DICH;

Alpha-2 type IV
collagen (COL4A2)

Abundant
component of the

cerebral vasculature
basement

membranes.

intron variants:
rs9521732 C>A;
rs9521733 T>C;
rs9515199 C>T

European 1545/1485
A 0.41/0.46;
C 0.40/0.43;
T0.41/0.47

Add: 1.28 (1.13–1.44);
1.29 (1.14–1.46);
1.28 (1.14–1.44)

[33]
Meta-analysis,
Significant in

DICH;

Tissue metalloproteinase
inhibitor 1 (TIMP-1) Inhibits matrix

metalloproteinases
and promotes cell

proliferation.

rs2070584: intron
variant A>C Chinese 275/145 (male) 0.54/0.43 1.54 (1.03–2.3) (male) [34] LICH + DICH

rs4898: intron
variant T>C Taiwanese 228/212 (male) 0.39/0.45 0.35 (0.15–0.81) (male) [13] DICH

TIMP-2

rs7503726: 5′ UTR
variant G>A German 45/253 0.4/0.37

(total stroke) Rec: 2.02 (1.1–3.7) [35] LICH + DICH

rs7503607: 5′ UTR
variant C>A Taiwanese 396/376 0.18/0.13 Add: 2.5 (1.37–4.38)

(elder group) [14] DICH

MAF: Minor allele frequency (MAF), OR: odds ratio, Ref: references, Rec: recessive model, Dom: dominant model, Add: additive model, 5′ UTR: 5′ untranslated region.
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2.2. Genetic Variants Related to Vessel Wall Integrity (Table 1)

With persistent hypertension, smooth muscle cell proliferation in the cerebral arterioles occurs
with the formation of reactive hyperplasia, replaced by collagen tissues, on the vascular walls [30].
Specifically, when the deposition of collagen becomes insufficient, the arteriolar wall will dilate
and result in a Charcot-Bouchard aneurysm, which weakens vascular integrity [36]. Bleeding of
the aneurysm is mainly determined by the extent of the vascular pathological changes, individuals’
systemic blood pressure and other factors regulating hemostasis [8].

2.2.1. Collagen, Type IV, Alpha-2 (COL4A2)

Cytogenetic location: 13q34, 206 kb, main risk variants: intron variants: rs9521732
(chr13:110381474, C>A), rs9521733 (chr13:110382195, T>C), and rs9515199 (chr13:110381357, C>T). Both
COL4A1 and COL4A2 are highly expressed in the vascular basement membranes and were associated
with an increased risk of small vessel diseases, especially ICH [33]. Specifically, three nonsynonymous
coding mutations (COL4A2/ p.E1123G, p.Q1150K, and p.A1690T) were reported to contribute to the
sporadic Caucasian cases of ICH in an autosomal dominant phenotype [37]. These mutations impaired
both COL4A1 and COL4A2 secretion, and caused their intracellular retention within the endoplasmic
reticulum (ER), leading to ER stress and cytotoxicity. Furthermore, other structurally-related variants
(COL4A1/p.P352L and p.R538G) were described to trigger sporadic late-onset ICH [38].

A meta-analysis on the common genetic variation within both COL4A1 and COL4A2 among
individuals of European ancestry identified three intronic SNPs (rs9521732, rs9521733, and rs9515199)
in COL4A2 to be significantly associated with DICH [33]. In contrast, there was no reported replication
study in ethnic groups of non-European ancestry.

2.2.2. Tissue Inhibitors of Metalloproteinase-1 (TIMP-1) and TIMP-2

TIMP-1 Cytogenetic location: Xp11.3, 4.5 kb, main risk variant: rs2070584 (chrX:47587120, intron
variant, A>C) and main protective variant: rs4898 (chrX:47585586, intron variant, T>C). TIMP-2
Cytogenetic location: 13q34, 206 kb, main risk variants (5′ untranslated region, 5′ UTR): rs7503726
(chr17:78925349, G>A) and rs7503607 (chr17:78925357, C>A).

