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Abstract: Gungha-tang (GHT), a traditional herbal medicine, consists of nine medicinal herbs (Cnidii
Rhizoma, Pinelliae Tuber, Poria Sclerotium, Citri Unshius Pericarpium, Citri Unshius Pericarpium
Immaturus, Aurantii Fructus Immaturus, Atracylodis Rhizoma Alba, Glycyrrhizae Radix et Rhizoma,
and Zingiberis Rhizoma Recens). It has been used for various diseases caused by phlegm. This study
aimed to develop and verify the simultaneous liquid chromatography–tandem mass spectrometry
(LC–MS/MS) analysis method, using nine marker components (liquiritin apioside, neoeriocitrin,
narirutin, naringin, hesperidin, neohesperidin, liquiritigenin, glycyrrhizin, and 6-shogaol) for quality
control of GHT. LC–MS/MS analysis was conducted using a Waters TQ-XS system. All marker
analytes were separated on a Waters Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) using
gradient elution with a distilled water solution (containing 5 mM ammonium formate and 0.1%
[v/v] formic acid)–acetonitrile mobile phase. LC–MS/MS multiple reaction monitoring (MRM)
analysis was carried out in negative and positive ion modes of an electrospray ionization source. The
developed LC–MS/MS MRM method was validated by examining the linearity, limits of detection
and quantification, recovery, and precision. LOD and LOQ values of nine markers were calculated
as 0.02–8.33 ng/mL and 0.05–25.00 ng/mL. The recovery was determined to be 89.00–118.08% and
precision was assessed with a coefficient of variation value of 1.74–8.64%. In the established LC–
MS/MS MRM method, all markers in GHT samples were detected at 0.003–16.157 mg/g. Information
gathered during the development and verification of the LC–MS/MS method will be useful for the
quality assessment of GHT and other herbal medicines.

Keywords: simultaneous analysis; quality control; Gungha-tang; LC–MS/MS

1. Introduction

Traditional herbal medicines, traditional Korean medicines (TKMs), traditional Chi-
nese medicines (TCMs), and Kampo medicines (KMs), characterized by multiple compo-
nents and multiple targets, have long been used in Asian countries, especially Korea, China,
and Japan, for the treatment of and protection against various diseases, and for maintaining
health [1]. These TKMs, TCMs, and KMs consist of combinations of at least two or more
medicinal herbs and are taken in the form of decoction [2,3].

Gungha-tang (GHT), one of these traditional herbal medicines, consists of nine medic-
inal herbs: Cnidii Rhizoma, Pinelliae Tuber, Poria Sclerotium, Citri Unshius Pericarpium,
Citri Unshius Pericarpium Immaturus, Aurantii Fructus Immaturus, Atracylodis Rhizoma
Alba, Glycyrrhizae Radix et Rhizoma, and Zingiberis Rhizoma Recens. GHT was first
recorded in Ren Zhai Zhi Zhi Fang Lun written by Shiying Yang, a medical doctor from
Southen Song Dynasty [4], and thereafter in Dong Eui Bo Gam written by Jun Heo during
in the Joseon Dynasty. GHT is reported to be used for diseases caused by phlegm [5].

Nine herbal medicines have been reported to have various biological effects, for
example, anti-inflammatory, antioxidant, anticancer, antitumor, antidiabetes, antiaging,
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anti-obesity, neuroprotective, and antibacterial activities [6–14]. Recently, a study on the
safety of a single administration of GHT was reported by An et al. [4], but few studies on
the biological activity have been reported.

