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SUMMARY

Small-angle X-ray scattering (SAXS) method is widely used in investigating protein structures in solu-

tion, but high-quality 3Dmodel reconstructions are challenging.We present a new algorithm based on

a deep learning method for model reconstruction from SAXS data. An auto-encoder for protein 3D

models was trained to compress 3D shape information into vectors of a 200-dimensional latent space,

and the vectors are optimized using genetic algorithms to build 3Dmodels that are consistentwith the

scattering data. The programhas been testedwith experimental SAXS data, demonstrating the capac-

ity and robustness of accurate model reconstruction. Furthermore, the model size information can be

optimized using this algorithm, enhancing the automation in model reconstruction directly from SAXS

data. The program was implemented using Python with the TensorFlow framework, with source code

and webserver available from http://liulab.csrc.ac.cn/decodeSAXS.

INTRODUCTION

Small-angle X-ray scattering (SAXS) from protein molecules in solution is a powerful technique that pro-

vides information on molecular structures and dynamics (Grant et al., 2011; Putnam et al., 2007; Svergun

and Koch, 2003). Because the solution scattering method does not require special treatment for protein

molecules, such as crystallization in diffraction measurement or isotope labeling in nuclear magnetic reso-

nance, SAXS experiments can be performed in high-throughput manners (Hura et al., 2009). Another major

advantage of SAXS experiments is the ability to probe the structure and dynamics in solution, which is

especially useful when combined with pumping methods to promote conformational changes (Kim

et al., 2012; Neutze andMoffat, 2012). Time-resolved studies will reveal important information onmolecular

mechanism for protein functions.

Despite the success in extracting structural information from SAXS profiles, reconstructing high-quality 3D

models remains challenging. Several approaches have been proposed and implemented to build 3D den-

sity maps from SAXS data, including shape envelope approximation using spherical harmonics functions,

polymer chain folding, dummy atom assembly, iterative phasing, and database searching methods. The

spherical harmonics function approximation method is fast but limited by resolution (Stuhrmann, 1970;

Svergun and Stuhrmann, 1991; Svergun et al., 1996). In the Gasbor program, polymers composed of con-

nected beads were used to represent protein molecules, and the packing of these polymers was optimized

to build 3D models (Svergun et al., 2001). Dummy atoms arranged in a 3D lattice were also used for model

reconstruction, as implemented in DAMMIN/DAMMIF (Franke and Svergun, 2009; Svergun, 1999). An iter-

ative phase retrieval method was expanded to analyze SAXS data and demonstrated its applications

(Grant, 2018). Using machine learning methods, Franke et al. developed a method to classify the shapes

and gain valuable model parameters (Franke et al., 2018). There are also successful attempts to integrate

SAXS data to molecular prediction/modeling/simulation frameworks to obtain 3D structures (Hura et al.,

2019; Karczy�nska et al., 2018). A database of shapes abstracted from actual protein complexes and effi-

ciently represented using 3D Zernike polynomials was used to quickly retrieve 3Dmodels that match exper-

imental SAXS profiles, as implemented in sastbx.shapeup (Liu et al., 2012b). A real space representation of

a 3D model requires many parameters, such as the position of each bead, which can be described using its

coordinates (then 3N parameters are required for a model with N beads). However, the number of param-

eters required is much greater than the number of free parameters encoded in 1D SAXS profiles (Moore,

1980). Therefore, prior knowledge must be applied to provide additional constraints for converged recon-

structions. For example, the molecular size and the connectivity of the beads are very critical for DAMMIN/

DAMMIF. In the case of sastbx.shapeup, the molecular size is de-coupled from the abstracted shapes (Liu
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et al., 2012a), allowing an optimization of the size as a separate parameter. However, the diversity of models

is limited by the database. Model reconstruction will be significantly advanced if the following criteria are

met: (1) diverse shapes of 3D models can be efficiently represented to cover a broader range than those in

structure databases and (2) SAXS profiles can be computed for each model that can be scaled to arbitrary

sizes. We provide a solution to achieve this using an auto-encoder method combined with 3D Zernike rep-

resentations (Canterakis, 1999; Liu et al., 2012a).

Inspired by deep learning methods, real space 3D models were encoded using an auto-encoder neural

network to a compressed representation of 200 latent parameters. The protein complexes in the PISA data-

base (Krissinel and Henrick, 2007) were used to generate the training datasets for the auto-encoder. Each

complex structure was scaled to the same radius (50Å was used in this study) then voxelized on a 3D grid of

31 3 31 3 31 (i.e., voxel edge size is 50/15Å). Because SAXS data often provide low-resolution information

that warrants a uniform density approximation for 3D models, we binarized the voxelized objects before

auto-encoder training. Owing to the uniform density approximation of the reconstructed models, the

SAXS data comparison were limited up to q = 0.2 Å�1 (Grant, 2018; Poitevin et al., 2011). The auto-encoder

model is based on the VGG network (Simonyan and Zisserman, 2015), composed of convolutional, pooling,

and full-connected layers (see Figure 1, Table S1 and the Transparent Methods). The testing results show

that diverse shapes represented using 313 voxels with binary numbers can be accurately encoded using a

vector of 200 dimensions. The reduction of parameter space allows application of optimization algorithms

to improve the model-data fitting. SAXS profiles for 3D voxelized objects were computed using the Zernike

expansion method, taking advantage of fast evaluation of theoretical profiles at an arbitrary model radius.

