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Abstract

Task-free brain activity affords unique insight into the functional structure of brain network dynamics and is a strong marker of
individual differences. In this work, we present an algorithmic optimization framework that makes it possible to directly invert and
parameterize brain-wide dynamical-systems models involving hundreds of interacting brain areas, from single-subject time-series
recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain
dynamics (“precision brain models”) and making quantitative predictions. We extensively validate the models’ performance in
forecasting future brain activity and predicting individual variability in key M/EEG markers. Lastly, we demonstrate the power
of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize
subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual
variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitation-inhibition
balance, highlighting the explanatory power of our framework in generating mechanistic insights.
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1. Introduction

A key goal of human neuroscience is to decipher how in-
dividual differences in brain signaling and dynamics relate to
individual differences in cognition and behavior. Developing
mechanistic models of individual human brains is one part of
this endeavor. While considerable efforts have been directed at
identifying individual differences at macroscopic spatial scales,
via fMRI, individual-differences in fast dynamical interactions
at the scale of M/EEG, while well-documented, are less under-
stood. Such dynamics reveal neural computation at a timescale
commensurate with sub-second cognitive operations and are
strongly nonstationary. There is a long and rich history of anal-
ysis of fast neural electrophysiology, yet the mechanisms and
functional salience of many commonly observed phenomena
remain debated. A notable example of such ambiguity con-
cerns canonical EEG oscillations, including the posterior dom-
inant alpha (8-12 Hz) rhythm. Generative mechanisms of alpha
oscillations have been studied for decades, but are not yet re-
solved, with competing accounts of either a thalamic [1, 2] or
cortical origin [3]. At a phenomenological level, alpha tends to
vary across individuals in terms of its peak frequency and power
[4, 5, 6], and furthermore is associated with various cognitive
endpoints [7, 8, 9]. As a result, it is a frequent candidate as a
biomarker [10, 11], including to inform brain stimulation strate-
gies [12]. Such implementations, which are largely empirical in
nature, underscore the need for reliable, biologically-plausible

dynamical systems models with sufficient expressiveness so as
to reveal individual mechanistic differences. Despite a century
of research on the alpha rhythm, there have been few results and
no consensus regarding why healthy individuals differ in alpha
expression [13]. To preview, we develop a modeling framework
which sheds new light on this debate, by providing mechanistic
insights and generating testable predictions regarding the na-
ture of alpha, as well as other oscillatory individual difference
phenomena.

1.1. Challenges in Data-Driven Individualized Modeling

Dynamical systems models are premised upon describing
how components of a system interact to shape its future. The
classical example of such models in neuroscience is, of course,
the Hodgkin-Huxley [14] model of neuronal spiking. The
power of these models is that they are simultaneously descrip-
tive and mechanistic. That is, they not only describe features of
the observed phenomena but also provide an underlying gen-
erative process that produces those phenomena. This property
means that dynamical systems models can potentially predict
how the system will respond to novel perturbations. This abil-
ity is based on the accuracy of the underlying model, which in
turn depends upon how the model is constructed.

Data-driven approaches to dynamical systems modeling at-
tempt to use measured brain activity to parameterize (i.e., ‘fit’) a
model. At the whole-brain scale, there have been significant ef-
forts directed towards this problem in the context of functional
neuroimaging. These previous approaches to individualized
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brain modeling include methods that directly estimate parame-
ters from fMRI recordings, such as Dynamic Causal Modeling
[15] or, alternatively, methods in which the primary model pa-
rameters (e.g., connectivity) are adopted from structural imag-
ing (e.g. [16, 17, 18]). In the former, the prime difficulty
has been the development of methods to estimate large, non-
linear models from noisy, indirect timeseries. In recent work,
we developed a new algorithm termed Mesoscale Individual-
ized NeuroDynamic modeling (MINDy, [19, 20]) to estimate
individualized brain models from fMRI timeseries. The gen-
eral method consisted of a novel optimization framework to
simultaneously estimate brain network parameters and, in an
extended algorithm [20], local hemodynamic responses. How-
ever, the temporal resolution of fMRI greatly limits its ability
to inform models of the fast, transient interactions thought to
dominate neural computation. In the current work we aim to
reveal these mechanisms at the individual level and are there-
fore concerned with high-temporal resolution modalities. As
our approach consists of whole-cortex modeling, we emphasize
the use of MEG or EEG (M/EEG) as functional data-sources,
as opposed to lower-coverage invasive techniques (e.g., ECoG,
LFP, and SEEG), although the proposed method is general. In
either case, the fast timescale context produces a new set of
challenges for individualized modeling that evade current op-
timization methods, including the original MINDy framework
[19].

There are theoretical, biophysical, and computational
barriers to this endeavor. At the theoretical level, fast electro-
physiological activity, such as oscillations, are hypothesized to
arise from the interplay of excitatory and inhibitory neurons
[21, 22], meaning that any biologically interpretable model
of brain oscillations must consider the interactions between
specific neuron types including long-distance projections onto
either cell-type. In addition, asymmetric patterns of connec-
tivity (feed-forward vs. feed-back) are also believed critical
to generating lower-frequency oscillations [23]. However,
neither of these two features is accessible using structural
(diffusion) imaging. Functional data is similarly limited in
directly assessing these differences using conventional analysis
of M/EEG signals. Both modalities are thought to be driven
by cortical pyramidal cell activity as interneuron geometry is
not conducive to dipole generation [24]. From an optimization
(model-fitting) standpoint, these limitations mean that neither
the model states (excitatory and inhibitory neural activity) nor
model parameters are directly accessible, posing a challeng-
ing dual-estimation problem. To address these difficulties,
we present a new framework to directly estimate detailed
neural-mass style models (Fig. 1A) from fast functional data
(M/EEG). We term this framework Mesocopic Individualized
NeuroDynamics with Dual Estimation (Dual MINDy). To
be clear, by ‘directly estimate’ we mean optimizing every
component of the neural model to predict observed activity
(timeseries measurements), within subject. The net result of
our framework will encompass: (i) the estimation of latent
activity in neural populations across the cortex, (ii) separate
brain-wide ‘connectomes’ for excitatory and inhibitory targets
(Fig. 1A), and (iii) direct model-estimation from single-subject

Parameter Interpretation
WE , W I Exc.-Exc. and Exc.-Inh. connectivity

1-DE , 1-DI Exc. and Inh. decay rates
βE , βI Local Inh.-Exc. and Inh.-Inh. connections
cE , cI Tonic drive to exc. and inh. populations
εE , εI Extrinsic (unmodeled) activity

Table 1: Summary of free parameters

recordings.

We will proceed to introduce the Dual MINDy framework
and validate it on the Human Connectome Project (HCP; [25])
dataset. Furthermore, we will highlight the mechanistic ex-
planatory power of the method in the context of cortical oscilla-
tions, by studying individual variability in generative processes
underlying M/EEG oscillations. Such oscillations are among
the most frequent features extracted from M/EEG, yet their un-
derpinning and cognitive significance remains an open ques-
tion, in part due to their variable expression across individuals.
Here, we show that this variation may reflect low-dimensional
dynamics that we link with a greater ratio of excitation-to-
inhibition. We suggest that individual variation in alpha-band
frequencies are reflected in protracted, global rhythms, whereas
variation in the beta-band is linked to transient dynamics.

2. Results

2.1. Dual MINDy enables scalable, data-driven cortical mod-
eling

We seek a large-scale cortical model of the mesoscopic,
mean-field type:

xE(t + 1) = WEψE(xE(t)) − βEψI(xI(t)) + DE xE(t) + cE + εE(t),
(1)

xI(t + 1) = W IψE(xE(t)) − βIψI(xI(t)) + DI xI(t) + cI + εI(t),
(2)

This model is, in essence, a network of interconnected Wilson-
Cowan type neural masses [26], each modeling excitatory-
inhibitory interaction at the scale of cortical macrocolumns.
Here, xE and xI describe the activation (average depolarization)
of excitatory and inhibitory subpopulations, respectively, and
the nonlinear function ψ is a 2-parameter logistic function with
gains (sE ,sI) and bias terms vE , vI . Full technical details regard-
ing the model are found in the Supplemental Information (SI).

Our goal, simply stated, is to optimize (i.e., fit) all free pa-
rameters (see Table 1) of this model on the basis of observed
brain activity. To do so requires the formulation of a mea-
surement model that transforms xE , xI into sensor ‘outputs’ yt.
Here, we assume yt is acquired from a noisy transformation H
of underlying neural activity (Fig. 1B):

yt = Hxt + noise, (3)

where x ≡ [xE , xI]. The formulation (3) leads to a crux issue
for data-driven model parameterization in this context. Specif-
ically, for M/EEG signals, the measurement matrix H is not
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Figure 1: Schematic description of the proposed framework. A) Expanded neural-mass type model with long-distance connections onto both excitatory and
inhibitory targets originating from distal pyramidal cells. Local EI circuits are fully connected. Arrows/dots indicate (directed) termination site. Dipoles are
modeled as proportional to excitatory (pyramidal) depolarization at the some. B) Relationship between components of the combined state-space and measurement
models. Neural activity (x(t)) evolves according to the dynamics f (x). Measurements (yt) are produced by multiplying neural activity with the measurement matrix
Ht . C) The gBPKF algorithm consists of three stages: generating baseline distributions, a Kalman-Filtering stage to estimate latent states (red and blue), and
a Forecasting stage which predicts future brain activity measurements (green). Distributions (bottom left) indicate the posteriors at t0. Note that the uncertainty
(shading) decreases over time as the (nonlinear) Kalman filter corrects state-estimates. D) The algorithm instantiated as a nonlinear recurrent network. The generative
(noise-driven) and forecasting (deterministic) layers evolve as conventional recurrent networks, whereas the filtering stage uses the Kalman filter to evolve both
activity/states and uncertainty/covariance. Steady-state distributions from the generative stage are used to estimate the initial state/uncertainty for t0.

invertible, even with accurate source-localization, because xI

does not contribute directly to the M/EEG signal. Hence H
takes the form: [HExc 0k×n] (for k measurement channels and
n populations). The transformation of excitatory activity HExc

could be direct (using the lead-field matrix for HExc) or, if data
is already source-localized, HExc = Ik=n. However, in either
case, the unknown latent activity of all populations xt is not
directly recoverable from yt. This leads to the need for dual-
estimation, encompassing the combination of two-problems:
estimating states xt and identifying parameters. Such prob-
lems are quite challenging in any circumstance. The appli-
cation to brain-network modeling further challenges existing
dual-estimation approaches, which become computationally-
intractable due to the large number of unknown parameters
[27], primarily in terms of network connections WE ,W I .