The main ingredients of GHT, composed of nine herbs, are the following: chlorogenic
acid, ferulic acid, senkyunolide A, and Z-ligustilide from Cnidii Rhizoma; homogentisic
acid and 3,4-dihydroxybenzaldehyde from Pinelliae Tuber; pachymic acid, dehydrotumu-
losic acid, and polyporenic acid C from Poria Sclerotium; naringin, hesperidin, and narirutin
from Citri Unshius Pericarpium, Citri Unshius Pericarpium Immaturus, and Aurantii Fruc-
tus Immaturus; atractylenolide I and III from Atracylodis Rhizoma Alba; liquiritin, liquiritin
apioside, and glycyrrhizin from Glycyrrhizae Radix et Rhizoma; and 6-gingerol from Zin-
giberis Rhizoma Recens [15–23]. Analytical studies to determine qualitative, quantitative, or
chemical profiling analyses have been conducted to evaluate the quality of each herb using
high-performance liquid chromatography (HPLC) or liquid chromatography–tandem mass
spectrometry (LC–MS/MS) systems for the main active components of each herbal medicine
mentioned above [15–23]. However, no studies have been reported for the quality control of
GHT composed of a combination of these nine herbal medicines.

To date, many researchers have used analytical techniques such as HPLC, LC–MS/MS,
and gas chromatography–mass spectrometry for the quality control of complex formula-
tions such as TKMs, TCMs, and KMs [24–28]. Among the various analytical techniques, the
analytical methods that include HPLC and LC–MS/MS are currently the most widely used
for standardization purposes. In particular, the sensitive, accurate, and reliable LC–MS/MS
system is being used in standardization studies for numerous phytochemical components
that constitute TKMs, TCMs, and KMs [29].

Therefore, in the present study, a simultaneous analysis method was developed, and
then verified, utilizing the LC–MS/MS multiple reaction monitoring (MRM) assay, for
efficient quality control of GHT using the following nine marker components: liquiritin
apioside, neoeriocitrin, narirutin, naringin, hesperidin, neohesperidin, liquiritigenin, gly-
cyrrhizin, and 6-shogaol.

2. Results and Discussion
2.1. Optimization of LC–MS/MS MRM Conditions

For the quality assessment of GHT using the marker analytes, we first determined
the optimal simultaneous determination conditions in LC–MS/MS MRM mode. Conse-
quently, the nine markers (liquiritin apioside, neoeriocitrin, narirutin, naringin, hesperidin,
neohesperidin, liquiritigenin, glycyrrhizin, and 6-shogaol) were separated using gradient
elution with a distilled water solution (containing 5 mM ammonium formate and 0.1%
[v/v] formic acid)–acetonitrile mobile phase system on an Acquity UPLC BEH C18 column
(2.1 × 100 mm, 1.7 µm) maintained at 45 ◦C. Table 1 shows the optimal LC–MS/MS MRM
parameters for the simultaneous quantification of each marker component. The established
assay was successfully applied to the GHT sample and all markers were detected within
10 min, as shown in Figure 1 and Table 1.

Table 1. LC–MS/MS MRM conditions for simultaneous determination of marker compounds in GHT.

Compound Ion
Mode

Molecular
Weight

Precursor
Ion (Q1)

Product Ion
(Q3)

Cone
Voltage (V)

Collision
Energy (eV)

Retention
Time (min)

Liqiritin apioside − 550.2 549.3 255.0 45 30 1.57
Neoeriocitrin − 596.2 595.5 151.0 30 40 1.58

Narirutin + 580.2 581.0 273.0 15 15 1.86
Naringin − 580.2 579.3. 271.0 45 30 1.99

Hesperidin + 610.2 611.5 303.2 20 15 2.13
Neohesperidin + 610.2 611.0 303.0 15 20 2.27
Liquiritigenin + 256.1 257.2 137.0 35 35 3.05
Glycyrrhizin − 822.4 821.9 351.2 45 40 4.95

6-Shogaol + 276.2 277.2 137.1 25 15 8.50
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Figure 1. Total ion chromatograms of mixed standard solution of the nine marker components
(A) and 70% methanolic solution of the freeze-dried GHT water decoction sample (B) acquired by
LC–MS/MS MRM in positive and negative ion modes. Liquiritin apioside (1), neoeriocitrin (2),
narirutin (3), naringin (4), hesperidin (5), neohesperidin (6), liquiritigenin (7), glycyrrhizin (8), and
6-shogaol (9).