The genetic algorithm (Goldberg, 1989) was used to optimize the latent space parameters, which were de-

coded to 3Dmodels subsequently. One of the major advantages of the proposed method is the automatic

determination of the model radius, which can be coded as an additional parameter and subject to the opti-

mization along with the other 200 parameters. The testing results using experimental data from the

Figure 1. Framework of Auto-Encoder and Its Capability in Representing 3D Models

(A) The voxelization of a molecular structure. Left: an atomic model represented in the cartoon representation. Right: the model is mapped on a 3D matrix

whose values are binarized depending on whether the grids are in the vicinity of any atom of the protein molecule.

(B) The auto-encoder-decoder architecture used in this study. The layers and structures are shown in the figure; details can be found in the Transparent

Methods.

(C) The model quality encoded using the trained network and measured using the correlation coefficients between the models before and after going

through the encode-decode process.

(D) The distribution of encoding parameter values for first four parameters in latent space.
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SASBDB (Valentini et al., 2015) and BIOISIS (Rambo and Tainer, 2011) show that the proposed method can

successfully generate 3D models based on SAXS data. The algorithm is implemented to the software, de-

codeSAXS, whose source code and an associated webserver are available at http://liulab.csrc.ac.cn/

decodeSAXS.

RESULTS

In this section, we first demonstrate that the auto-encoder neural network accurately represents the

shape information in the compressed form. Then, we show the performance of model reconstruction

with or without model size information using the SAXS data as the target for optimization. The perfor-

mance was compared with other widely used model reconstruction algorithms. The model quality and

consistency were also assessed by running multiple reconstructions and analyzing the similarity among

reconstructed models. The reconstructions for experimental SAXS datasets yield high-quality 3D models

in general with a few exceptions for challenging cases, such as loosely packed molecules or those with

large cavities.

Quality and Accuracy of 3D Model Auto-Encoding

The voxelized objects derived from protein complex structures were encoded using 200 latent parameters

in the auto-encoder neural network training procedure as described in the Transparent Methods. From two

databases for small-angle scattering, the SASBDB and the BIOISIS, 542 SAXS datasets with deposited 3D

models were obtained (see Supplemental Information for the full list). First, using the 3Dmodels from these

542 datasets, the auto-encoder performance was evaluated. Each model was converted to a 3D voxel ob-

ject with binary values and then fed to the trained auto-encoder for encoding and decoding. Then, each

input model was used as the reference to assess the quality of the decoded 3D object. The real space cor-

relation coefficient (denoted as cc, see Transparent Methods for detailed explanation) between original

models and decodedmodels from the corresponding 200 latent parameters were computed and analyzed.

The correlation coefficient is used to quantify the fraction of the overlapped volume compared with the

geometrically averaged volume of two models. The auto-encoder network is very efficient and accurate

in representing the majority of the 3D protein shapes, yielding a mean cc of 0.88, with 304 (56.1%) models

having cc values greater than 0.90 (see Figure 1C). We also observed a few failed cases, whose correlation

coefficients are very low. After investigating those failed encoding cases, we found that those models have

very complex shapes, such as flexible chains (for instance SASDBD:SASDBZ6, with cc = 0.40) that have mul-

tiple conformations in the deposited dataset. For the majority of the testing models that have compact

shapes, the auto-encoder works nicely in representing 3D shape information. The encoding-decoding

test demonstrates that the 3Dmodels are accurately reproduced after going through the encoding-decod-

ing procedure, and the compressed 200-d vectors are sufficient to represent 3Dmolecular shapes. This lays

the foundation for applying the auto-encoder method to reconstruct 3Dmodels by optimizing compressed

parameters to obtain models that fit to experimental SAXS data. Furthermore, the training dataset pro-

vides the distributions of latent variables, indicating that the valid values for these variables are distributed

in limited ranges (see Figure 1D for distributions of representative variables). This prior information will

facilitate the parameter sampling for the gene pool initialization and during the optimization process using

genetic algorithms (see Figure S1 in Transparent Methods).

Performance of Reconstruction Algorithm with or without Model Size Information

The evaluation of the reconstruction algorithm was performed on the same 542 experimental datasets that

were used to evaluate the performance of the auto-encoder neural network in the previous section. Here,

we use the SAXS data as the only information to reconstruct the corresponding 3Dmodels, and the depos-

ited 3D structures along with the SAXS data are used as the references for model quality assessment after

reconstruction (see Table S4).

The first reconstruction experiment was performed by assuming that the model size information is known.