Our framework derives from the observation that both halves
of this problem are individually well-studied and tractable, but
cannot be applied in isolation (estimating xt requires knowledge
of parameters, and vice-versa). Instead we remove the problem
of estimating latent brain-activity by replacing x with a pseudo-
optimal estimate given all parameters and previous measure-
ments: x̂t := Kt(θ) (where θ denotes the parameters), which

produces a conventional parameter-estimation problem (solve
for θ, Fig. 1C). In other words, rather than treating states and
parameters as unknown variables, we first define the best esti-
mate of state, given parameters, and then solve for parameters
which optimize this function. In practice, we use nonlinear-
variants of the Kalman filter [28, 29] for the state estimate and
attempt to minimize the prediction-error with respect to future
measurements yt+k. In short, we solve for parameters that gen-
erate the most-accurate Kalman filter. To retrieve these param-
eters, we treat the Kalman-filter recursions like a recurrent net-
work (Fig. 1D) and analytically backpropagate error gradients
through the entire algorithm (see SI Sec. 8.4, Fig. 1C) which we
combine with gradient/Hessian optimization. This technique,
which we term as a generalized Backpropagated Kalman Filter
algorithm (gBPKF, [30]; also see related earlier work by [31]),
has been validated and shown to be scalable for general classes
of circuit models, but not specifically validated for the mean-
field form (1)-(2) in the presence of biophysical constraints.
Again, full details pertiaining to the gBPKF are found in the
SI.

Our first set of analyses focused upon determining whether
we could reconstruct all connectivity parameters in WE ,W I ,
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Figure 2: Validation of the current framework. A) Our method accurately recovers the excitatory-excitatory and excitatory-inhibitory connection strengths in
realistic ground-truth simulations containing either 40 or 80 total populations (20 or 40 regions x 2 populations per region). B) Forecasting error converges and
indicates similar performance on training and left-out data, meaning that models are stable and generalizable to new data within-subject. B.1) Change in error
during the Kalman Filtering phase across training iterations during model estimation. B.2) Performance in forecasting future brain activity for various lags after
150k training iterations. Lines indicate the mean loss across subjects/runs and shading indicates standard error of measurements. Shading indicates ±1 standard-
error of measurement (n=174) for both (B) panels. C) Connectivity parameters are reliable across models trained on different data for the same subject. D) Model
parameters are individual-specific, forming a unique “fingerprint” [32] that matches parameters fit to different data from the same subject. Accuracy indicates the
percent of successful identifications (i.e., how often two models from the same subject are most similar, as opposed to another subject’s model).

containing both recurrent and long-distance connections, given
the observed timeseries with all other parameters known. We
generated ground-truth, simulated networks with either 20 or
40 regions each containing an excitatory and inhibitory popu-
lation (40 or 80 total populations). Only excitatory populations
generate long distance connections. The symmetric connection
graph of admissible connections had a sparsity of 25% non-
zero with the same graph used to define admissible EE and EI
connections. Connection strengths were not symmetric in ei-
ther case. The ratio of simulated channels to regions (75%) was
based on the empirical rank of leadfield matrices (typically 65-
80) relative the 100 parcels we later use.

Results demonstrate high performance in recovering ground-
truth connectivity parameters in biologically-plausible simula-
tions (Fig. 2A). We observed high-performance in recover-
ing the true connectivity in both the 40 population (EE : r =
.983 ± .005, relative-MSE:.021 ± .006; EI : r = .919 ± .048,
60 sims) and 80 population conditions (EE : r = .970 ± .004,
relative-MSE:.029 ± .003, EI : r = .884 ± .014, 30 sims). The
performance for excitatory-excitatory connections was particu-
larly strong (Fig. 2A). This advantage is expected, as the exci-
tatory populations directly contribute to the simulated M/EEG
signal whereas the effects of EI signaling are only indirectly
observed through their delayed propagation along local IE cou-
pling. However, despite this challenge, performance remained
high. We conclude that our gBPKF algorithm is well-suited
to estimate neural model parameters for all connectivity types
(EE, EI, etc.).

2.2. Models provide reliable estimates of individual brain dy-
namics

Next, we fit models to the HCP MEG data, which contains
three five-minute runs per subject. We divided this data into
chronological halves (seven minutes each) which we refer to as
a ”scan”, We first analyzed the reliability of model parameters.
For univariate parameters, we measured reliability in terms of
the Intra-Class Correlation (ICC) which assesses reliability of
individual differences. For multivariate parameters we present
both the conventional test-retest correlations for overall similar-
ity of the parameter and, for the reliability of individual differ-
ences, the Image Intra-Class Correlation (I2C2, [34]) which is
a multivariate extension of ICC.

As in our ground truth simulations, the primary parameters
of interest for reliability are the connectivity parameters. Com-
bined together, the connectivity matrix is highly reliable and in-
dividualized. Excitatory-excitatory long-distance connections
had exceptional test-retest correlations (r = .83 ± .07, I2C2 =
.72; Fig. 2C). Long-distance excitatory-inhibitory connections
also had good test-retest correlations (r = .71 ± .1) but were
more modest for individual differences (I2C2 = .46). We also
found good reliability for the spatial gradient of recurrent con-
nections (r = .75± .10). Due to co-dependency (see SI Sec 8.7),
the test-retest correlation, but not the I2C2 is the same for all
recurrent connection types. Individual differences in recurrent
connections were higher for inhibitory targets than excitatory:
I2C2: EE = .58, IE = .56, EI = .85, II = .86. Fingerprinting
accuracy was 100% for both EE and EI connectomes (Fig. 2D)
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Figure 3: Group-average parameters and representative dynamics. A) Group-average excitatory-to-excitatory connection matrix sorted by the Yeo-17 networks [33].
Dark-grey connections denote those which are not admissible as determined by the connectivity mask (see Sec. 8.6). B) Same as A) but for excitatory-to-inhibitory
connections. C) Group-average spatial gradient of recurrent connections. Note that the separate recurrent connection types (EE, EI, II, IE) are derived from affine
transformations of this gradient (see Sec. 8.7). D) Model-simulated activity motor (top) and visual (bottom) parcels of a representative HCP MEG subject. We
note that the simulated brain activity is highly non-stationary and spatially heterogeneous. We highlight the spontaneous generation of narrow-band bursts (beta and
alpha, respectively) interspersed with wider-band oscillations.

and 84% for the spatial-gradient of recurrent connections.
Individual differences in decay rates had good reliability for

excitatory populations (ICC = .70) and moderate for inhibitory
populations (ICC = .64). The nonlinear connection gain (S E)
also had good reliability (ICC = .72). Estimated noise standard
deviations (

√
Q =

√
cov(ε)) often saturated (lower-bound 0.1,

upper-bound 0.3), and were, therefore, poor markers for indi-
vidual differences (

√
QE : ICC = .34,

√
QI : ICC = .29).

As expected (SI Sec. 8.7), reliability was low for the non-
linear threshold (vE : I2C2 = .36) and baseline drive terms
(cE : I2C2 = .35, cI : I2C2 = .12). While the inclusion of
these parameters is important for reproducing the correct dy-
namics, they contribute via their values relative each-other (af-
ter a transformation) and, depending upon the forward model,
may not be individually unique (see SI Sec. 8.7 for discussion).
Group-average values for connectivity parameters and the spa-
tial gradient of recurrent connections are displayed in Fig. 3A-
C.

2.3. Models recapitulate and explain well-known electrophysi-
oligical oscillations

We next analyzed the model dynamics (see Fig. 3D for an
example timeseries). We first tested our models’ ability to cor-
rectly replicate the anatomical distributions of spectral power
within the data (we refer to these as “spatiospectral features”
for brevity). We divided the spectrum as follows: delta (1.5-
4 Hz), theta (4-8 Hz), alpha (8-15 Hz), low beta (15-26 Hz),
high beta (26-35 Hz), and gamma (>35 Hz) in accordance with
the HCP MEG pipelines [25]. We normalized spectral power
to have a sum of one across bands, within subject, for both

data and models. In all spatial comparisons we use the pre-
calculated source-level empirical estimates provided with the
HCP ICA-MNE pipeline. We note that these analyses are not
direct ground-truth tests, since the source-level empirical es-
timates are themselves limited in spatial resolution and likely
overestimate smoothness. Hence, we do not expect exact agree-
ment on parcel-level values, particularly near the boundaries
between brain networks. At these boundaries, models produce
much sharper spatial divisions than the empirical source esti-
mates (see e.g., Fig. 4 A,B). We pay special attention to the
alpha and beta spectral bands as these are most prominent in
resting-state.

We first analyzed results at group level by comparing the
group-average anatomical-profile of spectral power between
model simulations and empirical estimates. Results demon-
strate good spatial agreement for the alpha band (r(98) = .74;
Fig. 4A.1) and moderate agreement for the beta bands (r(98) =
.49, r(98) = .42, respectively; Fig. 4A.2). We note that the
model-predicted low-beta is highly localized to the somatomo-
tor network, compared to the blurrier source-estimates. The
slow delta band also exhibited high similarity between data and
models (r(98) = .64). By contrast, the theta band was moder-
ately consistent: r(98) = .52.