2.2. Identification of Each Marker Analyte for LC–MS/MS MRM Analysis

In the LC–MS/MS MRM analysis of each marker analyte, use was made of an electro-
spray ionization source of negative and positive ion modes. Four components (liquiritin
apioside, neoeriocitrin, naringin, and glycyrrhizin) were detected at m/z 549.3, 595.5, 579.3,
and 821.9, respectively, in the form of [M–H]−, negative ion mode, and the remaining
five components (naritutin, hesperidin, neohesperidin, liquiritigenin, and 6-shogaol) were
detected at m/z 581.0, 611.5, 611.0, 257.2, and 277.2, respectively, in the form of [M+H]+,
positive ion mode (Figure 1, Table 1). As MRM conditions for LC–MS/MS simultaneous
analysis, the precursor ion (Q1) and product ion (Q3) peaks for each marker analyte were
set as shown in Table 1. Liquiritin apioside, a flavanone, detected a Q3 ion peak at m/z
255.0 (M–H–Glc-Api]−), generated by removal of the glucosyl-apisyl group [30]. Q3 ion
peaks of naritutin, naringin, hesperidin, and neohesperidin were detected at m/z 273.0
([M+H–Glc-Rham]+), 271.0 ([M–H–Glc-Rham]−), 303.2 ([M+H–Glc-Rham]+), and 303.0
([M+H–Glc-Rham]+), respectively, in the form of an aglycone from which rutinose was
eliminated [31–33]. Neoeriocitrin was detected at m/z 151.0 in the form of [1,3A0–H]−,
generated by retro-Diels–Alder (RDA) fragmentation of aglycone, from which rutinose had
been removed [31,32]. The fragmentation of liquiritigenin is similar to that of neoeriocitrin;
the Q3 ion peak was detected at m/z 137.0 ([M+H–4-vinylphenol]+) by RDA cleavage [31].
Glycyrrhizin was in the form of [di-GlcA–H]−, in which aglycone was lost, and a Q3 ion
peak was detected at m/z 351.2 [30]. In 6-shogaol, the Q3 ion peak was detected at m/z 137.1
in the form of [M+H–C9H15O]+, by cleavage of the C1–C2 bond by the ketone functional
group of the alkyl chain [34,35]. MS fragmentation for the simultaneous determination of
each marker as described above is shown in Figure S2.
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2.3. Method Validation of the Developed Analytical Method

In this research, the newly developed LC–MS/MS MRM analytical method for the
simultaneous determination of the nine marker analytes in GHT samples was validated by
evaluating the linearity, limit of detection (LOD), limit of quantification (LOQ), recovery,
and precision. Table 2, Table 3, Table 4 show the results for various validation parame-
ters. Briefly, the coefficient of determination (r2) value, which means the linearity of the
calibration curve prepared in different concentration ranges for each marker analyte, was
0.9950–0.9968, showing good linearity, and LOD and LOQ values were estimated to be
0.02–8.33 ng/mL and 0.05–25.00 ng/mL, respectively (Table 2). The recovery test, calculated
from Equation (1), was conducted to evaluate the accuracy of the developed method; it
was determined to be 89.00–118.08% (Table 3). The acceptance criteria for recovery test for
validation of analysis of traditional herbal medicines such as TKMs, TCMs, and KMs are
generally accepted with ±20%, so results of our study show that they are suitable [36,37].
In the precision verification, the repeatability of the retention time and peak area of the
marker analytes was evaluated as the coefficient of variation (CV) values (calculated from
Equation (2)); it was determined to be 0.08–0.52% and 3.04–9.64%, respectively (Table S2).
In addition, the CV (%) values of intra- and interday precisions of the nine marker analytes
were also determined to be <10.00% (Table 4). From the above various verification results,
indications are that the LC–MS/MS MRM assay developed in this study is suitable and
appropriate as an analytical method for the quality evaluation of GHT.

Table 2. Various parameters for simultaneous determination of marker analytes in GHT using the
LC–MS/MS MRM assay.