Model sizes can be derived from SAXS data using GNOM or other similar approaches (Liu and Zwart, 2012;

Svergun, 1992). Instead of the maximum dimension obtained directly from the pairwise distance distribu-

tion functions, the auto-encoder method used the radius of minimal bounding sphere for the desired

model (hereafter referred to as model radius). Here, the radius of deposited models (coarse-grained

bead models or atomic models) from each SAXS dataset was used as the input radius for model

reconstruction.
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The reconstruction process was monitored based on the chi-score between model SAXS profile and the

experimental data. As a retrospective check, the reconstructed models are also compared with the refer-

ence model by computing their correlation coefficients after optimal alignment. Figures 2A–2C present an

example to demonstrate the progress of model reconstruction. The dataset is from the SASBDB (SASDBD:

SASDAH6), and the atomic structure deposited along with the SAXS data was used for model quality

assessment. The chi-scores of SAXS data comparison and the cc from the 3Dmodel comparison are shown

for each iteration. As shown in Figure 2A, the chi-score was rapidly reduced within the first 10 iterations and

gradually converged to a small value, indicating that the model SAXS profiles match the target SAXS data.

Meanwhile, the correlation coefficients were improved as the model was iteratively reconstructed.

The final model SAXS profile is shown in Figure 2B compared with the experimental data. The recon-

structed model was superimposed onto the atomic model and shown in Figure 2C in two orthogonal

orientations. The agreement between the reconstructed model (blue surface) and the atomic structure

(cartoon model) illustrates the accuracy of the 3Dmodel reconstruction for this dataset. The reconstruction

process can also be directly visualized in real space by showing a sequence of reconstructed models in the

form of videos (see Video S1 for an example). The progress clearly demonstrates that the genetic algorithm

is capable of driving the model reconstruction by improving the goodness of fitting to experimental SAXS

data.

Figure 2D shows the statistics of reconstructed model quality measured using correlation coefficients be-

tween the reconstructed models and the reference models. The histogram colored in blue shows recon-

struction performance using the model radius as known information. As shown in the following, the radius

information is not required for the reconstruction algorithm to achieve similar accuracy levels. Among 542

testing datasets, 294 reconstructed models have correlation coefficients greater than 0.70 (see Table S2 for

Figure 2. Performance of the decodeSAXS Algorithm

(A) The progress of model reconstruction by optimizing the goodness of fit to experimental data (SASBDB:SASDAH6). Chi-scores for SAXS data and the

correlation coefficients for reconstructed models are shown for each iteration.

(B) The SAXS comparison with experimental data for the reconstructed model.

(C) The reconstructed model (blue surface) compared with the reference structure (obtained from SASBDB) at two orthogonal orientations.

(D) The algorithm performance measured using correlation coefficients between reconstructed models and the reference structures in the databases. Blue

and red histograms show the statistics of correlation coefficients with or without using model size information as prior knowledge, respectively. The

histogram represented with pink lines indicates the correlation coefficients for random paired models.

(E) The comparison between optimized model radii and the reference model radii.

(F) Representative reconstructions for two examples from the SASBDB with or without radius information.
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representative models at various cc levels for visual inspections). At this level (cc = 0.70), the reconstructed

models are consistent with the references in the overall shapes according to visual inspections. The models

with a big cavity or flexible domains are challenging for the auto-encoder to compress the shape informa-

tion to a 200-dimension vector, as discussed in the previous section. For models with rigid and compact

structures, the auto-encoder and the SAXS-based reconstruction are very successful. Furthermore, random

pairing the models was used as the control method, and the cc between randomly selected models were

used to estimate a baseline for reconstruction performance assessment. Prior to the alignment and corre-

lation coefficient computation, two models randomly selected from the 542 reference models were scaled

to the same size. This procedure was repeated for 100,000 times to get the statistics of the cc values, which

are scaled and shown with pink lines in Figure 2D. The average cc value of the control method is 0.55 with a

standard deviation of 0.16, suggesting that the expectation value of cc is 0.55 by random matching. The

decodeSAXS algorithm performedmuch better than randommatching. Among 542 reconstructedmodels,

86% showed cc > 0.55 and 54% models had cc > 0.70 in the case of the decodeSAXS using correct model

radius.

Three other methods, DAMMIN, DAMMIF, and DENSS, were applied to the same dataset for model recon-

structions. To reduce the bias during model reconstructions, default parameters and correct radii were

used for model building in all programs. The reconstructed model quality was measured using the corre-

lation coefficients and compared with the decodeSAXS method (Figure 3). The results revealed that all

reconstruction methods generated models better than randomly selected models, whose statistics was

used as a reference (pink line in Figure 3). Detailed analysis showed that the performance of DAMMIN

was better than DAMMIF in general, whereas DENSS achieved similar accuracy as DAMMIN. Based on

the statistics, decodeSAXS program outperformed these three methods on the testing dataset, reflected

by larger populations with higher cc values (red color histogram in Figure 3). The scattering plots of cc

values between references models and those reconstructed using either decodeSAXS or the other

methods are summarized in Figure S3, showing better performance of decodeSAXS in detailed

comparisons.

