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�� Wearable sensors, in particular inertial measurement 
units (IMUs) allow the objective, valid, discriminative and 
responsive assessment of physical function during func-
tional tests such as gait, stair climbing or sit-to-stand.

�� Applied to various body segments, precise capture of 
time-to-task achievement, spatiotemporal gait and kine-
matic parameters of demanding tests or specific to an 
affected limb are the most used measures.

�� In activity monitoring (AM), accelerometry has mainly 
been used to derive energy expenditure or general health 
related parameters such as total step counts.

�� In orthopaedics and the elderly, counting specific events such 
as stairs or high intensity activities were clinimetrically most 
powerful; as were qualitative parameters at the ‘micro-level’ 
of activity such as step frequency or sit-stand duration.

�� Low cost and ease of use allow routine clinical application 
but with many options for sensors, algorithms, test and 
parameter definitions, choice and comparability remain 
difficult, calling for consensus or standardisation.
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Introduction
Clinical outcome assessment serves both internal quality 
controls such as for the individual clinician or hospital, as 
well as external quality controls like joint registers, insur-
ance assessments and wider society. It provides (bio)
feedback to patients and caregivers, thus playing a role in 
patient empowerment and self-motivation. Outcome 
assessment in clinical trials, epidemiological studies or 
registers allows the identification of safe or unsafe proce-
dures and the differentiation of therapeutic options to 
identify the best alternative. Evidence-based medicine 

relies on routine, valid and responsive evaluation meth-
ods including domains of function and activities as a 
major focus of orthopaedic intervention. Outcome-based 
evidence also guides the therapeutic innovation cycle 
and provides input into increasingly relevant health-eco-
nomic considerations. Therefore, knowing, choosing and 
applying suitable outcome assessment methods is 
becoming increasingly relevant in clinical practice and 
research.

Evaluating physical function and activity

Function and activity have been captured by patient-
reported outcome measures (PROMs), clinician-adminis-
tered scales (CAS), and also by performance tests such as 
the Timed Up-and-Go (TUG),1 or the 6-Minute Walk test 
(6MWT).2 Lab-based gait analysis using tools such as 
video motion-capture, force-plates and electromyogra-
phy (EMG) employs sophisticated biomechanical meth-
ods and produces highly accurate functional parameters 
(for example joint moments) for clinical research. All these 
methods have distinct disadvantages which have given 
rise to the development of wearable sensor techniques, 
which form the focus of this review.

The inherent subjectivity of PROMs affects the validity 
of assessing objectively measurable dimensions such as 
function or activity. In a recent review of PROMs for knee 
arthroplasty patients it was concluded that “a validated, 
reliable and responsive PROM addressing TKA patients 
has not yet been identified”.3 Another review studied 
twelve PROMs for the assessment of physical activities in 
osteoarthritis (OA) patients and concluded that there is 
“not enough evidence for any instrument to have ade-
quate measurement properties”.4 Authors “recommend 
accelerometry for total joint arthroplasty follow-up 
studies”,4 a popular wearable sensor application. Also the 
Osteoarthritis Research Society International (OARSI) 
reviewed outcome assessment methods in a Delphi con-
sensus study and besides recommending a core set of 
timed performance-based tests, assessment with weara-
ble sensors is advocated to fully capture physical function 
in routine clinical outcome assessment.5

Wearable sensors

Low-cost wearable sensors promise to capture func-
tional parameters identical or similar to those measured 
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with lab-based techniques (e.g. opto-electronic motion 
capture systems). In particular inertial measurement 
units (IMUs) containing accelerometers and gyroscopes 
are widely available and used for orthopaedic outcome 
assessment.6 While these techniques have been applied 
in younger orthopaedic patients, for example following 
sports injuries, this review focuses on clinical applica-
tion in the elderly patient. Without applying a strict age 
limit this applies to patients at or beyond retirement age 
and focuses on disease and interventions most common 
in this group such as osteoarthritis, joint arthroplasty, 
fractures and falls.