Analyte Linear Range
(ng/mL)

Regression
Equation a

y=ax+b
r2 LOD

(ng/mL)
LOQ

(ng/mL)

Liqiritin apioside 25.00–400.00 y = 68.42x + 52.85 0.9968 8.33 25.00
Neoeriocitrin 50.00–800.00 y = 48.69x − 80.24 0.9958 0.83 2.50

Narirutin 50.00–800.00 y = 20.32x + 202.74 0.9954 3.33 10.00
Naringin 50.00–800.00 y = 23.58x − 107.24 0.9950 8.33 25.00

Hesperidin 50.00–800.00 y = 153.88x + 509.37 0.9951 1.67 5.00
Neohesperidin 100.00–1600.00 y = 29.03x + 905.96 0.9950 0.33 1.00
Liquiritigenin 0.10–1.60 y = 19,647.00x + 239.15 0.9959 0.02 0.05
Glycyrrhizin 50.00–800.00 y = 14.51x − 40.59 0.9953 1.67 5.00

6-Shogaol 0.10–1.60 y = 19,566.10x + 659.29 0.9966 0.02 0.05
a y: peak area of each analyte; x: concentration of each analyte.

Table 3. Recovery tests for each marker analyte in GHT using the developed LC–MS/MS MRM assay.

Analyte
Spiked

Amount
(ng/mL)

Amount
Found

(ng/mL)

Recovery
(%) SD CV (%)

Liquiritin apioside
200.00 234.34 117.17 1.44 1.23
400.00 458.24 114.56 3.30 2.88
800.00 862.88 107.86 0.78 0.72

Neoeriocitrin
50.00 59.04 118.08 1.31 1.11
100.00 110.50 110.50 4.10 3.71
200.00 219.08 109.54 3.74 3.41

Narirutin
500.00 557.52 111.50 2.36 3.02

1000.00 1050.68 105.07 3.17 1.30
2000.00 2010.86 100.54 1.31 1.11

Naringin
500.00 573.90 114.78 2.84 2.47

1000.00 1157.74 115.77 2.10 1.81
2000.00 2237.84 111.89 1.97 1.76
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Table 3. Cont.

Analyte
Spiked

Amount
(ng/mL)

Amount
Found

(ng/mL)

Recovery
(%) SD CV (%)

Hesperidin
500.00 544.38 108.88 1.75 1.61

1000.00 1013.86 101.39 2.72 2.68
2000.00 1983.78 99.19 1.72 1.73

Neohesperidin
1000.00 1076.62 107.66 7.19 6.68
2000.00 2009.60 100.48 5.05 5.03
4000.00 4121.26 103.03 3.02 2.94

Liquiritigenin
4.00 3.66 91.50 7.42 8.11
8.00 7.88 98.50 6.75 6.86

16.00 14.50 90.63 7.51 8.29

Glycyrrhizin
500.00 579.68 115.94 3.42 2.95

1000.00 1173.10 117.31 2.13 1.81
2000.00 2174.32 108.72 1.38 1.26

6-Shogaol
1.00 0.98 98.00 8.37 8.54
2.00 1.90 95.00 7.91 8.32
4.00 3.56 89.00 7.62 8.57

Table 4. Precision data for simultaneous determination of the nine marker analytes in the developed
LC–MS/MS MRM assay.

Analyte Conc.
(ng/mL)

Intraday (n = 5) Interday (n = 5)

Obtained
Conc.

(ng/mL)

Precision
(%) a Accuracy (%)

Obtained
Conc.