Matrix metalloproteinases (MMPs) are a family of zinc/calcium-dependent endopeptidases which
digest both the extracellular matrix (ECM) and the basal lamina [39], causing a blood-brain barrier
breakdown and activating an inflammatory reaction [40]. Among MMPs, gelatin-binding MMPs were
particularly unique in BBB damage because of their ability to digest type IV and type V collagen,
which are the essential constituents of vascular basement membrane in the vascular endothelium.
Degradation of the collagen tissues may break down the vessel integrity, which is responsible for
the eventual rupture of the vessel walls [41–43]. MMP activity is suppressed by tissue inhibitors of
metalloproteinases (TIMPs). Each TIMP was able to interact with any of the MMPs; however, certain
combinations between MMPs and TIMPs have been reported, in which TIMP-1 is the main endogenous
inhibitor to MMP-9 while TIMP-2 is to MMP-2 [43,44]. A mouse model showed neuroprotection by
inhibition of MMPs in acute ICH, suggesting a therapeutic strategy for the treatment of acute brain
injury after ICH [45]. Additionally, TIMP-1 and TIMP-2 were shown to have a protective role for the
progression of cerebral aneurysms, which suggests that TIMPs may help prevent the degradation of
ECM and rupture of cerebral aneurysms [46]. Considering that TIMP-1 locates to the X chromosome,
its effect is more prominent in males than females. Further, while an intronic polymorphism of TIMP-1
rs2070584 C allele is associated with ICH in Chinese male patients [34], C allele of rs4898 provides a
protective effect on DICH risk in the elderly male group [13]. Additionally, although the TIMP-2 AA
rs7503726 genotype increased the risk of developing ICH in a genetic recessive model conducted on
the German population [35], it was considered a protective factor against DICH in elderly Taiwanese
females [14]. The disparity between the two reports may be due to different minor allele frequency
(MAF) (39.14% in the former and 49.7% in the latter), heterogeneity of phenotypes, and stratification of
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subgroups in the latter report. Overall, the imbalance between MMPs and TIMPs may be responsible
for ECM degradation, resulting in the progression and rupture of damaged vessels.

2.3. Genetic Variants Related to Lipid Metabolism (Table 2)

2.3.1. Apolipoprotein E (APOE)

Cytogenetic location: 19q13.32, 3 kb, main risk variant: ε2 and ε4. APOE ε2/ε3/ε4 alleles
are haplotypes constructed by two missense variants, rs7412 (chr19:44908822, C>T) and rs429358
(chr19:44908684, T>C). APOE ε3ε3 is the most common genotypes. Both ε2 and ε4 are missense variants.
The APOE gene produces three apolipoprotein (APOE) isoforms which interact differently with specific
lipoprotein receptor and thus influence cholesterol level. In general, the ε2 allele is associated with lower
serum total cholesterol levels, and ε4 raises them [47]. APOE transports lipoproteins, fat-soluble vitamins,
and cholesterol, and is involved in cell membrane maintenance and repair [48]. The ε2 or ε4 alleles are
associated with an increase in both β-amyloid protein deposition and fibrinoid necrosis in the vessel wall,
which augments the vasculopathy effects of amyloid deposition in cerebral vessels [49]. A population
study suggested that carrying either the ε2 or the ε4 raised the risk of developing both DICH and LICH [50].
Specifically, Asian carriers had a doubled risk of developing DICH, whereas Europeans reported a tripled
risk of LICH [50]. Additionally, a genome-wide association study conducted on the European population
(2189 ICH cases and 4041 controls) identified both the ε2 and the ε4 to be risk factors for developing LICH,
whereas ε4 was associated with DICH [51]. Furthermore, another meta-analysis including 11 case–control
studies (1238 ICH cases and 3575 controls) showed that ICH cases had a significantly higher frequency
of the APOE ε4 allele [52]. Specifically, ICH cases had a significantly higher frequency of the APOE ε4
allele in both Asians and Caucasians. However, they did not find a significant relationship between the
APOE ε2 allele and the risk of ICH [52]. A meta-analysis of 58 studies (6855 participants), investigating
both the APOE genotype and sporadic CAA, showed convincing evidence of a dose-dependent association
between the ε4 and sporadic CAA [53], consistent with their associations with LICH.

