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Abstract: Colorectal cancer (CRC) is a high incidence disease, characterized by high morbidity and
mortality rates. Early diagnosis remains challenging because fecal occult blood screening tests have
performed sub-optimally, especially due to hemorrhoidal, inflammatory, and vascular diseases,
while colonoscopy is invasive and requires a medical setting to be performed. The objective of the
present study was to determine if serum metabolomic profiles could be used to develop a novel
screening approach for colorectal cancer. Furthermore, the study evaluated the metabolic alterations
associated with the disease. Untargeted serum metabolomic profiles were collected from 100 CRC
subjects, 50 healthy controls, and 50 individuals with benign colorectal disease. Different machine
learning models, as well as an ensemble model based on a voting scheme, were built to discern
CRC patients from CTRLs. The ensemble model correctly classified all CRC and CTRL subjects
(accuracy = 100%) using a random subset of the cohort as a test set. Relevant metabolites were
examined in a metabolite-set enrichment analysis, revealing differences in patients and controls
primarily associated with cell glucose metabolism. These results support a potential use of the
metabolomic signature as a non-invasive screening tool for CRC. Moreover, metabolic pathway
analysis can provide valuable information to enhance understanding of the pathophysiological
mechanisms underlying cancer. Further studies with larger cohorts, including blind trials, could
potentially validate the reported results.

Keywords: metabolomics; colorectal cancer; screening test; fecal occult blood test; ensemble machine
learning

1. Introduction

Colorectal cancer (CRC) represents approximately 10% of all annually diagnosed can-
cers and cancer-related deaths worldwide. It is the second most frequent cancer diagnosed
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in women and the third most in men [1]. Its incidence is higher in developed countries.
However, while screening programs and improved lifestyle habits help stabilize incidence
in these countries, the global incidence is expected to increase as affluence increases and
lifestyle changes in developing countries [2].

Both hereditary and environmental risk factors play a role in the onset of CRC. Family
history of CRC is a known risk factor for developing the disease and encompasses both
genetic and shared environmental risk factors [3]. Among familial cases, a subgroup
of patients (3–5% of all CRC [4]) is affected by hereditary CRC syndrome, which can be
subdivided into non-polyposis (such as Lynch syndrome) and polyposis syndromes, such as
Peutz–Jeghers syndrome and familial adenomatous polyposis (FAP) [5]. Known modifiable
environmental risk factors include smoking, eating processed and red meat, alcohol intake,
low intake of vegetables and fruits, and obesity [6]. Among non-modifiable factors, male
sex, age, and inflammatory bowel diseases such as ulcerative colitis are associated with an
increased risk of developing CRC [7].

Clinical signs and symptoms associated with CRC are occult or overt rectal bleeding,
change in bowel habits, anemia, weight loss, and abdominal pain. However, they are
not specific for this condition. Unfortunately, CRC may be asymptomatic until it reaches
advanced stages [8].

Secondary prevention, implemented through screening programs aimed at an early
diagnosis, is of crucial importance for CRC, for several reasons. First, the most important
prognostic factor is disease stage at diagnosis. Indeed, in the USA in the period 2001–07,
5-year survival was 90.1% for patients with localized stage, 69.2% for patients with regional
spread, and 11.7% for patients with distant tumor spread [9]. Second, CRC mostly pro-
gresses from precursor lesions (mainly polypoid) by the sequential accumulation of genetic
mutations and epigenetic alterations, over a mean progression period of 10–15 years [10].
Thus, the ideal method of screening should be able to detect pre-neoplastic lesions or, at
least, localized neoplastic lesions, to allow radical and resolutive intervention.

At present, CRC surveillance is based on invasive, i.e., colonoscopy, and non-invasive
methods, i.e., fecal occult blood test, targeting either heme (guaiac fecal occult blood test-
gFOBT) or hemoglobin (fecal immunochemical test; hemoglobin-FIT). A meta-analysis
of four randomized controlled trials concluded that annual or biennial gFOBT screening
had no effect on CRC incidence but led to an average 16% mortality reduction [11]. No
randomized controlled trial has reported the impact of FIT screening on CRC incidence
and mortality; however, the latter method is preferred over the former because it is more
sensitive. Nevertheless, as with all screening tests, FIT diagnostic performance depends on
the cutoff value for a positive test result [12].