Study aim
This review aims to give an overview of a) wearable sensor 
technologies in application, b) the available methods 
referring to algorithms and parameters used to analyse 
functional tests or activity monitoring data and c) the clini-
cal application in elderly orthopaedic patients.

Wearable sensor technology
For evaluating physical function or physical activity, wear-
able sensors must capture kinematic or dynamic dimen-
sions such as translational and rotational accelerations, 
velocities and displacements or forces and moments. Sen-
sor measurement is captured either directly or indirectly 
and then further processed using additional information 
(e.g. boundary conditions) including those of human 
kinetics computer models.

The most commonly-used wearable sensors are inertial 
measurement units (IMUs). They contain individual or 
combined one-, two- or three-dimensional accelerome-
ters and gyroscopes and have become accessible regard-
ing measurement accuracy, size, cost, energy consumption 
or onboard pre-processing power through mass produc-
tion, for example for automotive stability programmes 
and smartphones. Also magnetometers, GPS and barom-
eter sensors are available, mostly in sensor fusion with an 
IMU. Wearable sensors that measure forces are yet less 
common and in orthopaedic publications seem restricted 
to pressure foils in shoe insoles. Wearable goniometers 
measuring deflection angles via elastic materials changing 
electrical resistivity are another class of sensors.

For the raw signal sensing units of IMUs there are only a 
few dominant manufacturers (for example Bosch, Inven-
sene, STM) supplying to numerous hardware manufactur-
ers producing specific solutions suitable for human motion 
analysis and activity monitoring. Thus, with regards to basic 
sensor resolutions, ranges and accuracies, many products 
are comparable. They differentiate themselves via design 
(shape, size, weight influencing patient compliance, skin 
movement artefact), functionality (for example control 
switches and LED, battery life, charging, configuration 
options, data output format), connectivity (cable, wireless) 

and data pre-processing which can produce derived 
parameters or use sensor fusion in combination with e.g. 
Kalman filters to increase accuracy. A few commercial offer-
ings such as GaitUp (Renens, Switzerland) Dynaport (Den 
Haag, Netherlands), Xsens (Enschede, Netherlands), Delsys 
(Natick, MA) and Shimmer (Dublin, Ireland) also offer pro-
prietary software algorithms for motion analysis or activity 
monitoring. Most published studies in orthopaedics have 
used self-developed algorithms.

When IMUs are attached to the human body in a multi-
ple sensor array similar to markers in a lab-based video 
capture system, they produce similarly rich full-body 
motion analysis as with the commercial Xsens suit, which 
comprises up to 17 sensor nodes.7 However, for routine 
clinical application such a multiple sensor, set-up is com-
promised by limitations of cost, time and analytical com-
plexity, similar to lab-based motion capture. Thus many 
clinical applications have used mostly a single sensor or 
two accepting the compromise of limited but focussed 
motion parameters.

The routine clinical application usually focusses on 
detecting a few specific motion parameters or activity classes 
relevant to score the severity of a specific disease or recovery 
progress after an intervention. For this purpose, the applica-
tion of wearable sensors for functional assessment usually 
involves a) the definition of a specific movement task (e.g. 
gait), b) the choice of location for a single sensor (such as 
sacrum) followed by a c) specific signal analysis for feature 
detection (acceleration peaks, for example) to be used to 
calculate a specific functional parameter (e.g. step fre-
quency asymmetry) or in physical activity monitoring to 
classify a certain activity such as stair climbing.

Physical function
A thorough search of the literature demonstrated a broad 
heterogeneity of methods to assess physical function with 
wearable sensors. This section and Table 1 offer a brief 
overview of the different functional tests, wearable sen-
sors and motion parameters that are most commonly 
used in orthopaedics.

Gait

Gait analysis is the most applied method for objective 
assessment of physical function in orthopaedics, and rep-
resents a main rehabilitation goal. As already described in 
recent reviews,8-14 a wide variety of wearable sensors can 
be used for gait analysis, measuring different gait charac-
teristics from various body parts. Wearable sensors include 
pressure insoles, footswitches, accelerometers, IMUs, and 
electromyography.