We next examined model fidelity in replicating oscillatory
dynamics at the individual level. At the coarsest level, we
found that models strongly reproduce individual differences
in global spectral power (whole-brain average) across spectral
bands in the training data (delta through high-beta: p′s < 2.2E-
15, Fig. 4B). Interestingly, we also found a moderate corre-
lation between individual differences in the low-gamma band
(r(85) = .45, p <1.1E-5, Fig. 4B) despite its suppression in
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training-data due to 30Hz low-pass filtering (excluding the full
band). However, in contrast to other bands, the magnitude of
model-predicted low-gamma power was significantly smaller
than the HCP source-estimates and the average spatial profile
was not consistent with data (r(98) = .07), so this result may
simply reflect residual gamma-power retained in training data
even after filtering.

We also found that models replicated individual differences
in spectral power at the network-level for the main resting-
state bands (alpha, low-beta). To compute network-level power,
we averaged spectral power among parcels belonging to each
of the 17 Yeo [33] resting-state networks as implemented in
the Schaefer 100-17network parcellation [35]. We correlated
model-predicted and empirical power in a multilevel model
with a fixed-effect of subject (global power) collapsed across
all networks. We found the strongest similarity between model-
predictions and data for the alpha (r(1390) = .54), low-beta
(r = .50) and delta (r = .43) bands. While all statistical models
were significant (due to the large number of data points), simi-
larity was weak in the theta (r = .35), high-beta (r = .32), and
gamma (r = .10) bands. These results suggest that, for the main
resting-state bands (alpha, low-beta), models correctly predict
network-level power at the single subject-level. However, de-
spite high accuracy in predicting global power (see above),
models are less accurate at predicting the anatomical/network
sources of high-beta and theta-band power.

As a final validation, we examined whether models predict
individual variation in the peak-frequency of the alpha band.
Empirically, this characterization has proven a remarkably sta-
ble and predictive measure of individual differences in brain
and behavior [4, 36]. The functional significance of “peak-
alpha” is not yet resolved, although many accounts posit that
the width of an alpha-oscillation determines the temporal win-
dow over which phase-linked processes (e.g., information in-
tegration) occur [37, 5]. We found that models were accurate
at reproducing the global individual alpha-frequencies (r(85) =
.625, p ≈ 0; Fig. 5A). At the parcel-level, we found that model
accuracy was highest in predicting peak-alpha within posterior
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Figure 5: Models predict individual’s peak frequency within the alpha band and
explain individual differences in power. A) Correlation between predicted and
empirical global-peak alpha (average over parcels). B) Model predictions of
local peak-frequency are most accurate in posterior regions in which the alpha
rhythm is dominant. C) Spearman correlation matrix between model parame-
ters (see Sec 8.1 for definitions) and global power in each frequency band. D)
Correlations between individual differences in the ratio of excitatory and in-
hibitory activity and global power by frequency band.

cortex which agrees with the anatomical expression of alpha
power (Fig. 5B).

2.4. E-I balance predicts individual differences in whole-brain
average spectral power

Generative models, as we present here, can form predictions
using either overt linkages to model-parameters or as emergent
phenomena generated by their dynamics. We therefore tested
whether individual differences in spectral power or peak-alpha
are correlated with individual parameters embedded in the mod-
els (Fig. 5C). Between subjects, we found that connections
onto inhibitory populations (local EI, local II, and distal EI)
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group as calculated using either Participation-Ratio Dimension or thresholded-PCA (Sec. 4.6). E) Models predict that alpha oscillations become faster (higher-peak
frequency) under perturbation. Shading indicates ±1 standard-error (n=87).

had a strong negative correlation with alpha-power (ρ(85) =
−.73,−.75,−.51; p’s<E-6, respectively), and a positive corre-
lation with beta-power (low beta: ρ = .74, .78, .48; p’s<3E-6,
high-beta: ρ = .72, .76, .67; p’s<2E-8). This relationship also
held for the excitatory decay-rate (alpha: ρ = −.64, low-beta:
ρ = .64, high-beta: ρ = .64; p’s<E-10) and was reversed for
distal EE connections (alpha, ρ = .54, low-beta: ρ = −.43,
high-beta: ρ = −.42, p’s<6E-4). Relationships were simi-
lar to alpha, but weaker, in the theta band and similar to beta
in the low-gamma band (Fig. 5C). These parameter-level re-
lationships suggest that the global (i.e., whole-brain average)
excitation-inhibition ratio changes spectral power in the low vs.
high frequency bands.

Motivated by these parameter-level relationships, we quan-
tified the model-predicted excitation-inhibition ratio for each
parcel using the standard-deviation of simulated timeseries:
σ(xE)/σ(xI). This estimate was highly reliable (for brain-wide
average: ICC = .78) with much larger variation between-
subject (σ = 1.46) than between-region (σ = .10), hence we
only further investigated the brain-wide average due to small
anatomical variation. In agreement with the aforementioned pa-
rameters, the predicted EI-ratio was positively correlated with
global alpha-power (ρ = .65, p ≈ 0, Fig. 5D), but negatively
with beta power (low-beta: ρ = −.63, high-beta: ρ = −.67,
p’s≈ 0). Results thus indicate that individual differences in
models’ excitation-inhibition ratio predict empirical power in
the higher-frequency bands. This result is complementary, but
not identical, to theoretical models suggesting a relationship be-
tween excitation-inhibition ratio and the 1/ f slope of power-

spectral density [38, 39]. Interestingly, however, these rela-
tionships only held at the global scale. Neither the model-
predicted excitation-inhibition ratio, nor the strength of distal
connections (EE, EI) predicted the anatomical distribution of
spectral power for any band (max ρ(98) = .24, n.s.). The spa-
tial gradient of local-recurrent connections was weakly corre-
lated with gamma-band power ρ(98) = .31, p = .040 post-
Bonferroni correction) and non-significant for all other bands.
We did not find any significant relationships between model
parameters/excitation-inhibition ratio and peak alpha frequency
in terms of individual differences or anatomy.

Thus, in total, individual model parameters strongly predict
individual differences in global beta vs. alpha power, via the
excitation-inhibition ratio. But, these parameters do not pre-
dict the anatomical profile of spectral power or the peak alpha
frequency, even though these features are readily generated by
the models (see Sec. 2.3 above). Thus, the spatial distribution
of spectral power is an emergent property generated by model
dynamics as opposed to reflecting a singular of the model.

2.5. Model predicts the existence of individually reliable equi-
librium and non-equilibrium oscillatory dynamics

Lastly, we used the models to interrogate the dynamical prop-
erties of two resting-state oscillations: alpha waves and beta
waves (low-beta and high-beta). As previously mentioned, al-
pha rhythms (defined as 8-15Hz for HCP, but more commonly
8-12Hz) are high-amplitude posterior oscillations, often present
at rest, which are amplified during eye closure and by tasks that
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require visual inhibition, broadly defined. While alpha consti-
tutes one of the first discovered waking-EEG components, the-
ories regarding its origin and mechanism have evolved signif-
icantly over the past two decades. Initial theories, based upon
the eye-closure effect, posited that alpha represented a default
“cortical idling” state to which the visual system would return,
absent environmental stimuli (see [40, 41] for review), poten-
tially driven by thalamic nuclei [1, 2]. By contrast, alpha activ-
ity is now largely interpreted through the lens of preparatory at-
tention [42] and active visual inhibition (e.g. [43, 44]). Several
recent results have also indicated the potential for cortically-
initiated alpha waves to propagate retrograde along the dor-
sal visual pathway, from anterior (higher-order) to posterior
(lower-order) cortex [3, 45], in addition to a visually-evoked
forward-propagating wave [45, 46].

We tested dynamical mechanisms by which alpha and beta
waves could be generated at rest. From a theoretical perspec-
tive, there are several candidate mechanisms that can generate
wave-like dynamics, including: limit cycles (stable, periodic
behavior that the system will recover after small perturbations),
quasiperiodic behavior (mixed oscillations at incommensurable
frequencies), aperiodic waves (e.g. spectrally-concentrated
chaos), stable foci/spiral-points (transient damped-oscillations
when the system is perturbed), and noise-driven ‘switching’
between different equilibrium states. As an initial investiga-
tion we considered the attractor structure of the models, di-
viding models into those with equilibrium-style attractors and
those with non-equilibrium attractors. The former class defines
models which, in the absence of external perturbation, gener-
ate complex transient behavior, but will eventually settle into a
steady-state. The latter class of dynamics, converge onto low-
dimensional patterns of persistent activity, such as oscillations,
even without perturbation. The dynamics embedded near an at-
tractor thus determine the system’s “default” mode of activity,
whereas transient patterns of activity require some initial per-
turbation into that regime.

We found that these categories were consistent within-
subject with 78% of subjects having the same category for sep-
arate models fit to each data half (Odds Ratio=14.4, indepen-
dence χ2(1) = 27.8, p < 1.4E − 7). Of the 87 subjects, 40
(46%) belonged to the equilibrium-group for both scans, 28
(32%) belonged to the non-equilibrium group, and 19 (22%)
had one scan in each category (see Fig. 6A). Surprisingly,
these categories proved powerful markers of individual dif-
ferences in empirical spectral power. We observed strong in-
creases in alpha and theta power, but decreases in beta and
low-gamma power for subjects with non-equilibrium dynam-
ics (theta: t(66) = 3.54, alpha: t = 6.1, low-beta: t = −8.57,
high-beta: t = −6.80, low-gamma: t = −6.48, p’s<.0008) (Fig.
6B). In a agreement with the group-wide parameter-correlation
results (Fig. 5), we found that equilibrium (low-alpha) sub-
jects had an increase in EI connection strength leading to a
lower ratio of excitatory-to-inhibitory activity (Fig. 6C) and
changes in the integration time-constants. As before, we found
contrasting influences of the II strength and inhibitory decay-
parameter, however the net influence, over relevant ranges of
activity, was an increase in negative feedback (faster decay)

for the equilibrium subjects, particularly near the equilibrium
(where ψ’ is particularly large). However, there was no dif-
ference between groups for the empirical peak-alpha frequency
(t(66) = −1.83, n.s.). These results suggest that some aspect of
the low-dimensional attractors promote the generation of high-
amplitude oscillations in a band-selective manner as opposed to
globally speeding/slowing dynamics (which would be reflected
in peak frequency).