Colonoscopy is, at present, the best method to screen for CRC, in terms of specificity
and sensitivity [13]. Nevertheless, randomized controlled trials aimed at quantifying
the impact of colonoscopy screening on disease outcomes are still ongoing (clinical trial
numbers: NCT01239082, NCT00883792, NCT02078804). An advantage is that colonoscopy
offers the possibility of direct lesion removal [13]; however, it is invasive and requires
adequate bowel preparation in addition to highly trained personnel.

Alternative screening methods are sigmoidoscopy and computed tomography (CT)
colonography. Four large randomized controlled trials on sigmoidoscopy screening have
been done. All studies showed a reduced incidence of colorectal cancer and, three of
four resulted in a lowered relative mortality risk as well [14–17]. CT colonography has
comparable accuracy with respect to colonoscopy [18]. However, both of these are often
two-step screening methods, because they must also perform a total colonoscopy in any
case in which further diagnosis is needed.

In spite of the wide range of screening options currently available for CRC, such
tests remain under-utilized by the public [19]. In addition to low public awareness of the
importance of screening programs, psychological factors play a key role in determining
how often CRC screening is performed. Invasive procedures, such as colonoscopy, are
often rejected due to the fear of pain, complications, and discomfort. On the contrary,
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stool-based approaches are generally preferred due to lower costs and invasiveness, but
the need for multiple tests represents a major discouraging factor for many [20]. Even
though utilization of invasive procedures is significantly lower than that of stool-based
methods, overall compliance with the latter remains low because people tend to postpone
these investigations, despite the potentially crucial loss of time before being screened [21].

However, as the adherence of the target population to screening programs is pivotal to
obtaining successful public health results, the need to address this issue becomes prominent.
Hence, significant effort is expended to develop novel diagnostic tools in order to encourage
and simplify the screening of CRC, including, as an example, the development of a toilet
paper-based FOBT method [22]. In this context, metabolomics analysis may offer valuable
support.

Metabolomics is an emerging field of research in the -omic domain and refers to a
comprehensive analysis of low molecular weight compounds, such as metabolic substrates
and products, lipids, small peptides, vitamins, and other protein cofactors, generated by
metabolism, in a biological fluid. It is a rapidly growing field in biomarker discovery [23].
Moreover, unlike the other -omic sciences, such as genomics, transcriptomics, and pro-
teomics, it can be more precise in the characterization of multifactorial diseases because it
reflects the interactions between genes and the environment [23,24].

Compared to other diagnostic tools, the metabolomics approach can offer high diag-
nostic performance by means of a single analysis, in a cheap, fast, and non-invasive manner,
potentially representing the ideal screening test. Furthermore, as the metabolome provides
unique information regarding the mechanisms underlying the disease onset and progres-
sion, a thorough investigation of the metabolomic fingerprint of CRC may provide crucial
insights to enhance the understanding of the pathology as well as to identify prognostic
biomarkers and assess the severity of the disease [25].

Several metabolomic studies have been conducted on a variety of biological matrices
(blood, urine, fecal water, tissue) in small cohorts of colorectal cancer patients [26,27]. These
compared either metabolic profiles to healthy subjects (and to normal tissue samples) [26]
or to patients with benign polypoid pathology [28], using gas and liquid chromatography
coupled to mass spectrometry (GC-MS, LC-MS) or nuclear magnetic resonance (NMR) as
analytical techniques.

Here, we describe the results of an untargeted metabolomics-based profiling of serum
samples collected from subjects that tested positive using the FOBT screening program.
Stratifying them according to their colonoscopy-based biopsies, the population was divided
into three groups: healthy subjects, participants with benign colon lesions, and patients
with CRC. The specific aim was to propose a novel, non-invasive method for the screening
of CRC using a robust ensemble machine learning approach based on serum metabolomes.

2. Results

The reported results were achieved by analyzing serum samples taken from 200 individ-
uals who tested negative for FOBT or positive and subsequently underwent a colonoscopy
and a biopsy to pathologically analyze any evident lesions. Fifty of the 200 participants
presented with no lesions and were considered healthy subjects (HS), 50 presented with
benign colon or rectum tumors (BCRT), and 100 were diagnosed with CRC.