(ng/mL)

Precision
(%) Accuracy (%)

Liquiritin
apioside

200.00 180.82 3.58 90.41 201.70 2.32 100.85
400.00 385.94 3.64 96.49 407.92 3.21 101.98
800.00 784.44 4.66 98.06 807.92 2.45 100.99

Neoeriocitrin
50.00 44.56 5.35 89.12 50.08 3.34 100.15
100.00 96.76 5.10 96.76 99.12 4.96 99.12
200.00 204.04 2.10 102.02 203.84 2.62 101.92

Narirutin
500.00 464.20 6.88 92.84 502.50 3.86 100.50

1000.00 940.26 4.62 94.03 976.10 3.51 97.61
2000.00 1673.18 8.45 83.66 1868.60 3.92 93.43

Naringin
500.00 470.92 2.57 94.18 500.80 2.23 100.16

1000.00 972.82 2.11 97.28 1008.50 1.89 100.85
2000.00 2020.58 1.74 101.03 2019.00 1.85 100.95

Hesperidin
500.00 465.32 2.39 93.06 492.55 2.43 98.51

1000.00 939.70 3.16 93.97 967.20 2.74 96.72
2000.00 1982.78 3.06 99.14 1967.20 1.85 98.36

Neohesperidin
1000.00 955.86 5.67 95.59 987.40 5.54 98.74
2000.00 1948.32 5.38 97.42 1929.40 5.04 96.47
4000.00 3908.70 3.86 97.72 3997.20 3.05 99.93

Liquiritigenin
4.00 3.74 4.06 93.50 3.55 5.76 88.83
8.00 7.30 3.21 91.25 7.77 4.85 97.08

16.00 14.98 5.41 93.63 15.27 5.87 95.46

Glycyrrhizin
500.00 511.30 5.58 102.26 517.31 3.36 103.46

1000.00 971.88 3.86 97.19 1027.81 2.62 102.78
2000.00 1976.92 3.40 98.85 2031.49 2.34 101.57

6-Shogaol
1.00 0.98 8.54 98.00 0.92 8.64 92.00
2.00 1.74 6.55 87.00 1.87 7.72 93.67
4.00 3.88 8.43 97.00 4.05 6.17 101.17

a Precision (%) is expressed as CV (%) calculated from Equation (2).
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2.4. Simultaneous Determination of the Nine Marker Analytes in GHT Samples Using the
Developed LC–MS/MS MRM Assay

Simultaneous determination of the nine marker analytes in GHT samples was con-
ducted using the LC–MS/MS MRM assay developed and validated in this study. All marker
analytes (liquiritin apioside, neoeriocitrin, narirutin, naringin, hesperidin, neohesperidin,
liquiritigenin, glycyrrhizin, and 6-shogaol) were eluted, at 1.57, 1.58, 1.86, 1.99, 2.13, 2.27,
3.05, 4.95, and 8.50 min, respectively (Table 1 and Figure S3). The nine marker analytes in
the lyophilized GHT samples were detected at 0.003–16.157 mg/g. The detailed content
of each marker compound is given in Table 5. Among these markers, narirutin, narigin,
hesperidin, and neohesperidin, derived from Citri Unshius Pericarpium, Citri Unshius
Pericarpium Immaturus, Aurantii Fructus Immaturus, were present in large amounts.
These results suggest the possibility of them being useful as basic data for the analysis of
quality assessment of GHT.

Table 5. Amounts of the nine marker analytes in GHT samples by LC–MS/MS MRM assay (n = 3).

Analyte

Amount

GHT-1 a GHT-2 b

Mean
(mg/g)

SD
(×10−1) CV (%) Mean

(mg/g)
SD

(×10−1) CV (%)

Liqiritin apioside 0.007 0.002 2.831 0.003 0.002 8.377
Neoeriocitrin 1.089 0.259 2.377 0.315 0.292 9.274

Narirutin 5.878 2.395 4.075 0.944 0.838 8.870
Naringin 16.157 1.297 0.803 2.785 2.473 8.880

Hesperidin 8.002 1.647 2.058 6.559 1.031 1.573
Neohesperidin 8.338 5.982 7.175 0.044 0.035 7.857
Liquiritigenin 2.423 0.518 2.139 0.809 0.741 9.160
Glycyrrhizin 6.416 0.818 1.275 2.801 0.819 2.923

6-Shogaol 0.007 0.007 9.042 0.008 0.007 8.072
a GHT-1: sample was prepared in Korea Institute of Oriental Medicine; b GHT-2: sample was made by commercial
pharmaceutical company.