2.3.2. ER Lipid Raft Associated 1 (ERLIN1)

Cytogenetic location: 10q24.31, 35 kb, main protective variant (upstream variant): rs1324694
(chr10:100186688, C>T). ERLIN1 is a component of lipid rafts, and is specifically localized to
the endoplasmic reticulum and the nuclear envelope. ERLIN1 is involved in cellular cholesterol
homeostasis and in defining the lipid-raft-like domains of the endoplasmic reticulum [54].
The association between rs1324694 and ICH was found in a Japanese cohort [54], in which the rs1324694
minor allele (T) in the 5′ region of ERLIN1 was significantly related to ICH, and was reported to have a
protective role. However, to date, a replication study has not yet been reported.

2.3.3. Low-Density Lipoprotein Receptor (LDLR)

Cytogenetic location: 19p13.2, 44 kb, main protective variant (synonymous variant): rs688
(chr19:11116926, C>T). According to the Ensemble annotation, the most severe consequence of rs688 is
a synonymous variant. The LDLR is a cell surface receptor that plays an important role in cholesterol
homeostasis. The minor rs688 variant is an intron variant that directly affects exon 12 alternative
splicing, and is related to increases in plasma cholesterol levels [55]. Its association with ICH was
found in a single Taiwanese cohort, which suggested the homozygous minor allele T to be correlated
with a 73% decreased risk of developing ICH [56].

2.3.4. Apolipoprotein (a) (LPA)

Cytogenetic location: 6q25-q26, 134 kb, main risk pentanucleotide variant: TTTTA repeat in
5′ UTR −1373 upstream of the transcription start site. LPA encodes apolipoprotein (a) which forms
the lipoprotein Lp(a), together with an LDL-like lipid core. Lp(a) level is mainly controlled by LPA
expression, which is associated with atherosclerosis and inhibition of thrombolysis. Additionally,
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Lp(a) is a structural analogue of plasminogen and can compete with it for fibrin binding, thereby
suppressing fibrinolysis. Although high Lp(a) levels were associated with lower risk of major bleeding
in the brain in the Copenhagen General Population study [57], a low number of TTTTA repeats was
shown to be related to an elevation in the levels of Lp(a) and to an increased risk of ICH in the Chinese
population [58]. The contradictory results require more studies in different ethnic groups, involving
larger cohorts, to clarify further.

2.4. Genetic Variants Related to Inflammation (Table 3)

Endothelium has functions in the regulation of vascular tone and inflammatory balance. The loss
of endothelial-mediated vasodilatation, and the presence of both the inflammatory and prothrombotic
states, are the earliest manifestations of vascular damage.

2.4.1. Methylenetetrahydrofolate Reductase (MTHFR)

Cytogenetic location: 1p36.22, 20 kb, main risk variant: rs1801133 (chr1:11796321, missense, C>T,
p.A222V). The MTHFR plays a role in processing amino acids and converting their homocysteine to
methionine. The rs1801133 polymorphism in the MTHFR exon 4 reduces the MTHFR activity and
leads to hyperhomocysteinemia [59], a risk factor for atherosclerosis, inflammation, and endothelial
dysfunction [60]. The largest of the meta-analyses (16 studies on 1585 cases/3620 controls (Asians) and
243 cases/447 controls (Caucasians)) [61] reported an association between the MTHFR 677 T variant
allele and ICH in both the Asian (in all the inheritance models) and the Caucasian (in the recessive
model) populations, with a stronger correlation in the Asian than in the European population.