2.6. Alpha oscillations arise from low-dimensional dynamics
and are sensitive to perturbation

As an additional test, we considered how the induced di-
mension of model dynamics affect the alpha rhythm. Here,
we are interested in the effective dimension of the stochas-
tic (noisy) dynamics, i.e., how expressive are the models in
terms of spatial activity patterns under physiological condi-
tions. For this test, we used two different component-based
measures of dimensionality for comparison: a hard-threshold
dimension based upon the number of nontrivial PCA compo-
nents (DPCA, threshold = .1λmax) and the Participation Ratio Di-
mension (DPR, see 4.6) which is a graded measure. We did not
use topological definitions (e.g. Hausdorff dimension) as we
were interested in global dynamics embedded within the high-
dimensional space, as opposed to only studying the attractors.
Results indicated lower induced-dimension for non-equilibrium
subjects (DPR = 16.3 ± 7.9, DPCA = 10.4 ± 5.0) compared with
equilibrium subjects (DPR = 18.9 ± 7.4, DPCA = 13.2 ± 5.3)
as assessed with two-sample t-tests corrected for unequal vari-
ance (DPR : t(65.9) = −3.7, p < .0005, DPCA : t(65.5) = −3.8,
p < .0004; Fig. 6D). These findings agree with previous, em-
pirical descriptions of lower-dimensional dynamics associated
with alpha band vs. beta ([47]) activity. This analysis indi-
cates that the lower-dimensional dynamics which embed non-
equilibrium attractors, contract dynamics throughout the state-
space, rather than solely in the vicinity of the attractor. Thus,
the global dynamics of non-equilibrium subjects are shaped by
lower-dimensional structures.

To clarify the association of low-dimensional/ nonequilib-
rium dynamics with spectral power, we investigated how the
models reacted to perturbations. This analysis is important
for interrogating whether the alpha rhythm is, itself, an attrac-
tor (e.g., limit-cycle) or rather reflects transient behavior built
upon the nearby dynamics. At the systems-level, the former
case corresponds to a default-behavior which cannot be sup-
pressed without external input (the historical alpha interpreta-
tion) whereas the latter represents a regime that leverages the
intrinsic dynamics, but requires some perturbation to initialize.
To differentiate these cases, we examined the model response
under perturbations by simulating the models in the presence
or absence of intrinsic noise. As previously indicated, noisy-
simulations of non-equilibrium subjects predict greater alpha
and lower beta power than equilibrium subjects in agreement
with the data (see above, Fig. 6A,B). However, in the absence
of intrinsic noise, model dynamics converge onto the attrac-
tors. We found that most non-equilibrium attractors had great-
est power above 20Hz, despite the models generating lower
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beta-power in the presence of noise. When a spectral compo-
nent in the alpha-range was present, the other frequencies were
not harmonics of the alpha-component. These results suggest
that the alpha oscillation builds off of low-dimensional intrin-
sic dynamics, but is not itself a self-sustaining behavior. This
results indicate that, for eyes-open resting-state, active pertur-
bations are required and sustain an alpha wave, although such
perturbations need not be large nor applied continuously.

On this point, we examined how perturbations affect model
dynamics. For this analysis, we focused upon changes within
the alpha spectra, as opposed to between spectra. We also em-
phasize high-level properties, as opposed to simulating a spe-
cific task, so we modeled environmental perturbations as a ran-
dom process independently delivered to each brain area. The
perturbation magnitude is thus equivalent to the noise-level
which we applied as a scaling-factor to simulated physiologi-
cal/process noise (with baseline covariance Q as estimated by
individual models). As before, process noise denotes stochas-
ticity which drives a system, as opposed to artifact which only
appears in measurements. We scaled noise-perturbations from
2% to 100% of the variance used in simulations, with a res-
olution of 1%. Averaging over subjects, we found that the
peak alpha frequency within the visual network linearly in-
creased as a function of perturbation strength (r(97) = .96,
p ≈ 0; Fig. 6E). This effect agrees with empirical findings
of the peak alpha frequency changing within-subject, depend-
ing upon the level of engagement (increases during task, [4, 5])
and has been explored as a generic property in previous the-
oretical models [48, 49]. We also note the observed change
in peak-frequency indicates inherently nonlinear dynamics, so
the existence of an equilibrium attractor should not be confused
with approximately-linear dynamics. Together, these demon-
strations indicate the potential of our framework to inform
high-level systems neuroscience and implicate mechanisms of
person-driven and context-driven variation.

3. Discussion

We have presented a novel framework for estimating pre-
cision brain models from single-subject M/EEG data. Our
gBPKF algorithm is shown highly capable of solving the dual-
estimation problems inherent in direct brain modeling and re-
liably estimates latent brain model parameters directly from
M/EEG timeseries. Importantly, we stress that our approach
directly applies nonlinear system-identification to macroscale
cortical activity, seeking to solve for the system’s vector-field
(i.e., the moment-to-moment variation) as opposed to replicat-
ing a specific signal feature. Nonetheless, our approach re-
produces the spatial distributions and individual differences in
band-limited power across the main M/EEG bands with high
fidelity. The models also link individual differences in al-
pha power to the geometry of underlying dynamics as shaped
by excitatory-inhibitory balance. These applications demon-
strate the inferential power of individualized (precision) brain-
modeling.

In the present work, we demonstrated our technique using
magnetoencephalography (MEG) data from the Human Con-

nectome Project (HCP; [25]). However, we expect that the ap-
proach will be similarly useful to estimating brain models from
other fast-timescale modalities, particularly electroencephalog-
raphy (EEG). These approaches also measure the effect of cor-
tical dipoles at a distance and can be similarly modeled in a
general state-space framework. One difference, however, is
that voltage-based modalities such as EEG, ECoG etc., are in-
herently referential i.e., they measure the electrical potential
between points. Fortunately, this aspect is fully compatible
with our algorithm and simply corresponds to a different for-
ward model/measurement matrix (H). On a technical note,
care should be taken so that the resultant data is full-rank (e.g.
by factoring H; see Sec 8.8) as the leadfield is guaranteed
to be rank-deficient (i.e. HHT is not invertible) when mean-
referencing is applied. The referential nature of voltage also
generates a new shift invariance (nonuniqueness of C and V
values) although this effect only applies to their absolute val-
ues, as opposed to the relative spatial patterns. However, we
believe that the general enterprise of characterizing individual
brain dynamics and estimating models will prove similarly ap-
plicable to EEG as MEG.

We view our present model as having two primary limi-
tations: 1) assumptions regarding how the M/EEG signal is
generated and 2) the omission of subcortical sources. We
stress that these limitations are features of our current model
(two nodes per cortical parcel) rather than the approach per-
se. We have designed our publicly-available code so that it
is easy to implement arbitrary models of neural circuitry and
M/EEG signal weighting (with the usual trade-offs between
run-time/robustness and model complexity). We therefore ex-
amine some of our model’s limitations with the caveat that these
limitations are not inherent to our general estimation approach
(gBPKF). In the first limitation, we make the typical assump-
tion that current-dipoles reflect excitatory neuron depolariza-
tion and that the dipole, like the cells themselves, is oriented
normal the cortical surface. While convenient, these assump-
tions are not always valid ([24, 50]) so further refinement of the
measurement matrix (H) may improve anatomical precision.

A second limitation arises from the neglect of subcortical in-
fluences. In the current work, we chose to only model cortex,
in line with the predominantly cortical origin of M/EEG sig-
nals. However, interactions with the brainstem, thalamus, and
hippocampus are known to generate many slow EEG compo-
nents. It is for this reason that our frequency-domain valida-
tions focused upon the faster alpha and beta bands, although
the cortical vs. subcortical origins of either phenomena are not
yet settled (although see [3]). In any case, it is clear that subcor-
tical influences certainly guide cortical dynamics and that their
inclusion could improve model performance. Several Dynamic
Causal Modeling approaches, for instance, have included sub-
cortical regions in modeling M/EEG ([51, 52]). This approach
usually requires strong priors as the optimization may otherwise
become ill-posed. By contrast, we have first prioritized val-
idating our framework within an empirically-verifiable model
space, as opposed to including as many degrees of freedom as
possible. It is therefore possible that some of the would-be
explanatory variance associated with cortico-thalamo-cortical
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pathways is mismodeled in our approach as direct cortico-
cortical connections in the absence of a subcortical component.
However, we have designed our modeling approach such that
subcortical regions can be easily added with or without various
priors as another latent-variable, treated analogously to the in-
terneurons (Hsubcort = 0). We encourage (verifiable) expansion
in this direction.

In conclusion, we have validated a new approach for pre-
cision brain-modeling using single-subject M/EEG and illus-
trated its explanatory potential in the context of resting-state
oscillations. We hope that these innovations will enable new in-
sight into individual variation and circuit mechanisms that may,
eventually, inform new ways of interacting with the brain.

4. Data Processing and Statistical Methods

In this section we briefly describe the resting-state magne-
toencephalography (MEG) data used for model training and
validation. An introduction to the Kalman Filter and details
of the gBPKF algorithm are presented in the SI. Technical de-
scriptions of ground-truth model generation are also provided
in the SI.

4.1. HCP MEG Data Processing

Models were fit to magnetoencephalography (MEG) data
provided by the Human Connectome Project (HCP; [25]).
We used the minimally-preprocessed HCP pipeline for MEG
which centers on using Independent Component Analysis
(ICA) to identify and remove artifact. Thus we used the HCP
MEG data as-provided up to the ICA-removal step. Whereas
the HCP pipeline proceeds using only the “good” independent
components (IC’s), we instead projected-out the bad ICs from
the sensor-level timeseries. While both approaches remove the
“bad” IC’s as identified in the HCP MEG release, our approach
still retains the original sensor space and the associated
low-variance IC’s which the HCP considered neglible. The
rationale for this deviation is so that the those dimensions of
measurement are retained as the absence of (significant) signal
along those dimensions is itself informative.