3. Materials and Methods
3.1. Plant Materials

Nine raw herbal medicines constituting GHT were purchased from Kwangmyungdang
Medicinal Herbs (KMH; Ulsan, Korea), a herbal medicine supplier for pharmaceuticals,
in November 2017. All medicinal herbs were used after morphological verification by
Dr. Seung-Yeol Oh, president of KMH. Detailed information on all raw herbs is shown in
Table S1. Specimens of the nine raw herbal medicines (2017KE58–1 to 2017KE58–5) were
deposited at the KM Science Research Division, Korea Institute of Oriental Medicine.

3.2. Chemicals and Reagents

The nine standard compounds used as markers for quality assessment of GHT in this
study are shown in Figure S1. These compounds were provided by commercial suppliers
and used for LC–MS/MS analysis: liquiritin apioside (C26H30O13, CAT No. DR10690,
99.6%), hesperidin (C28H34O15, CAT No. DR10882, 98.7%), neohesperidin (C28H34O15,
CAT No. DR10883, 98.4%), and 6-shogaol (C17H24O3, CAT No. DR10924, 99.2%) from
Shanghai Sunny Biotech Co., Ltd. (Shanghai, China); neoeriocitrin (C27H32O15, CAT
No. TBW00746, 99.9%) from Wuhan ChemNorm Biotech Co., Ltd. (Wuhan, China);
narirutin (C27H32O14, CAT No. BP0985, 99.5%), liquiritigenin (C15H12O4, CAT No. BP0873,
99.8%), and glycyrrhizin (C42H62O16, CAT No. BP0682, 99.1%) from Chengdu Biopurify
Phytochemicals Ltd. (Chengdu, China); naringin (C27H32O14, CAT No. 71162, 95.0%) from
KGaA (Darmstadt, Germany). Methanol and acetonitrile were LC–MS grade and supplied
by ThermoFisher Scientific (San Jose, CA, USA). Purified water was used, specifically,
produced through a Vivagen water purification system (EXL3 Analysis 16, Seongnam,
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Korea). Formic acid (≥99.5%) was supplied by Fujifilm Wako Pure Chemical Co., Ltd.
(Osaka, Japan) and ammonium formate (99.0%) by Kanto Chemical Co., Inc. (Tokyo,
Japan).

3.3. Preparation of GHT Water Sample

A sample of GHT in water was prepared following the same protocol as that in other
previously reported methods for preparing a herbal prescription [38] (see Table S1). After
mixing nine herbal medicines (Cnidii Rhizoma, Pinelliae Tuber, and Poria Sclerotium, each
881.52 g; Citri Unshius Pericarpium, Citri Unshius Pericarpium Immaturus, and Aurantii
Fructus Immaturus, each 441.94 g; Atracylodis Rhizoma Alba and Glycyrrhizae Radix et
Rhizoma, each 220.97 g; and Zingiberis Rhizoma Recens, 587.68 g), in a weight ratio (w/w),
50 L of distilled water was added, and extraction was performed under pressure (0.98 bar)
at 100 ◦C for 2 h. The extract was subsequently filtered through a sieve (53 µm mesh) and
then freeze dried (PVTFD100R, IlShinBioBase, Yangju, Korea) to afford a powder sample of
about 1.0 kg (yield 20.1%).

3.4. Preparation of Samples and Standard Solutions for LC–MS/MS Quantification of the Nine
Marker Analytes in GHT Samples

To analyze simultaneously the nine marker analytes in a GHT sample using LC–
MS/MS, 70% methanol was added to approximately 50 mg of the lyophilized GHT sample
to make up a volume of 50 mL. The mixed sample solution was continuously subjected
to ultrasonic extraction for 5 min and vortexing for 1 min. Prior to analysis, the prepared
sample solution was diluted 50-fold with 70% methanol and filtered through a hydrophobic
polytetrafluoroethylene membrane filter (0.2 µm; Pall Life Sciences, Ann Arbor, MI, USA).