2.4.2. Interleukin 6 (IL6)

Cytogenetic location: 7p15.3, 6 kb, main risk variant (intron variant, upstream variant): rs1800796
(chr7:22726627, G>C). IL-6 is a pleiotropic cytokine which may be a key mediator in the inflammatory
response to ICH [62]. It in fact both activates endothelial cells, and induces vascular dysfunction,
vascular macrophage accumulation, oxidative stress and increased angiotensin I receptors in vascular
smooth muscle. This, in turn, enhances NF-κB activation [63], which leads to increased expression of
pro-inflammatory cytokines. The functional promoter of IL-6 in the rs1800796 polymorphism (C allele)
was significantly associated with a higher risk of developing ICH in the Japanese population [64]. It is
noteworthy that the C allele is the major allele of rs1800796 in the Asian population (79%) but the
minor allele in the European population (< 5%), according to the HapMap database. While this genetic
variant may be related to an increased expression of IL-6 [65], a high plasma IL-6 level at hospital
admission was considered as an independent predictor of hematoma enlargement [66].

2.4.3. Tumor Necrosis Factor (TNF)

Cytogenetic location: 6p21.33, 6 kb, main variants: rs1799964 (chr6:31574531, T>C) (−1031);
rs1800629 (chr6:31575254, G>A) (−308); rs1800630 (chr6:31574699, C>A) (−863). TNF-α is one of the
main proinflammatory cytokines, and plays a central role in initiating and regulating the inflammatory
response. Polymorphisms in the regulatory region result in different TNF-α concentrations. The above
three SNPs were shown to be associated with increasing TNF-α expression [67,68]. TNF-α induces
MMP production, leading to endothelial dysfunction and blood–brain barrier breakdown [69]. While
two polymorphisms within the TNF-α promoter, namely rs1799964 and rs1800629, were associated with
DICH in men, the risk of developing DICH was inversely associated with the rs1800630 polymorphism
in the Taiwanese population [70]. In contrast, −857C/T (rs1799724) but not −308G/A was shown to
be involved in male ICH susceptibility in a small Korean study [71].
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Table 2. Variants associated with ICH: lipid metabolism.

Gene Name and
Abbreviation Protein Function Variant Locus Population No of

Cases/Controls
MAF of

Cases/Controls OR (95% CI) Ref Notes

Apolipoprotein E
(APOE)

Involved in lipid
transport and

metabolism, and
cell membrane

maintenance and
repair.

Haplotypes
constructed by

rs7412 and rs429358.
APOE ε2: missense

variant

Caucasian
2189 ICH cases

and 4041
controls

0.09–0.15/0.07–0.1 LICH: 1.82 (1.50–2.23) [51] GWA in LICH
and DICH

APOE ε4: missense
variant

Caucasian
2189 ICH cases

and 4041
controls

0.12–0.24/0.08–0.19 LICH: 2.20 (1.85–2.63);
DICH: 1.21 (1.08–1.36) [51] GWA in LICH

and DICH

Caucasian 539/1573 0.22/0.17 carrier
frequency 1.34 (1.07, 1.66) [52] Meta-analysis,

LICH + DICH

Asian 699/2002 0.11/0.09 carrier
frequency 1.52 (1.20, 1.93) [52] Meta-analysis,

LICH + DICH

ER lipid raft associated
1 (ERLIN1)

Components of
lipid rafts localized
to the endoplasmic

reticulum and
nuclear envelope

rs1324694:
upstream variant

C>T
Japanese 373/3665 6.4/9.9 Dom: 0.59 (0.39–0.88) [54] LICH + DICH

Low-density lipoprotein
receptor (LDLR)

Cholesterol
hemostasis

rs688: synonymous
variant C>T Taiwanese 447/430 0.18/0.18 Rec: 0.27 (0.10–0.79) [56] LICH + DICH

Apolipoprotein(a) (LPA)

Atherogenicity,
Inhibits tissue type

plasminogen
activator-1

TTTTA repeat in
5′ UTR Chinese 499/1817 - 1.62 (1.09–2.37) [58] LICH + DICH

MAF: Minor allele frequency (MAF), OR: odds ratio, Ref: references, Rec: recessive model, Dom: dominant model, Add: additive model, GWA: Genome-wide association study, 5′ UTR:
5′untranslated region.
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2.4.4. Trafficking Protein Particle Complex 9 (TRAPPC)