We then projected data according to the left singular-vectors
of the leadfield matrix (derived from the pre-calculated Bound-
ary Element Method headmodels). This step corresponds
to reducing dimensionality based upon what spatial patterns
MEG can measure as opposed to those that were observed
(in practice these approaches overlap). Our criterion was
to only retain leadfield dimensions (singular vectors whose
singular values were ≥ 1% of the maximum singular value.
These reductions were done on a per-scan basis which meant
that, due to the removal of bad channels, projections (hence
measurement models) often differed between scans of the same
subject.

4.2. Frequency-Domain Filtering

Data was filtered between the delta and high-beta bands
(1.3-30Hz). The 30Hz upper limit marks the high-beta band
while the 1.3Hz lower limit was adopted from the HCP ICA
processing pipeline and does not include the full delta-band
(i.e., is above the slowest delta waves). This range also
includes the full alpha and theta-bands. As part of the HCP
MEG pipeline, high-artifact data segments are automatically
removed, resulting in variable length segments of good-quality
data. To calculate power spectral density (PSD) at the subject-
level we first discarded segments lasting less than 20s. The
PSD was then calculated for each timeseries and discretized
with resolution 0.25 Hz. The resultant PSDs were averaged
across segments, weighted according to segment length.

For band-limited power, we used the pre-calculated HCP es-
timates in the ICA-MNE pipeline. This pipeline solves for a full
dipole-vector timeseries at each of the 8004 vertices (3 dipole
coordinates per vertex). Band-limited power is estimated by
filtering the timeseries for each dipole coordinate and then cal-
culating the squared magnitude of the filtered dipole vectors.
HCP defines 8 specific bands: delta, theta, alpha, low-beta,
high-beta, and low/mid/high gamma. In the presented results,
we normalized the average band-limited power at each dipole
by the whole-spectrum (unfiltered) power and then averaged
within parcel to get parcel-level power.

4.3. ICA Artifact Detection

We used the HCP MEG-ICA pipeline to identify artifac-
tual Independent Components (ICs). The HCP MEG2 and
later releases sorts large ICs as having a brain or non-brain
origin. However, whereas the original ICA pipeline retained
only “brain” IC’s (removing both artifactual and low-variance
IC’s) we simply removed the non-brain IC’s by orthogonal
projection, thereby retaining the original channel dimensions.
This step retains information that the low-variance IC’s are
measurable and small, whereas removing them would imply
that those dimensions are unmeasurable (potentially leading to
model overfit). Denoting the ICA mixing matrix for the bad ICs
as Mbad and the post-ICA corrected measurements yICA:

yICA = (I − Mbad M+bad)y (4)

4.4. Source Localization

We used the standard HCP anatomical pipeline to compute
forward head models. Comparisons with empirical source-
level power all used the HCP pre-calculated power-distributions
which allow full 3d dipole configurations ([25]). However,
model-training requires a fixed mapping between activity pat-
terns and measurements, and thus a single, constant, dipole ori-
entation per vertex (up to sign reversal). We reduced the 3d
forward model to a single dipole direction per vertex by assum-
ing that dipoles are oriented normal to the cortical surface (as
calculated in FieldTrip using the vertex cross-product method).
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In order to transform MEG magnetometer/gradiometer mea-
surements onto cortical dipoles we used Minimum Norm Es-
timation (MNE; [53]). Like other linear source-localizers, The
MNE inverse matrixM maps sensor-level data onto the brain:

x̂MNE
t =MyChan

t . (5)

Conceptually, MNE minimizes the expected mean-square-error
(like the Kalman Filter) and therefore takes the regression form:

M = cov[x]LT (Lcov[x]LT + RMNE)−1 (6)

Following the HCP ICA-MNE pipeline, we use the simplified
assumption that cov[x] and RMNE are each independent and
identically-distributed (iid) hence, using the noise-signal-ratio
(NSR) coefficient λ:

M = LT (LLT + λI)−1 (7)

We calculated λ analogous to the HCP minimal pipeline, but
with a single λ per run, applied in channel-space, whereas the
HCP rescaled λ’s for each IC. This difference is because we
retained the original channel space, instead of reducing dimen-
sionality to the IC space.

λ = Tr[LLT ]
ϵ

nChan
(8)

with noise-value factor ϵ = 8. The inverse solution M was
calculated separately for each resting-state run and potentially
differed (e.g. do to noisy channel removal). We further rescaled
each row of M to produce unit variance in x̂MNE which was
done separately for each run.

4.5. Statistical Analysis
Our analyses generally fall into three categories: 1) vali-

dating/benchmarking the approach with a known (simulated)
ground-truth, 2) assessing reliability with real-world data, and
3) exploring dynamical predictions made by the models. For
these analyses we used three similarity measures depending
upon the variable’s dimensionality. We used simple correla-
tion (collapsing over non-masked connections) to gauge the
overall similarity of two matrices/vectors. To assess the reli-
ability of individual differences, we used Intra-Class Correla-
tion ([54]) for scalar-valued parameters (e.g., time constants)
and Image Intra-Class Correlation (I2C2; [34]) for multivari-
ate parameters (e.g. connectivity). All reported p-values are
2-tailed . Multiple-comparison corrections all used the Bonfer-
roni method and statistics reported as significant all passed this
threshold. We use the notation p ≈ 0 for calculated p values
less than 10−10 as exact estimates are likely inaccurate past this
point. When multiple related analyses are presented in-text, we
typically report the largest p-value over all of the analyses with
the notation p′s <, to improve readability.

4.6. Quantifying Dimensionality
We quantified dimensionality of stochastic dynamics in two

ways, both based off of the covariance eigenspectrum, with
convergent results. First, we used the PCA-threshold method

with a hard-boundary defined by 1% of the maximal component
weight (eigenvalue). For this method, we quantified dimension-
ality as the number of components passing this threshold. For
comparison, we used the participation ratio dimension (DPR,
[55, 56]) which is calculated from the covariance eigenvalues
(λ):

(
∑

i λi)2∑
i λ

2
i

. (9)

We used DPR for comparison as it provides a soft dimensional-
ity metric in terms of the variance spread as opposed to being
premised upon a single, low-dimensional surface. It is also sen-
sitive to dynamics which are nontrivial in the stochastic case,
but eventually converge in the absence of noise. We present
DPR calculated using z-scored simulated data (i.e., using corre-
lation instead of covariance) to control for the different scaling
of excitatory and inhibitory neurons. However, statistical infer-
ences led to the same conclusion with/without normalization.

5. Data and Code Availability

Resting-state MEG data is publicly available through the Hu-
man Connectome Project (HCP; [25]). It can be accessed,
through a registered account, at db.humanconnectome.org.
Data processing code, as described below, is available through
HCP. Interested users should download the ”megconnectome”
pipeline scripts through the HCP database. A software package
containing MATLAB code for gBPKF model-fitting, simula-
tion, and visualizing results is available at the primary author’s
github.
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8. Supplementary Information

8.1. Mesoscale Individualized NeuroDynamic Modeling at
Fast Timescales

We first describe the generative model to be estimated by
each subject’s data. Our model formulation is similar in moti-
vation to conventional neural mass models (e.g., [26]). Each
brain region contains two neural populations: an excitatory
and an inhibitory population. A sigmoidal nonlinearity (ψ)
converts population-average activation (an abstraction of depo-
larization) into a normalized output (analogous to firing rate).
The shape of the nonlinear function is parameterized by a set
of unknown variables (α). Macroscale electromagnetic fields
(MEG, EEG, LFP, etc.) generated by the brain derive primarily
from post-synaptic and dendritic potentials as opposed to
action-potentials, hence, for our data-driven models, we use
activation/depolarization (as opposed to firing-rate) as the state
variable, denoted (x).

Each population receives some baseline level of drive c and
it returns to baseline at a rate (1-D) with D a diagonal ma-
trix of autoregressive coefficients. We refer to the quantity
(1-D) as the “decay” rate. Both excitatory and inhibitory
cells connect locally and excitatory cells also connect to dis-
tal brain areas via connection matrices (W). A major difference
in our model, from previous approaches, is that we consider
two types of inter-regional connections from excitatory cells:
excitatory-excitatory and excitatory-inhibitory, whereas previ-
ous approaches have been constrained, by the nature of dif-
fusion data, to a single, undirected form of connectivity (e.g.,
[17]). The noise terms ε correspond to unmodeled physiologi-
cal processes and are assumed to be Gaussian with zero mean
and covariance Qt. Together these equations are:

xE(t + 1) = WEψE(xE(t)) − βEψI(xI(t)) + DE xE(t) + cE + ε
E(t)
(10)

xI(t+1) = W IψE(xE(t))−βIψI(xI(t))+DI xI(t)+cI +ε
I(t) (11)

The nonlinear function ψ is specified analogous a 2-parameter
logistic function with gains (sE ,sI) and bias terms vE , vI . Here,
the gain s is scalar-valued (independent of parcel), whereas
the biases v vary by parcel. For simplicity, we used tanh for
the nonlinear function and note that such models can be di-
rectly rewritten with nonnegative activation (logistic sigmoid),
if desired. Without loss of generality (see Sec. 8.7) we fix
sI = 1, vI = 0, so these parameters are only solved for the exci-
tatory population. We condense the separate population equa-
tions into the more general form with excitatory and inhibitory
activity concatenated as xt:

xt+1 = Wψ(s ◦ xt + v) + Dxt + c + εt (12)

This is referred to as the state equation as it defines how
the state-variable “x” evolves in time. Coupled with the
state-equation is an associated measurement-equation (“for-
ward model”) which defines how patterns of brain activation
(xt) are reflected in sensor readings (yt). As we are interested in

electromagnetic fields (which add), this transformation consti-
tutes a linear mixing defined by the matrix H and sensor-level
noise η (which evolves as a Gaussian process with zero-mean
and covariance Rt).

yt = Ht xt + ηt (13)

Previous research strongly indicates that brain potentials mea-
sured from the scalp (MEG and EEG) are primarily generated
by cortical pyramidal cells, whose asymmetric geometry sup-
ports the formation of dipoles ([24]). By contrast, the symmet-
ric geometry of inhibitory neurons (e.g., stellate cells) leads to
the microscopic (subcellular) dipoles largely canceling when
measured from a distance. Thus, for present purposes, we
model the signal mixing matrix Ht as consisting of a forward
matrix H̃t for excitatory populations (described in detail later)
and zero for inhibitory populations. Similarly, we assume that
dipoles are oriented normal to the cortical surface reflecting
the underlying orientation of pyramidal cells. However, our
methodology is relevant to any specification of measurement
model and can therefore be adapted to alternative models of
EEG signal generation (i.e., by defining a different H̃t matrix).
The measurement matrix H is allowed to be time-varying (e.g.,
for dropping a channel during periods of artifact).