In practice, the size information of the model to be reconstructed could not be accurately obtained in many

cases, preventing successful model reconstructions. In such cases, the decodeSAXS algorithm can opti-

mize the model size under the same framework by simply treating the model radius as an additional

element in the genes (the parameters). Using the same dataset, the reconstruction algorithm was tested

without providing the size information. The initial radius for each model in the first generation is a random

positive number smaller than 300 (with the associated unit Å). The radius was taken as the 201st parameter

and subject to the genetic algorithm for optimization. The optimized radii for 542 testing datasets are

compared with the radii extracted from the reference models in Figure 2E, showing that the size

Figure 3. Performance Comparison with Other Methods

The histograms of the correlation coefficients between reconstructed models and reference models indicate that

decodeSAXS outperforms the other three methods. The histogram with pink color shows the statistics of correlation

coefficients between randomly selected models, providing a baseline to assess the performance of reconstruction

algorithms.
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information can be obtained by optimization. More importantly, the reconstructed model quality without

using the correct model radius is comparable with the outcomes with radius information as shown in Fig-

ure 2D (red color histogram for the cases with optimized radius, and the blue color histogram is for the case

with correct radius, whereas the pink lines show the statistics for the comparison between randomly paired

models). Two examples shown in Figure 2F demonstrate that high-quality 3D models can be reconstructed

even if the radius is not exactly the same as the values of reference models, indicating the robustness of the

algorithm. The automated determination of model radius during reconstruction process is an important

feature of the decodeSAXS algorithm.

Consistency of Model Reconstructions

Because of the random initialization of the genetic algorithm, multiple reconstructions for the same SAXS

dataset may lead to different models. Furthermore, the limited information contents in 1D SAXS profiles

may also result in multiple 3D models that match to the experimental SAXS profile equally well. To test

the model consistency, eight SAXS datasets were randomly chosen for multiple reconstructions. For

each SAXS dataset, ten models were reconstructed by running the programs ten times with different initial

models. Then the hierarchical clustering analyses were carried out using the correlation derived distance

(see Transparent Methods). The clustering results indicate that single clusters were obtained in six of eight

cases (see Table S3 for the clustering plots and the distance matrices). In the other two cases, the ten

models were clustered into two classes (Figure 4A, as an example for dataset SASDBD:SASDA25). The

computed model profiles in Figure 4B suggest similar levels of agreement to the experimental SAXS

data. The reconstructed models for dataset SASDA25 are shown in Figure 4C, each superposed to the

high-resolution PDB model. The models are grouped and enclosed using red and green boxes to indicate

their classifications. The visual comparison and computed correlation coefficients compared with the PDB

model both indicate that reconstructions are consistent with the reference PDB model (with cc > 0.70).

DISCUSSIONS AND CONCLUSION

3D model reconstruction from 1D SAXS data is challenging given the limited information embedded in the

1D profile. Prior knowledge, especially size information, has been required for model reconstruction. Here,

using the deep learning method, the 3D models can be compressively represented using 200-dimension

vectors. Based on the success in dimension reduction using the auto-encoder neural network methods,

a model reconstruction method is implemented by optimizing parameters in the 200-d latent parameter

Figure 4. Reconstruction Model Quality and Consistency

(A) The clustering analysis of 10 reconstructed models for dataset SASDA25. Using the correlation distance cutoff of 0.3,

10 reconstructed models were classified to two groups (see [C] for the reconstructed models superposed to the atomic

structure of the same protein).

(B) The theoretical SAXS profiles of reconstructed models were fitted to the experimental data.

(C) The 10 reconstructed models grouped into two classes, enclosed by the red and green boxes, corresponding to the

two classes in (A). The correlation coefficients compared with the PDB structure are indicated next to each reconstructed

model.
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space. More importantly, this new method does not require model size information and demonstrates its

robustness in 3D model reconstructions. Currently, the 200-d vector and the SAXS profile are not directly

related but related via the decoding part of the neural network to get the corresponding 3D model and

subsequent calculate its SAXS profile. This work demonstrates that the deep learningmethods have poten-

tial applications in the interpretation of X-ray data, with properly designed interfaces between the model

and X-ray data. The calculation speed may not have clear advantages over the methods that construct 3D

models in real space, owing to the extra decoding procedure. Nevertheless, the proposed method opens

up a new avenue for model reconstruction. It is possible to improve the efficiency and accuracy of model

reconstructions, by expanding the approach presented in this work. An ultimate method is to compress the

latent space to match the SAXS data, so that the trained neural network can directly ‘‘translate’’ the SAXS

information to 3D models. In such frameworks, there are information inputs from both 3D models and 1D

SAXS data, and to train such neural networks, more complicated neural network architecture is desired. In a

separate study, preliminary results show the possibility to encode a SAXS profile using low-dimensional

vectors rather than computing from the decoded 3D models, and this feature will significantly reduce

the computing time. Linking the 200-D parameter in this study and the latent space vector for SAXS

data encoding will be another alternative toward a de novo model reconstruction method without using

iterative model building. On the other hand, the present approach might be slow, but it can be easily

expanded to other applications with an interface to convert decoded 3D models to experimental measur-

able information (SAXS profile in this case).

Neural network training and application can benefit from parallel processing of GPU; the speed gained

from advanced hardware can facilitate the multiple reconstructions for model consistency examination.

The computing time for model reconstruction is not the bottleneck in SAXS studies, considering that

the sample preparation and experimental execution usually take much longer time. Furthermore, the

auto-encoder is not limited to represent uniform density models; therefore, it is possible to expand

the neural network to encode models with density variations from the uniform density approximation

models.