Cytogenetic location: 6p21.33, 2 kb, main protective variant: rs12679196 (chr8:139800104, intron
variant, C>T). The protein encoded by TRAPPC is implicated in vesicular transport, and plays a role in
neuronal NF-κB signaling by both binding the mitogen-activated protein kinase and inhibiting the κ
light polypeptide gene enhancer in B-cells, i.e., kinase β [72]. Overexpression of TRAPPC potentiates
TNF-α-induced NF-κB activation, through increased phosphorylation of the IKK complex and its
downstream IκBα and p65 substrates [72]. TRAPPC encoded protein is therefore suggested to be an
enhancer of the cytokine-induced NF-κB signaling pathway. In the Japanese population, an intronic
polymorphism, namely rs12679196 (C allele), is significantly associated with ICH, while the T allele
protects against the disease [54].

2.4.5. Endoglin (ENG)

Cytogenetic location: 9q34.11, 39 kb, main risk variant: GGGGGA insertion. The ENG gene
encodes a transmembrane glycoprotein, essential for angiogenesis and vascular development, which
is predominantly expressed in vascular endothelial cells and is crucial for maintaining vascular
integrity [73]. It functions as a co-receptor for transforming growth factor-β (TGFB) family members,
and it interacts with their signaling serine/threonine kinase receptors [74]. Mutations in ENG were
shown to represent a genetic marker of angiogenesis in hereditary hemorrhagic telangiectasia type
1 [75]. Soluble ENG is related to the formation of sporadic brain arteriovenous malformations by acting
as a decoy receptor, which results in TGFB signaling inhibition [76]. A study conducted in the United
States of America found a homozygous insertion of GGGGGA located 26 bases beyond the 3′ end of
exon 7 of ENG to be associated with ICH [77].

2.4.6. Interferon Epsilon (IFNE)

Cytogenetic location: 9p21.3, 1 kb, main risk variant: rs2039381 (chr9:21481484, C>T, stop gained,
p.Q71Stop). Type I Interferons have major roles in the innate immune responses. In stroke, type
I interferons, including IFNE, have a role in the cytotoxic immune pathway to control immune
responses in the central nervous system [78]. IFNE is expressed in many tissues, including the brain,
coronary smooth muscle endothelial cells, and microvascular endothelial cells [79]. It can be induced
by proinflammatory cytokines and regulate the hyaluronic acid-mediated motility receptor which
is involved in the formation of cerebral microvessels [80]. In the Korean population, a nonsense
polymorphism of IFNE, rs2039381, is associated with ICH [81].

2.4.7. Transforming Growth Factor Beta 2 Receptor 2 (TGFBR2)

Cytogenetic location: 3p24.1, 87 kb, main risk variant: rs2228048 (chr3:30672350, synonymous
codon, C>T, N389N). TGFB is a cytokine that plays important roles in the development, homeostasis,
and tolerance of T cells [82]. The TGFBR2 is mainly expressed by neurons [83], and a reduction in
its signaling results in accelerated age-dependent neurodegeneration [84]. A previous study in the
Korean population found an association between the rs2228048 polymorphism and ICH [85].
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Table 3. Variants associated with ICH: inflammation.

Gene Name and
Abbreviation Protein Function Variant Locus Population No of

Cases/Controls
MAF of

Cases/Controls OR (95% CI) Ref Notes

Methylenetetrahydrofolate
reductase (MTHFR)

Converts homocysteine
to methionine

rs1801133 C>T,
p.A222V

Asian 1585/3620 0.48/0.41 1.42 (1.19–1.69) [61] Meta-analysis in
LICH + DICH;Caucasian 243/447 0.18/0.48 Rec: 2.23 (1.06–4.71) [61]

IL-6 (IL6) Proinflammatory
cytokine

rs1800796: intron
variant, G>C (−572) Japanese 282/2010 0.19/0.25 Rec: 1.6 (1.2–2.1) [64] LICH + DICH

Tumor necrosis factor
(TNF)