A sensor attached to the foot is most accurate to detect 
gait events (heel strike, toe off, for example) and is 
regarded as the reference method for other systems.14 
Footswitches and pressure insoles are load-dependant or 
force-sensitive wearable sensors placed between the sole 
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Table 1.  Overview of available methods to assess physical function of the lower extremity with wearable motion sensors

Functional tests Sensor type Sensor location Motion parameters Clinical application References

Gait Pressure sensor Shoe Ground reaction force Healthy persons 43

  Force sensitive insoles Foot Gait events Post-stroke 44,45

  Ultrasonography Heel Gait phases Healthy persons 46

  Accelerometer Sacrum Spatiotemporal Osteoarthritis 18

  Heel and toe Gait events Healthy persons 47

  Ear Gait events Osteoarthritis 48,49

  Inertial sensor Sacrum Spatiotemporal
Stride variability 
Pelvic range of motion

Osteoarthritis
Frailty

29,50,51

  Trunk: sacrum–C7 Spatiotemporal
Trunk range of motion
Pelvic range of motion

Osteoarthritis 52

  Thigh and tibia Gait events
Spatiotemporal
Knee range of motion
Knee angular velocity
Hip range of motion

Healthy persons
Osteoarthritis
Knee brace
Ankle brace

29,53

  Shoe Spatiotemporal
Angular velocity

Hemiparetic patients
Real time feedback

54,55

  Lower back, thigh, shank, foot Hip range of motion
Knee range of motion
Ankle range of motion

Healthy persons 56,57

  Electromyography Thigh and shank Muscle activity
Power spectrum
Gait phases

Healthy persons
Hemiplegia

21,22

Running Inertial sensor Sacrum, thigh and tibia Knee flexion
Knee angular velocity

Osteoarthritis 29

Sit-to-stand Inertial sensor Sternum, lower back, thigh and tibia Angular velocity
Acceleration

Frailty
Fall detection

28

  Inertial sensor Trunk: S1-L4 Phase detection
Trunk range of motion
Vertical Acceleration

Frailty
Osteoarthritis
Parkinson

6,58,59

  Flexible goniometer Sewn into trouser: waist, thigh, knee Temporal event detection Osteoarthritis 27

Sit-to-walk Accelerometer
Foot pressure sensor

Trunk: L3-L4. Acceleration
Foot pressure
Trunk range of motion

Healthy persons 60

  Inertial sensor Sacrum, thigh and tibia Knee flexion
Knee angular velocity

Osteoarthritis 29

Timed up-and-go Smartphone Sternum Trunk acceleration Frailty 61

  Inertial sensor Sternum, lower back, thigh and tibia Angular velocity trunk
Spatiotemporal gait

Frailty
Fall detection

28

  Inertial sensor Sternum, shank, wrist Angular velocity trunk
Spatiotemporal gait

Parkinson 62

  Inertial sensor Trunk: L2 Acceleration
Angular velocity

Fall detection 63

  Inertial sensor Sacrum, thigh, tibia Knee flexion
Knee angular velocity

Knee osteoarthritis
Frailty

1,29

Stair climbing Inertial sensor Sternum, hip Acceleration
Jerk
Peak power
Velocity

Frailty 30

Block step-up Inertial sensor sacrum Trunk range of motion
Trunk angular velocity
Vertical acceleration
Asymmetry

Osteoarthritis 25,33

Squat Inertial sensor Chest, thigh, ankle Knee flexion
Hip external rotation
Trunk range of motion

Knee osteoarthritis 38

Straight leg raise Inertial sensor Chest, thigh, ankle Raise angle
Hip external rotation

Knee osteoarthritis 38

Joint motion
– Patellofemoral Accelerometer Patella Vibro-acoustic signals Patellofemoral joint 

disorders
34,35

– Tibiofemoral Inertial sensor
Textile goniometer

Femur and tibia
Knee brace

Range of motion Healthy persons
Multiple Sclerosis

64-66

– Hip joint Inertial sensor Thigh, shin and foot Flexion
Abduction
External rotation

Healthy subjects 67

Joint stability
– Pivot shift Inertial sensor Tibia and femur Rotational rate

Peak acceleration
ACL deficiency 36

Balance Accelerometer Sternum, waist, ankle Acceleration Fall detection 68

  Inertial sensor Trunk Trunk range of motion
Angular velocity
Acceleration

Healthy persons 
Parkinson
Post-stroke

41,69,70

  Inertial sensor Lower back, thigh, shank Centre of mass sway
Hip joint sway
Angle joint sway

Frailty
Peripheral artery  
disease

42
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of the foot and the ground, which provide information 
during each gait phase.