Ht = [H̃t 0k×n] (14)

We assume that the following pieces of information are known
(or well-approximated):

1. A forward measurement model (Ht)
2. The sensor-noise covariance (Rt)
3. Some reasonable restrictions on the connectivity graph

The stringency of the last requirement depends upon the di-
mensionality of the measurements (e.g., channel count) rela-
tive the number of brain areas, particularly those with low-
SNR. In our case, we directly inferred all these properties from
data by using MRI data to calculate forward models (bound-
ary element method) and empty-room recordings to estimate
R. We used the group-level distribution of fMRI MINDy mod-
els ([19]) to generate a binary “connectivity mask” of plausi-
ble connections (see Sec. 8.6). We used the same connec-
tivity mask for excitatory-excitatory and excitatory-inhibitory
connectomes. The remaining challenge consists of solving
for the latent brain activity (xt) and brain model parameters
(Q,W,D, c, s, v) given measurements yt. This endeavor is non-
trivial as it involves a high-dimensional nonlinear optimization
problem in which the system-states (brain activity for each pop-
ulation) are not directly accessible.

8.2. Kalman Filtering

The Kalman Filter is a recursive Bayesian algorithm for es-
timating unknown states of a known dynamical system. Given
model parameters and measurements, the Kalman Filter and its
nonlinear extensions, seek to minimize the expected difference
(sum-of-squares) between true and estimated system states.
The Kalman Filter differs from static approaches, however,
in that its estimates also incorporate previous measurements.
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At each time-step the Kalman Filter passes the estimated
distributions through a noisy dynamical-systems model. Using
the measurement model, the Kalman Filter updates this distri-
bution based upon the new data. By tracking the distribution
over time, the Kalman Filter detects latent state variables (e.g.,
inhibitory neuron activity) through their predicted influence on
measured variables.

8.2.1. The Prediction Step
The Kalman Filter consists of alternating prediction and cor-

rection steps. During the Prediction step, the dynamical sys-
tems model is used to propagate the current state distribution
(xt ∼ N(x̂t, Pt)) into an a-priori distribution for the next time
step

x̂t+1|t = E[x|x̂t, Pt] (15)

Pt+1|t = Cov[xt+1 − x̂t+1|t |x̂t, Pt] (16)

It is important to note that the covariance matrix here, (Pt), is
the error-covariance of estimating the true-state xt using x̂t and
not the covariance of a sample (i.e., Pt tracks uncertainty in
estimating the vector xt not the distribution of multiple states).
The original Kalman Filter dealt with the linear case: xt+1 =

At xt + ωt in which the solutions are:

x̂t+1|t = At xt (linear case) (17)

Pt+1|t = AtPtAT
t + Qt (linear case) (18)

Different methods have been developed to extend this predic-
tion step to the nonlinear case ([28, 29]), which we discuss later
(Sec. 8.5).

8.2.2. The Correction Step
The second step of the Kalman Filter uses new measurements

to correct the a-priori predictions. This stage involves comput-
ing the Kalman Innovation (a prediction error) and adjusting
state estimates proportionally to this error. Given prediction
x̂t+1|t and new measurement yt+1, the prediction error (“Kalman
Innovation”) is:

rt+1 := yt+1 − Ht+1 x̂t+1|t (19)

The Kalman correction occurs by multiplying this error by the
Kalman-gain matrix (Kt+1) to form an updated state estimate:

x̂t+1 = x̂t+1|t + Kt+1rt+1 (20)

The gain, Kt+1 is selected to minimize uncertainty (variance) in
the corrected estimate:

Kt+1 := arg min
M

E[||xt+1 − (x̂t+1|t + Mrt+1)||2]. (21)

This problem constitutes least-squares regression and is there-
fore solved by:

Kt+1 = Cov[xt+1, rt+1]Cov[rt+1]−1 (22)

In our case, the model is linear in terms of measurements and
measurement-noise (i.e. the M/EEG signal is a linear function
of dipole strength), so the analytic solution is given by:

Kt+1 = Pt+1|tHT
t+1(Ht+1Pt+1|tHT

t+1 + Rt+1)−1 (23)

The posterior estimates, incorporating measurement yt+1 are
thus:

x̂t+1 = x̂t+1|t + Kt+1rt+1 (24)

Pt+1 = (I − Kt+1Ht+1)Pt+1|t(I − Kt+1Ht+1)T + Kt+1Rt+1KT
t+1

= (I − Kt+1Ht+1)Pt+1|t (25)

Following this correction, the Kalman Filter proceeds to the
next time-step. Predictions, measurements and corrections
are then assessed for t + 2. The major drawback of Kalman
Filtering, however, is that it requires a known dynamical-
systems model and initial distributions. In our framework, the
dynamical-systems model is defined by the unknown parame-
ters, so we express the Kalman Filter predictions as a function
of these parameters which we optimize using gradient-based
methods.

8.3. Optimization Objective
Our optimization framework in the current work solely seeks

to minimize the error in predicting future sensor-level mea-
surements, although associated code also enables the use of
parameter-regularization and penalties based upon long-term
model statistics (e.g. matching the observed covariance). For
the present purpose, however, the model error corresponds to
prediction error in the Kalman Filtering stage and in the free-
running (forecasting) phase. For k Kalman-Filtering steps and
n free-running prediction steps, we denote the error over start-
times t0, we use ỹ and H̃ to indicate that comparison measure-
ments used to evaluate error may be in a different space than
those used to estimate states with the Kalman Filter:

1
n + k

E{t0}
[ t0+k∑

p=t0+1

Hp−t0 (ỹp − H̃p x̂p|p−1)

+

t0+k+n∑
q=t0+k+1

Hq−t0 (ỹq − H̃q x̂q|t0+k)
]
. (26)

Thus, our cost function seeks to minimize the combined pre-
diction error over both the Kalman-Filtering (left hand side)
and forecasting (right hand side) steps. These errors are also
averaged over all of the initial time points t0 (minibatch seed)
which are randomly selected during each training iteration (see
Sec. 8.9). Within our cost function, the term H denotes the
smooth Huber-loss transformation ([57, 58]):

Hk(zt) := 2αk

(
− 1 +

√
1 +
∥zt∥

2
Mt

αk

)
(27)

We applied the Huber-loss on-top of a conventional quadratic
loss function with cost matrix Mt (see Sec. 8.8 for the choice of
M):

∥zt∥
2
Mt

:= zT
t Mtzt (28)
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The smoothed Huber-loss function (H) allows small values of
∥z∥2 to pass through unaltered, whereas large values of ∥z∥2 are
quashed and limit to

√
αk∥z∥. This smooth loss-function ap-

proximates the original Huber-loss which penalizes squared er-
rors below a threshold and absolute errors above it. The Huber-
loss is thus robust to outliers and improves model training in
the presence of unusual events (e.g., artifact). The parameter
αt sets the soft-threshold for values to be quashed under Huber-
loss. For each filtering/prediction step we set αk equal to twice
the expected median error for that step (i.e., α1 used the me-
dian of 1-step errors etc.) based upon previous iterations. This
value was updated autoregressively after each training-batch to
track the evolving error distribution (i.e., α became smaller as
the model became more accurate). Denoting median by med
and training iteration m, α was updated each training iteration
according to:

αk(m + 1) = .99αk(m) + .02med(∥zk(m)∥2M) (29)

with the median being taken over initial conditions within a
training minibatch. Note that this value is specific to the it-
eration within the prediction sequence (i.e., the kth-step predic-
tion), not the recording time, hence H is indexed by p − t0 and
q − t0 in the cost function.

8.4. The generalized Back-Propagated Kalman Filter (gBPKF)

We first motivate our algorithm conceptually, by considering
the dual-estimation of states and parameters as a min-min op-
timization. Namely, suppose that we have some cost-function
J indicating the goodness-of-fit between model predictions (ŷ)
and recorded data (y) by penalizing their difference. Because
model predictions are a function of the system’s current state
(x) the cost-function takes the form:

J(yt − ŷt) = J(yt − Ht f (θ, xt−1)). (30)

In the traditional model-fitting case, one solves for θ using x and
y. However, M/EEG do not directly measure cellular activity,
so both x and θ are unknown. A naive approach would be to di-
rectly optimize over both x̂ and θ; yet such an approach quickly
explodes in the number of unknown variables. However, an al-
ternative is to replace xt−1 with its best possible estimator, given
the data. This estimate is a function of both the previous mea-
surements (y{k<t}) and the system’s dynamics (as modeled by
parameters θ). Since the true values are unknown, we define
this estimator in terms of expected error:

x̂t = Kt(θ, y{k≤t}) := arg min
z

E[J̄(xt − zt)|y{k≤t}, θ]. (31)

Here, J̄ denotes whatever criterion is used to define a “good”
state-estimate which need not be the same as the cost-function
for optimizing the model (J). Substituting for x̂ in the previ-
ous equation, gives an equation solely in terms of the unknown
parameters (θ) and the measurements recorded up to time t:

θ = arg min
θ̂

J
(
yt − Ht f (θ̂,Kt−1(θ̂, y{k<t}))

)
(32)

In our case, J̄ corresponds to sum-of-squares differences, hence
the state estimate K becomes the Kalman Filter (see Sec.
8.2,[59]). However, two elements of the Kalman Filter remain
unknown: the initial state mean and covariance. To estimate
these aspects we simulate the current model at the start of
each iteration to derive baseline state (xt) distributions. This
procedure constitutes the ”generative stage”. These distribu-
tions then parameterize a static linear filter (total-least squares)
which forms the initial state expectation and error-covariance.
Unlike source reconstruction, these initial estimates include
both excitatory and inhibitory cells. This difference is because
the simulations provide the steady-state covariance between all
populations (excitatory and inhibitory).