Proinflammatory
cytokine; regulator of
cell proliferation, lipid
metabolism, apoptosis,

and coagulation

rs1799964: downstream
variant 500B, upstream

variant 2KB T>C
(−1031)

rs1800629: upstream
variant G>A

(−308)
rs1800630: downstream
variant 500B, upstream

variant 2KB C>A
(−863)

Taiwanese
177/226 (male);
177/226 (male);
83/142 (female)

0.19/0.13 (male);
0.15/0.09 (male);

0.18/0.23 (female)

Add: 1.9 (1.1–3.4);
2.6 (1.3–5.3);
0.5 (0.2–0.9)

[70] DICH

Trafficking protein
particle complex 9 gene

(TRAPPC)

Trafficking protein
particle complex

subunit 9

rs12679196: intron
variant C>T Japanese 376/3722 0.18/0.21 Add: 0.2 (0.0–0.6) [54] LICH + DICH

Endoglin (ENG)

Transmembrane
glycoprotein, part of

TGF-β receptor
complex

GGGGGA insertion US 103/202 0.09/0.02
(homozygous) 4.8 (1.3–21.6) [77] LICH + DICH

Interferon epsilon
(IFNE)

Proinflammatory
cytokines

rs2039381, stop gained
C>T, p.Q71Stop Korean 145/401 0.22/0.15 Add: 2.0 (1.3–3) [81] LICH + DICH

Transforming growth
factor beta 2 receptor 2

(TGFBR2)

Transmembrane protein
for development of T
cells and regulator of

cell proliferation

rs2228048: synonymous
codon C>T, N389N Korean 127/395 0.28/0.19 1.7 (1.2–2.4) [85] LICH + DICH

MAF: Minor allele frequency (MAF), OR: odds ratio, Ref: references, Rec: recessive model, Dom: dominant model, Add: additive model.
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2.5. Other Genetic Variants (Table 4)

A meta-analysis of data from the International Stroke Genetics Consortium (1681 cases,
2261 controls) identified 1q22 to be a susceptibility locus for DICH [86]. Specifically, two genes
are found at this locus, the polyamine-modulated factor 1 (PMF1) and the solute carrier family 25-member
44 (SLC25A44). The top-associated variant within this locus was rs2984613, an intron variant of
PMF1. In the discovery phase of the meta-analysis, 12q21.1 was associated with ICH, especially with
LICH, while the greatest association with rs11179580 was seen near the thyrotropin-releasing hormone
degrading enzyme gene (TRHDE). However, the latter relation was not found to be significant in the
replication phase.

2.5.1. Polyamine-Modulated Factor 1 (PMF1)

Cytogenetic location: 1q22, 27 kb, main risk variant: rs2984613 (chr1:156227589, intron variant,
C>T). Solute carrier family 25, member 44 (SLC25A44): Cytogenetic location: 1q22, 18 kb. While the
PMF1 protein, a nuclear protein regulated by polyamines, is involved in chromosomal alignment and
segregation during mitosis [87], it also mediates the transcriptional induction of an acetyltransferase
responsible for the rate-limiting enzyme in the catabolic pathway of polyamine metabolism, which has
been implicated in breakdown of the blood–brain barrier and regulation of the excite-toxicity after
stroke [88,89]. SLC25A44 codes for solute carrier family 25 member 44 that belongs to the SLC25 family
of mitochondrial carrier proteins, and is widely expressed in the central nervous system [90]. However,
the pathological link between this protein and ICH is unknown to date.

2.5.2. Thyrotropin-Releasing Hormone Degrading Enzyme Gene (TRHDE)

Cytogenetic location: 12q21.1, 579 kb, main risk variant: rs11179580 (chr12:73192799, intron
variant, C>T). The thyrotropin-releasing hormone (TRH) is a central neurotransmitter that stimulates
hormone secretion from adenohypophyseal cells and is inactivated instead by the TRH-degrading
enzyme [91]. The association between rs11179580 and ICH was discovered in the discovery phase of
meta-analysis of six genome-wide association studies in Europeans; however, the result should be
explored further given lack of replication confirmation [86].