Accelerometers are most often used to derive spatio-
temporal gait parameters (e.g. cadence, step length). In 
previous studies, a single accelerometer positioned at the 
dorsal side of the lower back close to the body’s centre of 
mass, has been advocated for optimal clinical feasibility 
and accuracy.15-17 Spatio-temporal gait parameters can 
discriminate gait between healthy subjects and OA 
patients and have been used to objectively assess func-
tional outcome following a total joint replacement.18

Inertial measurement units (IMUs) have become increas-
ingly popular as they allow kinematic characterisation of 
gait, supplementary to spatio-temporal gait parameters. 
By attaching an IMU onto a body segment, the orientation 
of that body segment can be determined, and a previous 
systematic review of the literature19 demonstrated high 
accuracy for most devices compared to gold standard 
optoelectronic motion capture systems. Clinical applica-
tions include single and multiple linked sensor set-ups to 
measure a wide variety of motion parameters including 
range of motion of the trunk and pelvis, joint angles of the 
hip, knee and ankle as well as angular velocity (i.e. angular 
rate; °/s) of the thigh and shank. Therefore, IMU-based gait 
analysis is a feasible and sophisticated tool for routine func-
tional outcome assessment in orthopaedics.20

Electromyography (EMG) captures the electric activity 
from muscles and wearable EMG sensors have become 
available in fusion with IMUs to enrich kinematic gait anal-
ysis with muscle activity.21,22

Sit-to-stand test

Another frequently-used test to assess physical function 
with wearable sensors is the sit-to-stand (STS) test, as it is 
regarded as a biomechanically more demanding func-
tional task than gait.23 In literature, the STS test has been 
enhanced with single IMUs attached onto the trunk (lum-
bar spine, sternum) to measure trunk inclination as known 
compensation mechanism adopted to avoid pain or as a 
result of persistent muscle weakness.24,25 To measure 
trunk movement with a single inertial sensor, it has been 
demonstrated that the optimal location of the sensor is 
achieved by locating the sensor at a level approximate 
to L1.26 Multiple linked sensors have also been applied in 
literature and allow additional assessment of joint kine-
matics from the hip and knee.27

Timed Up-and-Go test

The Timed Up-and-Go (TUG) test is commonly used in 
clinical practice and has demonstrated good measure-
ment properties in elderly populations.28,29 The TUG test 
encompasses multiple activities including the transition 
from sit-to-stand, walking a short distance and turning 
while walking. A few studies have used wearable sensors 
for objective and precise timing of the TUG transition 

phases and to derive motion parameters from each transi-
tion phase. IMUs are most often applied and have been 
attached onto the trunk, sternum, thigh, tibia and shin to 
capture trunk acceleration, angular velocity of the lower 
limbs and range of motion of the hip and knee.

Stair climbing test

Stair climbing is a common activity limitation and rehabili-
tation goal in elderly orthopaedic patients to establish 
safety and independence. The preferred stair test for clini-
cal application is a nine-step test with step heights of 
between 16 cm and 20 cm, and the use of handrails or 
assistive devices should be recorded.5 IMUs attached at 
the sternum, sacrum, hip, thigh and tibia have been used 
in clinical studies, measuring trunk and lower limb accel-
eration and angular velocity to detect frailty in elderly 
patients30 and to assess functional outcome after total 
joint replacement.29