Denoting the concatenated free-running simulation data Xsim

and initial measurement y0 the initial state estimate and covari-
ance is given by:

K0 = Cov[XS im]HT
0 (H0Cov[XS im]HT

0 + R0)−1 (33)

x̂0 = E[XS im] + K0(y0 − E[y]) (34)

P0 = (I − K0H0)Cov[XS im] (35)

Note that these equations are identical to the Kalman update
step (Eqs. 20,23) and, under trivializing assumptions, reduce
to Minimum Norm Estimation (MNE; [53]) as is used in
conventional source-localization for M/EEG. The initial state
distribution parameters (expectation and covariance) are fed
into a nonlinear Kalman Filtering algorithm. The Kalman
Filter integrates a sequence of “k” measurement timesteps to
refined estimates of latent neural activity. We then use the
last state-estimate provided by the Kalman Filter to forecast
the next “m” measurements. During the Kalman-Filtering
interval, error corresponds to the difference between a-priori
predicted measurements and true measurements at each
time-step. Likewise, error during the final stage corresponds
to the difference between true and forecasted measurements.
We have previously derived and simplified the full analytical
gradients of this process ([27]) which are fed into a stochastic
gradient/Hessian optimization algorithm to update parameter
estimates. In the present paper, we used Nesterov-Accelerated
Adaptive Moment Estimation (NADAM; [60]) for the gradient
updates, however a wide-variety of gradient-based algorithms
are included with the publicly available code.

For brevity, we present the gBPKF equations ([27]) in their
most general form with all parameters contained within the
(high-dimensional) variable θ. We also focus upon regress-
ing gradients through the Kalman-Filtering stage, as opposed to
the full filtering-forecasting sequence as the forecasting stage is
simply a special case of the Kalman Filter with the probabilistic
(P) and update (K) terms removed. Our objective is to minimize
a function L of prediction error (L(y − Hx̂)). In the current pa-
per, we sued the smoothed Huber-loss (L(z) = H(∥z∥2M), see
Sec. 8.3), For a set of initialization times t0 and filter-length m,
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we denote the accumulation of error from step t up to m as:

←−
E

(t0)
t :=

t0+m∑
k=t0+t

L[yk − Hx̂{θ,F [y]}
k|k−1 ] (36)

The full objective is to solve for θ which minimizes the total er-
ror over all initialization times Et0 [

←−
E

(t0)
1 ]. For brevity’s sake, we

omit the notation indicating dependencies upon parameters (θ),
previous measurements (F [y]) and start-times. Unlike a con-
ventional dynamical systems model, the Kalman Filter evolves
both the state-expectation (x̂) and error-covariance P. To elimi-
nate redundant equations, we use ω to denote the combined set
{x̂, P, θ} with time indices on x̂, P being all previous time-steps.

∇
←−
E t = 2(∂ωzt)HT∇L +

∂
←−
E t+1

∂x̂t
(∂ω x̂t) +

←−
E t+1

∂Pt
(∂ωPt) (37)

Evaluating the first term: ∂ωzt = −H∂ω x̂t|t−1 and backpropagat-
ing through the Kalman update:

∂ω x̂t+1 = Gt+1(∂ω x̂t+1|t) + (∂ωK)zt+1 (38)
∂ωPt+1 = Gt+1(∂ωPt+1|t) − (∂ωK)HPt+1|t (39)

Fixing H,Q,R, the Kalman gain is a direct function of Pt|t−1
(and its influence on S). Using that Kt minimizes Tr[Pt] and
applying the implicit function theorem:

−∂Pt|t−1HT + ∂KtS + KtH∂Pt|t−1HT = 0 (40)
∂ωKt = Gt(∂ωPt|t−1)HT S −1 (41)
∂ω x̂t = Gt[∂ω x̂t|t−1 + (∂ωPt|t−1)HT S −1zt] (42)

∂
←−
Et

∂x̂t|t−1
= GT

t
∂
←−
E t

∂x̂t
− 2HT Mtzt (43)

∂ωPt = Gt(∂ωPt|t−1)GT
t (44)

Zt := HT S −1zt

[
Gt
∂
←−
E t+1

∂x̂t

]T
(45)

∂
←−
E t

∂Pt|t−1
=

1
2

(Zt +Z
T
t ) +GT

t
∂
←−
E t

∂Pt
Gt (46)

We are now ready to propagate errors through the a-priori statis-
tics which, depending upon the choice of Filter, can be esti-
mated in various ways. The following equations hold equiv-
alently for the exact statistics and any reasonable means of
approximating them as implemented in any currently used
Kalman Filter. Specifically, we only assume that the approx-
imations of E preserve linearity and cov preserve bilinearity.
We therefore have the general recursions, for ϕ := {x̂t−1, θt−1}:

∂ϕ
←−
Et =

∂
←−
Et

∂x̂t|t−1
E[∂ϕ f ]+

∂
←−
Et

∂Pt|t−1
[cov[ f , ∂ϕ f ]+cov[∂ϕ f , f ]] (47)

The gradients with respect to Pt, however, are specific to the
filter choice, although general forms are presented in [27]. For
the EKF ([28]), as used in the current work, we have:

∂
←−
E t

∂Pt−1
= F′Tt

∂
←−
E t

∂Pt|t−1
F′t (48)

∂
←−
E t

∂x̂t−1
= F′T

∂
←−
E t

∂x̂t|t−1
+ 2vec

[
∂
←−
E t

∂Pt|t−1
F′Pt

]T ∂vec[F′])
∂x̂t

(49)

The final gradient of total error with respect to parameter for
the filtering stage is:

∂E

∂θ
=
∑

t

∂ f T
t

∂θ

∂
←−
E t

∂x̂t|t−1
+ 2vec

[
∂
←−
E t

∂Pt|t−1
F′Pt

]T ∂vec[F′]
∂θ

(50)

Gradients with respect to sample-based filters (e.g., Un-
scented Kalman Filter, [29]) can be found in [27]. In the
generative and forecasting stages, gradients follow the normal
back-propagation-through-time recursions as there is no
Kalman-filtering.

8.5. Estimating Nonlinear Posteriors
In general, our approach (gBPKF) is compatible with a wide

variety of techniques for estimating posterior means and covari-
ances following a nonlinearity (see [27]). In the current work,
however, we use a simple batch formulation of the Extended
Kalman Filter (EKF; [28]) which allows the Kalman Filter to
run on many data segments in parallel. We use X̂ to denote
the concatenated state estimates for all initial time-points within
a minibatch, with a common error-covariance (P̂) used for all
members of the minibatch. We use the set-valued index index
{q} to denote the current time step for all data segments within
the minibatch. The prior distribution and posterior statistics are:

X ∼ N(X̂{q}, P{q}) (51)

X̂({q}+1)| {q} = f{q}(X̂{q}) (52)

P({q}+1)| {q} = E{q}
[∂ f{q}
∂x{q}

]T
P{q}E{q}

[∂ f{q}
∂x{q}

]
+ E{q}[Q{q}] (53)

Hence we alter the EKF to use the average Jacobian over the
minibatch. This step allows many data segments to be run in
parallel by sharing a common covariance P{q} at the cost of
having less sensitivity to time-variation in the nonlinearity. To
counteract this drawback, we chose minibatches as temporal
chunks (80 initial timepoints with 5-step=10ms spacing) so as
to track nonstationary statistics. In all of our applications, the
process noise Q{q} did not depend upon time, so the rightmost
expectation simplifies to Q.

8.6. Generating the Connectivity Mask
We constrained eligible inter-area connections using a

liberally-defined connectivity mask which was generated based
upon previous modeling with fMRI data ([19]) as described
below. While this step is not an inherent requirement of our
approach, it is important for ensuring that fits are robust with
M/EEG data. Specifically, this constraint can counteract mod-
est deviations in the forward model (i.e., head position relative
sensors) and promotes well-posedness when multiple brain ar-
eas have weak contributions to the M/EEG signal. We formed
our connectivity-mask based upon group-level consensus from
the fMRI MINDy models ([19]) using the union of several cri-
teria to avoid reliance upon any single measure of what consti-
tutes a non-trivial connection. This procedure retains sensitivity
to small, but consistent connections as well as connections that
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may not show up in every subject but are (on average) large. We
rescaled each fMRI connection matrix (two runs per subject) to
have a root-mean-square value of 1, excluding self-connections.
For thresholding, we used an absolute magnitude threshold of
0.5 applied to each matrix. We also note that, unlike the M/EEG
models presented in the current work, the fMRI MINDy models
use a single connection per region-pair which can be positive or
negative as opposed to both EE and EI projections. We then
generated the connectivity mask through the union of three cri-
teria:

1. Average magnitude: We admitted the top 15% of connec-
tions in terms of magnitude for the group-average.

2. Consensus: We admitted connections with an average
post-threshold sign greater than 0.8 or less than -0.6 across
subjects/runs.

3. Minimal Count: For each parcel we admitted the (up-to)
three largest positive and negative connections in terms of
input, output, and symmetrized-strength (average of input
and output) with overlap between these categories.

We then symmetrized the resultant matrix so that if Wi, j is
an admissible connection, so is W j,i. The final mask had
2,522 admissible long-distance connections out of the possible
9,900 (25.2%). We used the same connectivity mask to con-
strain long-distance excitatory-excitatory connections and long-
distance excitatory-inhibitory connections for a total of 5,044
inter-region conncetions.