A standard solution for each marker analyte was prepared at a concentration of
100.0 µg/mL, using methanol, and then stored at 4 ◦C until analysis.

3.5. LC–MS/MS Instrumentation and Experimental Conditions for Simultaneous Determination of
the Nine Marker Analytes in GHT Samples

Simultaneous determination of the nine marker analytes in GHT samples by LC–
MS/MS was conducted using a previously reported protocol [39,40]. Briefly, LC–MS/MS
analysis was performed using a Waters Acquity UPLC system (Milford, MA, USA) coupled
with a Waters Xevo TQ-XS triple quadrupole MS system. Markers were separated on an
Waters Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm), maintained at 45 ◦C, using
gradient elution with a distilled water solution (containing 5 mM ammonium formate and
0.1% [v/v] formic acid)–acetonitrile mobile phase system. Detailed experimental parame-
ters of ultra-performance liquid chromatography and MS for simultaneous determination
are summarized in Table S3.

3.6. Method Validation of the Developed LC–MS/MS MRM Assay

The simultaneous LC–MS/MS analysis method developed for the consistent quality
control of GHT was verified by evaluating linearity, LOD, LOQ, accuracy (recovery), and
precision (repeatability, intraday precision, and interday precision). Verification of linearity
was evaluated by the r2 of the calibration curve prepared at different concentrations
of each marker analyte: 25.00–400.00 ng/mL (liquiritin apioside), 50.00–800.00 ng/mL
(neoeriocitrin, narirutin, naringin, hesperidin, and glycyrrhizin), 100.00–1600.00 ng/mL
(neohesperidin), and 0.10–1.60 ng/mL (liquiritigenin and 6-shogaol). LOD and LOQ
were automatically calculated by the LC–MS/MS system (MassLynx software, version 4.2,
Waters, Milford, MA, USA) as a signal-to-noise ratios of 3 and 10, respectively.

The accuracy verification of the newly developed LC–MS/MS method was performed
through the recovery test. In other words, the recovery (%) was determined by adding
known concentrations of each standard marker analyte (low, medium, and high) to the
GHT sample as shown in Table 3, and calculated from Equation (1).
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Recovery (%) =
amount found
spiked amount

× 100 (1)

The precision (repeatability, intraday precision, and interday precision) of our newly
developed analytical method was evaluated by calculating the CV value of each parameter.
The repeatability was validated by calculating the CV value of retention time and peak area
of each marker analyte, after six measurements, using a standard solution. Intraday preci-
sion and interday precision were assessed with CV values calculated after measurements
for within day and 3 consecutive days on the three concentrations, respectively. The CV
(%) value was calculated from Equation (2).

CV (%) =
standard deviation (SD)

mean
× 100 (2)

3.7. Statistical Analysis

Data were expressed as mean, SD, and CV (%) using Microsoft Excel 2019 software
(Microsoft Co., Redmond, WA, USA).

4. Conclusions

In this study, for the first time, a sensitive, accurate, and reliable LC–MS/MS MRM as-
say for efficient quality assessment of GHT, a traditional herbal prescription, was developed
using nine selected marker analytes. The developed assay was evaluated by examining the
linearity, LOD, LOQ, accuracy, and precision. The established LC–MS/MS MRM assay is
expected to be useful in not only the efficient quality control of GHT, but also in further
studies on other TKMs, TCMs, and KMs.

Supplementary Materials: The following supporting information can be downloaded, Figure S1:
Chemical structures of the nine marker components in GHT; Figure S2: MS fragmentation of each
marker analyte; Figure S3: Extracted ion chromatograms of each reference standard (A) and GHT
sample (B) measured by LC–MS/MS MRM mode; Table S1: Composition of prepared GHT; Table S2:
Repeatability of the nine marker analytes in the LC–MS/MS MRM assay (n = 6); Table S3: LC–MS/MS
MRM experimental conditions for simultaneous determination of the nine marker analytes in GHT
samples.
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