Block step-up test

The block step-up test has been used in a few clinical stud-
ies as a practically more feasible surrogate for the stair 
climbing test6,25,31,32 In block step-up one leg is isolated, 
providing asymmetry measures which make the test par-
ticularly suitable to monitor improvement after surgical 
procedures.33 An IMU at the lower back has been used to 
derive trunk inclination, trunk angular velocity and verti-
cal acceleration.6,25,33

Joint-specific functional tests

Patellofemoral joint motion has been assessed analysing 
the vibro-acoustic signals from an accelerometer attached 
onto the patella.34,35 In addition, wearable motion sensors 
have also been used to assess joint stability tests such as 
assessment of ACL insufficiency by measuring rotational 
rate and peak accelerations with an IMU applied in the 
Pivot Shift test.36 Furthermore, IMUs have been applied to 
measure shoulder joint function before and after ortho-
paedic interventions.37

Rehabilitation tests

Wearable sensors are used to objectively score functional 
outcome and to monitor rehabilitation in a more continu-
ous modality. Several rehabilitation exercises such as straight 
leg raises and squats have been enhanced with wearable 
inertial sensors and additional interactive virtual interfaces 
have been developed to provide direct feedback.38-40

Balance tests

Balance is measured across a wide range of clinical popu-
lations, especially patients with neurological disorders 
such as elderly at risk for falls.41 In many clinical balance 
tests such as the Romberg test and the Balance Error Scor-
ing System (BESS), patients keep their eyes closed while 
performing specific tasks.42 In the BESS, differences in 
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support surface (foam and firm) and the base of support 
(single-leg, double-leg, and tandem stance position) 
across six tasks challenge a person’s balance and wearable 
IMUs have been used to measure three-dimensional body 
sway from the centre of mass (COM), hips and ankles.41

Physical activity monitoring
Physical activity monitoring (AM) primarily refers to the quan-
titative analysis of activities performed in the habitual environ-
ment over various days. Physical activity (PA) has been 
recognised as a major factor in general health. The increased 
mortality documented for untreated hip OA is attributed to 
reduced PA. The need to measure PA in joint arthroplasty to 
provide evidence for treatment guidelines is recognised.71 
Furthermore, PA can be a protective factor (e.g. bone den-
sity72), but also a risk factor for orthopaedic disease (e.g. 
fatigue fracture). PA is also reviewed as largely independent 
of hip and knee function thus requiring separate assess-
ment.73 In addition, PA is a critical input to implant design 
where fatigue and wear are a function of use and not time.73

Patient-reported activity

Patient-reported activity measures assess perceived physi-
cal activity and thus suffer from subjectivity. In a system-
atic review of 12 PROMs to measure PA in hip and knee 
OA patients, it was concluded that there is “not enough 
evidence for any instrument to have adequate measure-
ment properties”4 and accelerometry was recommended. 
Accelerometry also revealed insufficient validity of another 
PROM, the ‘Physical Activity Scale for the Elderly’ (PASE).74

Objective activity measurement

Traditionally, sensor-based AM has focussed on energy 
expenditure measured as metabolic equivalent of task 
(MET), an important parameter in general health, obesity 
or sport, exercise and lifestyle. One-, two- or three-dimen-
sional accelerometer peak counts are processed on-board 
the sensor to produce energy expenditure or classify, for 
example, 1-minute activity intervals into low-, moderate- 
and high-intensity activities, the latter two usually pooled 
into minutes of moderate and vigorous PA (MVPA).

In orthopaedics, energy expenditure is a rather unspecific 
parameter, and so this approach has not often been used. In 
one study,75 patients indicated for THA or TKA burned the 
same calories/day as healthy controls and neither gender, nor 
hip or knee OA, had an influence. In another study,76 energy 
expenditure was not different prior nor at any time point up 
to 12 months post-TKA, thus showing no responsiveness. 
Furthermore, no treatment effect has been measured six 
months after THA and TKA when only general, non-disease 
specific parameters like sedentary time were used.77

For evaluating orthopaedic conditions or interventions, 
specific activity events promise to be more indicative con-
sidering the frequency, intensity, time and type (FITT) 

components of PA described by the World Health Organi-
zation. Identifying specific activity types, counting and 
timing them, plus possibly deriving qualitative activity 
parameters (e.g. cadence) seem diagnostically relevant 
and responsive parameters.78