8.7. Promoting Unique Solutions
A key trap in data-driven modeling with latent-variables is

that several model solutions may be observationally-equivalent,
meaning that they behave identically in terms of the measured
variables even if they are nonidentical in terms of the non-
measured variables. In our case, this ambiguity largely cor-
responds to models in which the predicted excitatory activity is
the same, but not the inhibitory activity which lacks a prede-
fined unit (scale) since it is not directly measured. For many
use-cases this ambiguity is irrelevant as it only affects interpre-
tation of the absolute scale for inhibitory activity/parameters.
However, for good form, we reduce the parameter-space to en-
sure unique solutions. To be clear, the model is not overpa-
rameterized in the usual sense–for a fixed set of latent states
{x} the optimal parameter choices are well-posed. Rather, the
difficulty arrives with the possibility of transformed systems
behaving identically in terms of measurements. This relation-
ship is called observational equivalence and, in the determin-
istic case, can be stated as follows: the systems xt+1 = ft(xt)
and x̂t+1 = f̂t(x̂t) are observationally-equivalent with respect
to the measurement-process y(x) = Hx if for every x0 there
exists x̂0 s.t. Ht xt = Ht x̂t with x and x̂ evolving accord-
ing to f and f̂ , respectively. As a specific case, consider
f (x) = Wψ(S x + v) + Dx + c with S and D diagonal. If the
vectors b, q satisfy Htdiag(b) = Ht and Htq = 0, ∀t, then the
transformed system x̃ = b ◦ x + q is observationally-equivalent
to x and has parameters:

S̃ = b−1 ◦ S , W̃ = diag(b)W (54)

ṽ = v − b−1 ◦ q, c̃ = b ◦ c + (I − D)q (55)

Here and in all later cases we use ◦ to denote element-wise
multiplication (Hadamard product). The inverse-notation b−1 is
understood to be applied element-wise for vectors. In the above
case, we note that b, q may be chosen arbitrarily for inhibitory
indices since the corresponding measurement gains are zero ( j
inhibitory implies Hi, j = 0). Thus there are at least two arbitrary
degrees of freedom per-region in the unrestricted model: pa-
rameter choices can be altered such that they uniformally shift
or rescale estimates of the inhibitory population activity. To re-
move these arbitrary degrees of freedom, we fixed parameters
of the inhibitory nonlinearity to be S I = 1,VI = 0, thereby
removing the shift and scale symmetries, respectively.

However, some invariances may remain due to volume con-
duction and referencing. These invariances do not affect tem-
poral dynamics in the measurement space, and instead reflect
translating the system in a direction to which the M/EEG sen-
sors are blind (i.e., a pattern of brain activity in which elec-
tric fields cancel at the sensor-level). In mean-referenced EEG,
for instance, the relativistic nature of voltages mean that the
result of shifting each region’s activation by a constant (i.e.
x̂i(t) = xi(t) + c,∀i, t) will be observationally-equivalent to the
original system.

To further constrain the problem, we reduced the space of
recurrent connectivity patterns by assuming that they shared a
common non-negative spatial gradient (b) within-subject and
that each recurrent connectivity vector (u ∈ Rnparc ) can be ex-
pressed as an affine transformation of this gradient:

uw = âwbrec + d̂w (56)

with separate scalar values of aw, dw for w ∈ {EE, EI, IE, II}.
In experimentation, we found that this restriction can be fur-
ther eased with separate excitatory and inhibitory spatial gra-
dients, but do not recommend fully unrestricting the recurrent
connections due to the aforementioned possibility of parame-
ter symmetries. The associated software enables users to define
arbitrary constraints of this form between parameters and use
multiple-component bases (matrix-valued brec, vector-valued
aw).

8.8. Defining the MEG Measurement Model
For this initial validation with MEG, we built a measure-

ment model in which the timeseries had already been source-
localized with Minimum Norm Estimation (MNE), while
the optimization objective was calculated in a rank-reduced
subspace of this projection (described below). The noise-
covariance matrix was adapted from empty-room recordings
(Rchan). Separately for each scan, we rank-reduced the data
according to the singular-values of the post-ICA leadfield:
L̂ = L(I − Mbad MT

bad). We rank reduced L based upon a
singular-value threshold of 1% the maximal singular value
and denote the reduced left-singular vector matrix UL. We
projected the leadfield onto this space (premultiplied by UT

L )
which, inherently removes the ICA-censored dimensions from
the leadfield (reflecting the fact that those dimensions were dis-
carded). Source-estimation was then performed using MNE on
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this new leadfield to produce the source-inversion matrix M0.
We rescaled rows of the MNE inverse solution (M0) so that
M0UT

L ychan had unit variance for each channel. Thus, the final
inverse transformation was:

M = sd[M0UT ychan]−1 ◦M0UT
L (57)

We correspondingly transformed variables such that the
Kalman-Filter receives source-estimates as the measurement
variable:

yMNE =Mychan (58)

RMNE =MRchanMT (59)

Within this space, the measurement matrix was:

H =
[
Inparc 0nparc

]
(60)

reflecting a direct, but noisy, source-estimate for excitatory ac-
tivity and no sensitivity to inhibitory activity. Thus, standard
source-estimates were fed into the Kalman Filter during state-
estimation. However, the model error was assessed over the
more parsimonious space span(M) which removes artificial di-
mensions created during source-estimation. Thus, models are
not held to fully obey the source estimates in dimensions of
ambiguity. Writing the singular-value decomposition ofM:

M =
[
U1 U0

] [Σ 0
0 0

]
VT (61)

We used the cost matrix: M = U1UT
1 (see Eq. 28).

8.9. gBPKF Training Parameters for MEG Data
The gBPKF algorithm ultimately consists of training a (bi-

ological) recurrent neural network with the Kalman-Filter as
an additional, interconnected unit. Thus, the hyperparameter
classes are conceptually analogous to any deep learning sce-
nario although the actual training equations are quite differ-
ent. For the HCP MEG data, we used a filtering period of
26-steps with the Kalman correction only applied every fifth
step starting at one (i.e., 6 updates total) followed by a fore-
casting stage of 35 prediction steps. On each batch, initial dis-
tributions (mean and covariance) were estimated by simulta-
neously simulating 50 initial conditions with process noise for
50 time-steps. Initial values of x for these simulations were
drawn from a moving record of predictions during previous
forecasting stages. This step reduces the time to reach steady-
state (t → ∞) distributions, thereby enabling shorter simulation
periods. The covariance of this simulation was smoothed ac-
cording to an autoregressive average with coefficient 0.05, i.e.
cov(k) = .95cov(k − 1) + .05cov[sim(k)]. Gradients were fully
propagated through each simulation’s influence on cov[sim(k)],
but not to previous training iterations (which had different pa-
rameter estimates). Minibatches consisted of 80 time segments
and there were 4 minibatches per training iteration. To im-
prove memory-management we sampled initial time-points in
chunks, with 5-step = 10ms spacing between initial time-points,
so that the measurement timeseries overlapped for neighbor-
ing initial time-points within a minibatch. This choice also

retains sensitivity to non-stationary statistics that would oth-
erwise be lost in batch-EKF (Sec. 8.5). For efficiency, mini-
batches began at the filtering stage, so state distributions were
estimated once per training iteration instead of once per mini-
batch. Training used a fixed budget of 150,000 iterations (deter-
mined based upon examination of convergence rate). Gradients
were clipped ([61]) with a moving threshold of 3 times the aver-
age norm over the past 200 iterations. Parameter updates were
performed using the NADAM algorithm ([60]) with hyperpa-
rameters β1 = .98, β2 = .99, ν = .0001 and rate .0001.

8.10. Ground-Truth Simulations
In previous work, we validated and benchmarked the gBPKF

algorithm in estimating parameters for unstructured, randomly
generated recurrent neural networks ([27]). However, these
previous analyses did not consider whether our approach would
perform equally well with networks obeying an excitatory-
inhibitory structure. We therefore performed a new set of
ground-truth simulations which directly mirrored our model
setup. Each ground-truth model consisted of interconnected
“regions” which each contained an excitatory and an inhibitory
population. Only excitatory populations made long-distance
connections which targeted both excitatory and inhibitory
populations. Measurements were simulated by multiplying
excitatory activity with a randomly generated “leadfield”
and adding temporally-independent Gaussian noise (with
covariance R).

To parameterize the ground-truth models, we first randomly
generated a symmetric connectivity mask Wmask with 25% den-
sity on the off-diagonals and zero on the diagonals. The same
connection mask is used for long-distance EE and EI connec-
tions. The EE and EI connection strengths are also generated
from similarly constructed distributions, hence we omit the EE
vs. EI distinction and refer to a single connectivity matrix for
now. Other than symmetry (Wmask = WT

mask), the entries of
Wmask are uncorrelated. As with data applications, the values of
Wmask simply indicate if a connection is plausible while the ac-
tual value could be effectively zero. Connection strengths were
not symmetric and were generated as the sum of a sparse matrix
and a low-rank matrix. The sparse matrix Ws was distributed:

Ws ∼ N(0, 1)3 (62)

The low rank component (WL) was the product of two rectan-
gular matrices (WL = W1WT

2 ) generated according to:

W1,W2 ∼ N(0, 1)3 +N(0, 1/25) (63)

These terms are combined according to

Ŵ = Wmask ◦

( 8W1WT
2

c0n max(W1WT
2 )
+

16
n

WS

)
(64)

Note that the individual connection strengths are inversely pro-
portional to the number of nodes (n) so that the total input
strength is similar across simulation sizes (akin to subdividing
the brain into smaller pieces). This process was used to generate
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long-distance EE connections (ŴE) and EI connections (ŴI).
For the EE connections c0 = 2, whereas for the EI connections
c0 = 1.5, hence EE projections were generally stronger than
EI. Recurrent connections were generated from a narrower dis-
tribution designed to sustain nontrivial dynamics (oscillations
etc.). The base values for each local connections were: EE: .5,
EI: 1.25, IE: -1.25, II: -.25. The spatial gradation in local con-
nectivity (b) was generated as b ∼ .85+ .3N(0, In×n)2. The final
local connectivity strength was generated by multiplying the
base value for each connection type by b. As simulations were
randomly-parameterized, a small number produced pathologi-
cal steady-state behavior in which model inversion was theo-
retically impossible. Specifically, in these cases the dynamics
generated attractors so far outside the dynamic range of ψ that
the network was stuck in a saturated state. These dynamics are
unambiguous and easy to detect. We removed simulations in
which the median moving-variance of ψ was less than .01 for at
least half of the populations/nodes (normal values are around .9
for all nodes).
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