2.5.3. Fibrinogen Alpha Chain (FGA)

Cytogenetic location: 4q31.3, 7 kb, main risk variant: rs6050 (chr4:154586438, missense, T>C,
NP_000499.1: p.T331A). Soluble fibrinogen is converted into insoluble fibrin by activated thrombin. The
rs6050 polymorphism of FGA causes f substitution from threonine to alanine and alters the fibrinogen
structure, leading to a reduced affinity for degrading enzymes, which increases, in turn, fibrin clot
resistance to thrombolytic cleavage [92]. The rs6050 polymorphism was significantly associated with
decreased plasma fibrinogen and reduced platelet distribution in white people [93]. This procoagulant
FGA polymorphism was found to represent a risk factor of ICH in a Polish and Greek study [94].
Furthermore, haplotypes composed of the ATA (rs1800790 + rs1800787 + rs6050), AA (rs1800790
+ rs6050), and TA (rs1800787 + rs6050), however not individual polymorphisms, were shown to
contribute to the risk of ICH in the Chinese population as well [95].
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2.5.4. Tubulin Beta-1 Chain (TUBB1)

Cytogenetic location: 20q13.32, 10 kb, main risk variant: rs415064 (chr20:59022916, missense,
G>C, p.Q43P). The TUBB1 is a microtubules component required for optimal platelet assembly and
mutations in this gene could cause macrothrombocytopenia [96]. The rs415064 polymorphism in the
TUBB1 alters platelet reactivity by modulating platelet function and structure [97]. A study conducted
on the Spanish population reported that the rs415064 polymorphism increases the risk of ICH and is
associated with an earlier age at onset of ICH [98]. Furthermore, when the rs415064 polymorphism
is inherited along with the −323 I/D polymorphism on the factor VII gene, the ICH risk increases
20-fold [98].

2.5.5. WNK Lysine Deficient Protein Kinase 2 (WNK2)

Cytogenetic location: 9q22.31, 143 kb, main risk variant: rs16936752 (chr9:93301408, intron variant,
T>G). The WNK2 encodes a regulator of cell cycle progression. Wnk2 is a serine-threonine kinase which
phosphorylates the exogenous substrate of the myelin basic protein, mostly on the serine residues.
WNK2 is also involved in the modulation of growth factor-induced cancer cell proliferation [99].
However, no known function is associated with the pathogenesis of ICH to date. The rs16936752
polymorphism T allele of WNK2 is an intron variant which was reported to increase the risk of ICH in
the Japanese population [54].

2.5.6. Potassium Channel, Subfamily K, Member 17 (KCNK17)

Cytogenetic location: 6p21.2, 15 kb, main protective variant (intron variants): rs12214600
(chr6:39300960, C>T) and rs10947803 (merged into rs9471058, chr6:39302834, C>A). KCNK17 is a
member of the 2-pore domain superfamily of background potassium channels. It generates the
negative membrane potential, contributes to the resting potential in excitable and non-excitable cells,
and may influence cerebral blood vessel dilation. The T carrier of rs12214600 is associated with
reduced risk of ICH, whereas the A carrier of rs10947803 increases the risk of ICH in the Chinese
population [100,101].

3. Clinical Implications for ICH Management

Pharmacogenomics and pharmacogenetics enable clinicians and researchers to implement
knowledge in the context of personalized medicine. Knowing gene–drug–disease relationships helps
move treatment of disease from bench to bedside [102]. Although there was no report directly
addressing pharmacogenomics/pharmacogenetics for ICH, several reports showed genetic variations
related to the ICH risks or the treatments involving ICH prevention. Among the reviewed genetic
variations, the ACE rs1799752 minor allele displayed significantly different response to captopril
in type 2 diabetes mellitus, heart failure, and chronic obstructive pulmonary disease [102,103].
For another example, APOE rs7412 showed that heterozygous allele CT of rs7412 has a 39.9% lowering
of LDL by atorvastatin, compared to a 36.4% lowering among Caucasians with the common allele
CC [104]. Although MTHFR rs1801133 has an impact on clinical drug responses, the effects are mainly
on cyclophosphamide and carboplatin in treating cancers [105,106]. Additionally, the TNF rs1800629
variant demonstrated different drug responses to TNF-alpha inhibitors in arthritis, psoriatic arthritis,
and ankylosing spondylitis [107,108]. Whether polymorphisms are associated with different responses
to treatments in ICH remains to be explored.