AM technology

Activity classification at clinical grade needs elaborated 
algorithms, usually requiring post-processing in a comput-
ing environment such as Matlab (Natick, MA). A review of 
signal processing and classification techniques79 describes 
heuristic approaches where gravity for example defines the 
inclinometer reference for the accelerometer to differenti-
ate sitting from standing, or where harmonic acceleration 
peaks identify steps. Other approaches involve machine 
learning techniques including neural networks, fuzzy 
logic, support vector machines, Markov chains, k-Nearest-
Neighbors algorithm, decision trees, (un-)supervised 
learning, and others. In addition, parameters are derived 
using complex analysis such as wavelets or entropy meas-
ures. The algorithms depend also on the sensor type or 
modality (mostly accelerometers, increasingly IMUs plus 
barometers, for example) and the sensor location. Com-
mon sensor locations for identifying activities are the hip 
(belt), thigh, sacrum, chest, ankle and wrist compromising 
between accuracy (thigh) and user-friendliness (wrist).

The multitude of sensor, location and algorithm choices 
has led to a great proliferation of solutions for clinical use. 
First there are commercial devices with proprietary analysis 
software such as Actigraph (Pensacola, FL), StepWatch 
(Washington, DC), Shimmer (Dublin, Ireland), Dynaport 
(Den Haag, Netherlands), ActivPal (Glasgow, UK), Gaitup 
(Renens, Switzerland), RT3 and others. Algorithms are usu-
ally not disclosed or adaptable and mostly there is no spe-
cific validation for orthopaedic patients. Secondly there are 
research groups who use the devices above or any other 
multi-purpose accelerometer to post-process the raw sig-
nal with their own software. Algorithms are usually dis-
closed but validation for orthopaedic patients against a 
reference such as video observation is also rare. Even with 
validation available protocols and benchmark parameters 
(classification accuracy) are hardly comparable.

Most AM sensors comprise accelerometers where bat-
tery life and data storage capacity (up to 100 MB/day) 
match common measurement periods of 4-7 days. Typi-
cal g-ranges of ±2 g, ±4 g, ±8 g or ±16 g are fixed or can 
be configured with most human motions not exceeding 
2 g but interesting high intensity events such as running 
or stumbles and falls requiring a ±4 g or ±8 g range.72 
Sample frequencies are set up to 50 Hz or even higher 
when also qualitative information (micro-level) from the 
macro-level activity events is to be measured. Fixation is 
via clips, bands or similar on clothes, or directly to the skin 
using adhesive tapes. Reported measurement periods in 
orthopaedic studies vary between one and 15 days. 
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A study comparing the standard 7-day to a 4-day protocol 
in TJA patients80 showed agreement within ±5% while not 
recommending further reduction.

Activity studies in elderly orthopaedic patients

Clinical studies using AM in orthopaedics used accelerom-
eters and investigated reference data, comparisons 
between patients and controls or guidelines,81 correla-
tions with disease severity or other scores (PROMs) and 
treatment effects.

In a meta-analysis,81 it was shown that only small to 
moderate proportions of patients with knee or hip OA met 
physical activity guidelines (150 minutes/week MVPA) and 
recommended daily steps (10 000 or 7000). In a study on 
rheumatoid arthritis (RA) average daily MVPA minutes 
were less in RA patients (23 min) than in healthy controls 
(33 min) and correlated with RA disease activity.82

In a longitudinal study83 comparing pre-op, 3 and 
6 months’ outcome of THA and TKA using PROMs, func-
tional tests and two-sensor accelerometry, general activity 
parameters such as the total ‘time upright’ or ‘time walk-
ing’ and the ‘number of sit-stand transfers’ did not improve, 
while PROMs and functional tests increased significantly. 
This indicates that activity is a largely independent outcome 
measure and that activity parameters need to be more spe-
cific or more qualitative than quantitative alone. The same 
group showed in another study84 that only qualitative 
‘micro-level’ parameters such as ‘stride frequency’, a self-
defined ‘motility’ as an intensity measure and ‘sit-stand 
transfer times’ improved significantly post-TJA. Four-year 
results published later85 showed that general activity 
parameters like daily ‘time active’ actually fell below 6 
months values while qualitative activity parameters such as 
‘sit-stand duration’ continued to improve significantly.