The progression of latent space parameters showed large variations of parameter values at the beginning

stage of the optimization, and these parameters were converged to fixed values when the optimization

progressed to 60–80 iterations. The linear interpolation between initial random values and the final opti-

mized values can be decoded to 3D models as ‘‘intermediate models.’’ The interpolation of latent space

parameters resulted a morphing of the decoded 3D models, from a roundish object to a model that

matches SAXS data, revealing the relation between latent space parameters and real space models (see

Video S2 for a demonstration of model morphing using latent parameter interpolation).

As the first demonstration for the deep learning method applied in the 3D model reconstruction from

SAXS data, this work may open doors for potential applications of deep learning in understanding

other types of experimental data, especially those that are insufficient to be directly converted to

3D models. For instance, imaging experimental data with one or a few 2D projection or scattering in-

formation could be analyzed in a similar approach to build 3D models. This method has demonstrated

its capacity and robustness in building 3D models with diverse shapes from experimental data. As

more high-throughput X-ray data are being collected, we anticipate increasing applications of such

methods in data analysis.

Limitations of Study

Owing to the low information content embedded in SAXS data, the present method is limited to the recon-

struction of models with uniform density. In principle, the method can be expanded to reconstruct higher-

resolution models to reflect density variations within molecular envelopes. This shall require more

advanced neural network architecture to encode models with density variations.

The maximum scattering angle used for model reconstruction is 0.2 Å�1 in this study. Proper modeling of

the hydration layer at molecular surfaces is desired to utilize the scattering signals at larger scattering

angles.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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DATA AND CODE AVAILABILITY

The data and program codes are available at http://liulab.csrc.ac.cn/decodeSAXS or https://github.com/

LiuLab-CSRC/SAXS_reconstruction.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100906.
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Table S1. The detailed configuration for each layer, related to Figure 1b. 

conv: convolution layer; fc: fully-connected laser; max_pool: pooling layer; relu: activation 
operator; deconv: deconvolution layer.  
Gray shaded layers are for the encoder part, and the blue shaded layers are for the decoder 
part, respectively. 

 
The Tensorflow framework is used for the neural network implementation and training.  
 
The encoder part is composed of seven convolutional layers and two pooling layers, connected with 
Relu activation functions, and the last layer of the encoder part is a fully connected layer.  
 
The decoder part includes a fully connected layer, followed by two cov3d_transpose layers, and 
concluded with a conv3d layer. It also utilizes Relu activation functions between layers and a sigmoid 
function to obtain the final output. 
 

layer parameters shape 

Input:  In:(32,32,32,1) 

conv1_1 k= (3,3,3,1,64)         strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(32,32,32,1) 
out:(32,32,32,64) 

conv1_2 filter = (3,3,3,64,64)       strides = (1,1,1,1,1) 
padding = “SAME ” 

In:(32,32,32,64) 
Out:(32,32,32,64) 

relu   

max_pool1 ksize = (1,2,2,2,1) 
strides = (1,2,2,2,1) 

In:(32,32,32,64) 
out:(16,16,16,64) 

conv2_1 filter = (3,3,3,64,128)      strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(16,16,16,64) 
out:(16,16,16,128) 

conv2_2 filter = (3,3,3,128,128)    strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(16,16,16,128) 
out:(16,16,16,128) 

relu   

max_pool2 ksize = (1,2,2,2,1) 
strides = (1,2,2,2,1) 

In:(16,16,16,128) 
out:(8,8,8,128) 

conv3_1 filter = (3,3,3,128,128)    strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(8,8,8,128) 
out:(8,8,8,128) 

conv3_2 filter = (3,3,3,128,128)    strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(8,8,8,128) 
out:(8,8,8,128) 

conv3_3 filter = (3,3,3,128,128)    strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(8,8,8,128) 
out:(8,8,8,128) 

relu   

fc1  In:(8,8,8,128)  
Out:(200) 

relu   

fc2  In:(200)  
Out:(8,8,8,128) 

relu   

deconv1 filter = (5,5,5,64,32)        strides = (1,2,2,2,1) 
padding =“SAME ” 

in:(8,8,8,32) 
out:(16,16,16,64) 

relu   

deconv2 filter = (5,5,5,128,64)      strides = (1,2,2,2,1) 
padding =“SAME ” 

in:(16,16,16,64) 
out:(32,32,32,128) 

relu   

conv4 filter = (3,3,3,128,1)        strides = (1,1,1,1,1) 
padding =“SAME ” 

In:(32,32,32,128) 
out:(32,32,32,1) 

sigmoid   



In the auto-encoder network, Relu activation function is applied after conv1_2, conv2_2, conv3_3, fc1, 
fc2, deconv1, deconv2. The pooling method used in the encode part is max-pooling with padding, and 
the stride is 2 in 3d space. 
 
The decoder part utilizes conv3d_transpose with padding to increase its size, and the stride is 2 in 3d 
space. 
 
Key parameters used for training: 
 BATCH_SIZE = 64 
 LEARNING_RATE = 0.01 , 0.001 or exponential_decay 
 TRAINING_EPOCHS = 15 
 
The optimizer function is AdamOptimizer, and the cross entropy was used as the loss function. 
 
Two-stage network training 
The auto-encoder network model was trained in two stages, with shapes in the PISA database as the 
training dataset, which contains 60,000 samples. 
 