Int. J. Mol. Sci. 2018, 19, 3879 12 of 19

Table 4. Variants associated with ICH: others.

Gene Name and
Abbreviation Protein Function Variant Locus Population No of

Cases/Controls
MAF of

Cases/Controls OR (95% CI) Ref Notes

Polyamine-modulated
factor 1 (PMF1)

Required for
chromosome alignment

and segregation, and
kinetochore formation

during mitosis

rs2984613: intron
variant C>T European

1545/1481
664 LICH and

881 DICH cases
0.31/0.31 Add: 1.29 (1.22–1.46) [86]

DICH;
Meta-analysis of

GWAs with
replication

Solute carrier family 25,
member 44

(SLC25A44)

Nuclear-encoded
transporters embedded

in the inner
mitochondrial

membrane and other
organelle membranes

Within the
susceptibility locus

1q22

Thyrotropin- releasing
hormone- degrading

ectoenzyme (TRHDE)

Inactivates
thyrotropin-releasing

hormone

rs11179580: intron
variant C>T European

1545/1481
664 LICH and

881 DICH cases
0.24/0.25

Add:
LICH: 1.56 (1.33–1.84);

DICH: 1.25
[86]

LICH>DICH;
Meta-analysis of
GWAs without

replication

Fibrinogen alpha chain
(FGA)

Cleaved to yield
monomers, which,

together with
fibrinogen beta and

gamma, polymerize to
form fibrin matrix

rs6050: missense T>C,
p.T331A

Polish and
Greek 503/774 0.21/0.23 Dom: 2.3 (1.1–4.8) [94] LICH + DICH

Tubulin beta-1 chain
(TUBB1)

Major constituent of
microtubules

rs415064: missense
G>C, p.Q43P Spanish 259/449 0.12/0.06 2.36 (1.25–4.45) [98] LICH + DICH

WNK lysine deficient
protein kinase 2

(WNK2)

Serine/threonine
kinase that controls
PAK1, a regulator of

cell motility

rs16936752: intron
variant T>G Japanese 376/3671 0.08/0.11 Rec: 1.59 # (1.10–2.38) [54] LICH + DICH

KCNK17
potassium channel,

subfamily K, member17

rs12214600: intron
variant C>T Chinese 182/174 0.10/0.17 0.56 (0.35–0.90) [100] LICH + DICH

rs10947803: (merged
into rs9471058) intron

variant C>A
Chinese 166/156 0.42/0.34 Dom: 1.65 (1.04–2.62) [101] LICH + DICH

MAF: Minor allele frequency (MAF), OR: odds ratio, Ref: references, Rec: recessive model, Dom: dominant model, Add: additive model, GWA: Genome-wide association study. # The risk
allele is T.
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4. Conclusions

The majority of the genes associated with ICH only provide small contributions to the risk
of developing such a condition. However, the mechanisms behind such associations require
further investigation. Additionally, variations in APOE (in multiple ethnicities), PMF1/SLC25A44
(in Europeans), ACE (in Asians), MTHFR (in multiple ethnicities), TRHDE (in Europeans), and COL4A2
(in Europeans) are the most convincing genetic factors related to ICH. Furthermore, although LICH
and DICH differ in pathogenesis, many of the above-mentioned studies did not separate the ICH
phenotypes. Except for TIMP-1, which locates to the X chromosome with effects more prominent
in males than females, no report with adequate sample number has reported significant gender
difference in genetic difference regarding ICH risks. Future replications are required to both confirm
their association in multiple ethnicities and to elucidate the roles of these genetic variations in ICH
pathogenesis. More importantly, given that both the lifestyle and the medication controls are different
among countries, gene–gene and gene–environment interactions should be taken into consideration in
the analyses.
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