In another longitudinal accelerometry study86 TKA 
patients increased their mean daily gait cycles (1 cycle = 
2 steps) from pre-op 4993 to 5932 cycles at 1 year. In a 
comparable study set-up,87 TKA patients also increased 
average daily step counts but at lower levels from pre-op 
5278 to 6473 steps at 1 year. However, more specific 
parameters with a qualitative or performance component 
were more responsive such as ‘moderate to vigorous steps 
per day’ which almost doubled from 1150 to 1935 steps 
while staying far below age-matched healthy controls.

Accelerometry has also provided evidence for the faster 
recovery following minimally invasive (MIS) versus stand-
ard surgery in TKA.88 The mean number of days to reach 
80% of pre-operative ‘cumulative acceleration’ levels was 
3.3 for MIS and 7 days for standard surgery.

In a hip fracture trial,89 a comprehensive geriatric care 
protocol led to a 28% higher ‘upright time’ (or ‘time-on-
feet’) in the first post-operative days. Comparing activity90 
on admission and 2 weeks after hip fracture elderly sub-
jects significantly increased walking time from 7.0 to 
16.3 minutes.

Popular consumer activity monitors (e.g. FitBit) have 
been shown to lack the accuracy91 required for clinical 
grade assessments. Especially in elderly patients with 
reduced mobility or walking aids, errors were > 60% for 
hip and wrist sensor locations.92

Discussion
Wearable sensor motion analysis and activity monitor-
ing have been used in numerous orthopaedic studies 
including the elderly patient. For the routine objective 
assessment of physical functions many parameters for 
tests of gait, sit-stand, stair or step-up tests have been 
validated for single or multiple IMUs and used in clinical 
trials. With low cost and easy operation also by non-
experts often requiring the same or less time than col-
lecting a questionnaire, they supplement conventional 
clinical scores and provide additional diagnostic value 
or outcome evidence.

More widespread use seems to be hindered only by the 
vast variety of sensor, test and parameter options. It would be 
advisable to create consensus in the clinical and research com-
munity on a minimum, recommended or extended set of 
functional tests, sensor configurations and test parameters to 
standardise these outcome tools, popularise their valuable use 
and increase comparability between studies.

Similar statements can be made for activity monitoring. 
The evidence for the value of objective free field AM in 
orthopaedics and elderly patients is clear. However, too 
many variants of sensors, locations, algorithms and 
parameters exist to justify a clear choice. In a relatively 
young discipline, much standardization or consensus can-
not yet be found nor may even be helpful. However, 
reporting the system’s state of validation, parameter defi-
nitions and results in comparable formats would help the 
discipline to grow and be directed in a clinically useful 
way. Reference data boosts the value of new studies.

General quantitative activity parameters such as energy 
expenditure, time upright or daily steps seemed less dis-
criminative and responsive in orthopaedic applications. 
More specific event counts such as steps in MVPA or 
climbing stairs were clinimetrically more powerful as were 
the calculation of qualitative parameters from the activity 
data at ‘micro-level’ such as step frequency or sit-stand 
duration.

In the future, the disciplines of wearable sensor assess-
ment of function and activity will merge to the level per-
mitted by technology, patient compliance but also context 
required to derive reliable functional parameters.

As wearable sensor technology is becoming more com-
mon, integrated into objects of daily living like smart-
watches or clothes and connected to phones, the 
computational cloud or e.g. exercise equipment (internet-
of-things), AM will be automated and pervasive. It likely 
goes beyond clinical outcome assessment to support 
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biofeedback, exergaming or big-data analysis of activity 
related pathogenesis and remote health, something of 
particular value for the elderly orthopaedic patient.
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