Stage-1: 
 Setting the linking layer between encoder and decoder (i.e., the fc1-output and fc2-input, or the 
bottleneck layer) to be 3,000 (i.e., the 3D models are encoded to 3,000-D vectors), and other 
parameters are listed in Table S1. When the training result converges, the preliminary auto-encoder 
model is saved for the second stage training. 
 
Stage-2: 
 Based on the auto-encoder model trained in Stage-1, the linking layer size is reduced to 200, 
and re-train the fc1 and fc2 layers only, while retaining other parameters in the rest of the auto-encoder 
network. The final trained network will have 200 parameters in this linking layer for 3D shapes.  
 
Alternatively, the training can also be accomplished with a single stage training network by inserting the 

200d vector layer to the first stage model, right after the layer of 3000 variables. These two layers are 

linked using a fully connected network. The two approaches yielded similar results. The source codes 

for both approaches are available from the Github repository.  

 
  



Table S2. Representative reconstructed models compared to the reference models, related 
to Figure 2. 

*Rref: Radius of reference model deposited to the database (in the unit of Å) 
#Ropt: Radius optimized using the genetic algorithm in the decodeSAXS program (in the unit 
of Å) 
 
To illustrate the model reconstruction accuracy at various correlation coefficient (cc) levels (in 
ascending order), reconstructed models are superimposed to the models deposited to the 
database. The deposited models are either coarse grain bead models or high resolution atomic 
models.  
Based on visual comparison, the model quality is very good if the cc is greater than 0.70. For 
the models with low cc values, major causes are that the protein complexes are very dynamic 
and flexible, or loosely packed (see SASDB47, SASDB98). For SASDCW6, the SAXS data 
were collected with a buffer matching method to mask the histone protein component, so that 
the DNA superhelices were the only ‘visible’ component for X-rays. This is very unusual for 
biomolecules, so the decodeSAXS failed in 3D model reconstructions for this dataset. For 
SASDC47, the optimized radius (Rmax) was wrong, resulting a wrong model. 
As shown in the main text, using cc=0.70 as a threshold, about 54% reconstructions are in 
good quality; if the cc threshold is relaxed to 0.55 (average cc for randomly paired models) in 
this dataset, then about 86% reconstructions can be considered to be successful. The 
performance does not rely on the prior knowledge of the molecular sizes, and this is a unique 
feature of this method. 

 

Data ID cc 
Rref*/ 
Ropt# 

View-1 View-2 View-3 Fitting I(q) 

SASDC
47 

0.14 
59.19/
85.90 

    

SASDB
D6 

0.41 
53.72/
64.60 

    

SASDC
W6 

0.43 
88.72/
111.85 

    

SASDC
Y7 

0.45 
57.17/
84.45 

    

SASDB
47 

0.47 
84.38/
103.05 

    



Data ID cc 
Rref*/ 
Ropt# 

View-1 View-2 View-3 Fitting I(q) 

SASDB
98 

0.48 
70.60/
89.30 

    

SASDA
W8 

0.57 
70.78/
78.25 

 
   

SASDA
P5 

0.67 
48.58/
58.60 

    

SASDA
V5 

0.68 
75.21/
78.50 

    

SASDA
R5 

0.71 
40.35/
52.05 

    

SASDB
46 

0.73 
74.51/
70.25 

  
  

SASDA
Q7 

0.79 
87.67/
90.65 

    

SASDD
F9 

0.80 
35.94/
51.95 

    

SASDA
P8 

0.84 
69.74/
77.85 

  
  



Data ID cc 
Rref*/ 
Ropt# 

View-1 View-2 View-3 Fitting I(q) 

SASDC
G5 

0.85 
24.63/
27.75 

 
   

SASDB
Y3 

0.85 
82.28/
69.10 

    

SASDA
N8 

0.87 
85.90/
82.05 

 
   

SASDA
U5 

0.87 
83.48/
82.30 

    

SASDB
E2 

0.87 
46.95/
53.55 

  
  

SASDB
32 

0.88 
37.37/
39.00 

    

SASDB
Q3 

0.91 
48.44/
46.15 

   
 

SASDB
X4 

0.93 
101.57
/95.60 

    

 
 
  



Table S3. Hierarchical clustering analysis of multiple reconstructions for 8 tested datasets, 
related to Figure 4. 
 
Eight SAXS datasets were randomly selected for multiple reconstruction tests. The correlation between 
reconstructed models were computed. The hierarchical clustering method was applied using the 
distance metric defined as d=1.0 – cc, where cc is the correlation coefficient between reconstructed 
models calculated using sastb.superpose. Using d=0.3 as cutoff (i.e., correlation coefficient=0.7), 6 out 
of 8 testing cases showed single cluster; and 2 cases (SASDA25 & SASDA28) showed two clusters. 
 

    
SASDA25 SASDA26 SASDA27 SASDA28 

    
SASDA32 SASDA35 SASDA38 SASDA39 

 
 



 
 

Figure S1. The flowchart of model reconstruction algorithm, related to Figure 2. The auto-

encoder-decoder neural network is used to decode latent space parameter to 3D voxel models, whose 

SAXS profiles are compared to experimental data. Genetic algorithm is used to guide the optimization 

of latent space parameters. 

  



 

 
Figure S2. The progression of the first 20 parameters in the latent space, related to Figure 2. 
The parameters widely vary at the beginning and the convergence start to emerge after some 
iterations. Three examples are shown as (a) SASDA38; (b) SASDBQ3; and (c) SASDBY3.  
  

a. 

c. 

b. 



 
Figure S3. The performance comparison between decodeSAXS and three other methods, 
related to Figure 3. The scatter plots are shown for the cc values: y-axis shows the cc values 
between reference models and the models reconstructed using decodeSAXS; x-axis shows the cc 
values between reference models and the models reconstructed using the three other methods 
(labelled in the legends). The points above the line (y=x) corresponding to the cases that 
decodeSAXS performs better. 
 

 
Figure S4. The distribution of Phimax values, related to Figure 2. The values are computed 
between the reconstructed models with decodeSAXS and the reference models. The distribution 
(green histogram) shows that Phimax has a larger population at larger values, compared to the cc 
values (Figure 2d). The cumulative distribution (blue line) shows that 70% of the Phimax values are 
larger than 0.80.  
 
 

 
 

  



Transparent Methods 

Training and Testing Datasets 

The model dataset is compiled from the PISA structure database, including 60,000 randomly selected 

3D models. Each model was first scaled and shifted to fit in a sphere centred at the coordinate origin 

with a radius of 50 Å (the shape does not depend on the size of the model under the uniform density 

model approximation; the size information is used for SAXS profile computation, see equation 2 below). 

Then, the atomic positions were mapped to a grid of 31x31x31 in the process of scaling and voxelization 

(the grid point at (0,0,0) coincides with the center of mass). As a result, each model was converted to a 

voxel object described using a 3D matrix with binary values (i.e., the uniform density is ensured, see 

Figure 1a in main text). For numerical calculation efficiency consideration, the matrix of 31x31x31 was 

padded with zeros to a matrix of 32x32x32, such that the number of discretization is a power of 2, to 

facilitate the convolutional neural network training.  

Auto-encoder Neural network architecture  

The architecture of the auto-encoder is designed based on the VGG network (Simonyan and Zisserman, 

2015). The encoding part of the auto-encoder is composed of seven convolution layers and two pooling 

layers followed by one dense (fully connected) layer as indicated in Figure 1b and described in Table 

S1. Network training was performed in two stages. During the first stage, the dense layer contains 3,000 

variables, and this number is reduced to 200 during the second stage. With this design, the 3D shape 

information is compressed to a representation of 3,000-dimensional vectors after the first training stage. 

Among these 3,000 parameters, a significant portion (approximately 90%) of parameters is found to be 

zero persistently, indicating that the parameter space for encoding can be further reduced. With this 

observation, the fully connected layer was optimized again with a reduced dense layer of 200 

parameters. During the second stage of training, the parameters for convolutional and pooling layers 

were inherited from the first stage and remained unchanged, except that the parameters for the fully 

connected dense layer were subjected to optimization. This two-stage training was adapted to ensure 

fast convergence of the training (we found that if the dense layer was set to a 200-dimension vector 

during the first stage of training, the loss function does not converge). There is an alternative 

architecture to allow the training to be completed within a single stage, by adding the 200-d layer after 

the 3000-d layer and linked with fully connected network. The two approaches yield similar results (the 

network architectures and training codes are available at the Github repository). Similar to many cases 

in neural network training/applications, the choice of 200 parameters for this compressed layer is not 

unique. However, the encoding capacity will be affected if fewer parameters were used.  

The decoding part is relatively simple. The 200-dimension vector is converted to a 4D tensor of size 

8x8x8x32, then followed by two deconvolution layers, and finished with a convolution layer to obtain a 

32x32x32 matrix, from which a submatrix of 31x31x31 was obtained as the reconstructed model. A 

preset threshold of 0.1 was used to convert the matrix to binary values. 



The 60,000 models in the training dataset were fed to this auto-encoder with the loss function measured 

by cross entropy between the input models and the encode-decoded maps. The decoding part of the 

neural network can be applied to interpret any 200-d vectors to its corresponding 3D density map in the 

form of voxel object. 

Model reconstruction from SAXS profiles 

The overall workflow for model reconstruction using the auto-encoder method is as follows (see 

Figure S1). First, a number of latent parameter sets (or genes, in terms of genetic algorithm) are 

generated to initialize the genetic population to be optimized by genetic algorithm. The parameters for 

each gene is sampled based on the gene value distribution at the corresponding positions (see Figure 

1d for representative probability distributions). After initialization, the iterative optimizations will be 

carried out. During each iteration, the genes are decoded to 3D voxel objects using the auto-encoder 

network trained using the molecular shapes abstracted from the PISA database. To ensure the 

continuity of the reconstructed models, only the largest connected domain of each decoded object will 

be kept as the ‘cleaned model’. The SAXS profiles for the ‘cleaned models’ are then computed using 

the Zernike expansion method implemented in the SASTBX (elaborated below). Chi-scores between 

model profiles and target SAXS profiles are used to guide the genetic algorithm to evolve the genes 

until the chi-score is converged or a pre-set number of iterations is reached. The final models are 

saved in density maps (CCP4 format) or bead models (PDB format). 

For a voxel object, the 3D Zernike representation has the advantage of de-coupling the model shape 

and size information; thus, the SAXS profiles can be quickly evaluated if the model size is updated 

while the shapes are not changed. The detailed derivation was elaborated elsewhere (Liu et al., 

2012a, 2012b), and a brief summary is provided for clarity. A 3D object r(r)  after scaling to fit within 

a unit sphere can be expanded as the weighted summation of 3D Zernike functions, which are a set 

of orthonormal polynomials with orders (n, l, m) (Canterakis, 1999; Novotni and Klein, 2003). The 

expansion coefficient or the so-called Zernike moment C
nlm

 at order (n, l, m) is calculated with 

equation (1): 

  (1) 

Subsequently, the 3D density distribution function r(r)  can be approximated using {C
nlm

} up to a 

maximum expansion order n
max

. It has been shown (see (Liu et al., 2012a)) that the SAXS intensity 

can be explicitly expressed as: 

  (2) 



where  describes the contribution from corresponding Zernike 

polynomials to SAXS profile with the Bessel functions of the first kind jn(x). In addition, the shape 

information is encoded in Hnn’, which is expressed using Zernike moments as follows: 

   (3) 

with . According to equation (2), the radius of the object, rmax, is readily decoupled from 

the shape descriptors {Hnn’}. This allows us to optimize the radius as the 201st parameter (the other 200 

parameters encode the 3D shape). The SAXS profiles can be calculated with other programs, as long 

as the program can be interfaced to the reconstruction software by providing the calculated intensities 

at desired scattering angles. In the case if the radius optimization is desired, the SAXS profile calculation 

is slightly more complicated, because the model scaling might be needed.  

 
The genetic algorithm was used to optimize the parameters (200 parameters for given radius 

information or 201 parameters if the radius is a free parameter to be optimized) (Goldberg, 1989). The 

target function to be minimized is the standard chi-score: 

   (4) 

Where I
i

exp
 and I

i

mod
 are the SAXS intensity profiles of the experimental measurement and the 

model calculation respectively, both at position qi. The SAXS profiles were normalized to the range of 

[0,1] before the chi-score computation to remove the mismatched scaling factor and the offset level 

that caused by the residual background intensity. The 1/σi was used as the weighting factor. It is noted 

that the raw SAXS data were preprocessed using a sliding polynomial fitting (with order=2, window 

size=5) to smooth the profile. In order to balance the contributions from all data points to the chi-

score, we compared three different weighting schemes, specifically, setting σi to 1.0, sqrt(𝐼𝑖
𝑒𝑥𝑝

), and 

𝐼𝑖
𝑒𝑥𝑝

. The results suggested that the final reconstructed models reached similar accuracy levels. In the 

program, the default weighting scheme is σi =1.0. It is noteworthy to point out that chi-score is just one 

of many possible metrics to quantify the difference between model profile and experimental data. 

Other formulations, such as likelihood functions based on probability theory can be also adapted 

easily by replacing the scoring function in the program. In this study, the testing results showed that 

the present implementation can achieve very good model quality. 

The distribution of latent parameter values obtained during the auto-encoder training procedure was 

used to guide the initialization of model parameters, so that the genes (each with 200 or 201 values) 

for the first generation of the genetic algorithm were populated by sampling the latent parameter 

distributions to start the optimization procedure. In each generation, 300 genes are generated via 

simulated evolution procedures. The gene evolution was implemented using three operators: 



selection, crossing, and mutation. The selection operator decides which genes are inherited from the 

previous generation by selecting the more fitted gene out of two randomly selected genes. The 

crossing operator is included to exchange gene segments obtained from the previous generation. The 

mutation operator changes parameter values at random positions by replacing the current value to a 

random value with a probability distribution that follows prior knowledge of empirical distributions at 

that gene position.  

The model comparison was measured using the correlation coefficients (cc) after model alignment to 

the reference model (not used during model reconstruction process), which was performed using the 

fast rotation algorithm implemented in sastbx.superpose (Liu et al., 2012b). The correlation coefficient 

used to compare variables with binary values is referred to as Phi coefficient, similar to the pearson 

correlation coefficient for variables with continuous values (Guilford, 1936). In statistical analysis, the 

range for Phi coefficient is not strictly confined in [-1,1] (Davenport and El-Sanhurry, 1991). We 

computed the Phimax between decodeSAXS reconstructed models and the reference models to 

provide a reference (the values are mostly above 0.80, see Figure S4 for a distribution). Here, the 

concept of Phi coefficient is borrowed to measure the similarity between reconstructed model and the 

reference model. The computed cc is used to quantify the overlapped volume from the two models 

being compared. The physical interpretation is the that cc=1.0 corresponds to perfect overlapping 

(aligned to itself), and cc=0.0 corresponds to zero overlapping between the two models. Both Phimax 

and cc can be used to measure the model similarity. The cc values are used to quantify the model 

similarity through the analysis because of its clear physical interpretation, and the Phimax is provided 

as a reference. For consistency analysis for models from multiple reconstructions, the hierarchical 

clustering algorithm was applied using correlation distance (defined as 1.0-cc). The figures were 

prepared using Chimera (Pettersen et al., 2004) or Pymol (Schrödinger, 2015).  
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