Gas chromatography–mass spectrometry analysis of derivatized samples detected up
to 261 peaks in each specimen using an untargeted metabolite extraction procedure. Peaks
present in at least 75% of samples and with sufficient signal to be confirmed as metabolites
using library comparison were further investigated. As a result, a total of 243 signals were
consistently detected. Supplementary Figure S1 reports the deconvoluted chromatograms
of typical CTRL and CRC samples.

For all of the enrolled subjects, age, sex, weight, height, and biochemical parameters
results were recorded. Moreover, the presence of other pathological conditions, as well as
chronic treatments for these conditions were investigated (Table 1). These parameters were
normally distributed according to the Shapiro–Wilk test. All statistical comparisons used a



Metabolites 2022, 12, 110 4 of 17

significance value of α = 0.05 (described in detail below). CRC patients were significantly
older than HS subjects (p = 0.009), whereas CRC patients showed a lesser mean body mass
index (BMI) compared to both HS and BCRT subjects (p < 0.001).

Table 1. Enrolled subject characteristics (mean ± standard deviation or %). Abbreviations used
are HS: Healthy subjects, BCRT: Benign colon or rectum tumors, CRC: Colorectal cancer affected
patients, BMI: Body mass index, HDL: High-density lipoprotein, LDL: Low-density lipoprotein, GGT:
Gamma-glutamyltransferase, AST: Aspartate aminotransferase, ALT: Alanine transaminase LDH:
Lactate dehydrogenase.

HS (n = 50) BCRT (n = 50) CRC (n = 100)

Age (years) 61.6 ± 7.0 62.8 ± 7.1 66.2 ± 11.3 *
Men (%) 56 59 64

Weight (kg) 76.4 ± 15.5 80.0 ± 16.9 72.8 ± 15.1 §

Height (cm) 165.0 ± 9.5 167.5 ± 8.7 167.7 ± 9.4
BMI (kg/cm2) 27.9 ± 4.3 28.4 ± 4.8 25.7 ± 9.4 *,§

Blood Pressure (mm Hg)
Systolic 135.2 ± 24.4 132.3 ± 17.7 139.9 ± 17.4
Diastolic 81.6 ± 11.4 81.9 ± 11.1 80.7 ± 8.0

Heart rate (bmp) 79.7 ± 7.7 79.8 ± 6.8 79.4 ± 7.5
Oxygen saturation (%) 99.0 ± 1.5 98.8 ± 1.6 99.7 ± 10.0

Azotemia (g/dL) 38.4 ± 10.4 40.8 ± 18.8 43.2 ± 13.5 *
Total Cholesterol (mg/dL) 191.9 ± 39.1 194.9 ± 42.2 189.2 ± 40.0

HDL (mg/dL) 57.2 ± 13.1 52.5 ± 14.7 62.9 ± 18.8 §

LDL (mg/dL) 114.2 ± 30.1 113.7 ± 33.9 113.9 ± 33.9
Triglycerides (mg/dL) 115.4 ± 57.3 138.4 ± 95.3 116.6 ± 63.5

Creatinine (mg/dL) 0.8 ± 0.2 0.9 ± 0.4 0.9 ± 0.3 *
Alkaline phosphatase (UI/L) 53.7 ± 16.2 55.2 ± 13.3 81.4 ± 59.3 *,§

GGT (U/L) 26.4 ± 17.5 26.7 ± 22.4 49.2 ± 118.6
Glycaemia (mg/dL) 92.1 ± 25.3 99.1 ± 29.3 101.0 ± 26.7

White blood cells (n/µL) 6725.6 ± 1917.1 8427.6 ± 12315.9 6033.3 ± 1928.7 *
Red blood cells (n/µL) 4.97 * 106 ± 4.92 * 106 4.95 * 106 ± 7.14 * 106 4.66 * 106 ± 6.78 * 106 *

AST (mU/mL) 21.5 ± 7.7 23.8 ± 11.6 25.2 ± 11.9 *
ALT (mU/mL) 25.1 ± 12.2 28.1 ± 14.9 27.2 ± 16.9

LDH (U/L) 169.3 ± 27.1 177.6 ± 28.9 172.3 ± 34.9
Serum iron (µg/dL) 95.0 ± 33.6 95.5 ± 36.9 79.6 ± 42.8 *,§

Uric acid (mg/dL) 5.4 ± 1.4 5.8 ± 1.7 5.2 ± 1.4 §

Other pathologies (n(%)) 45 (90%) 40 (80%) 98 (98%)
Hypertension ¶ 24 (53%) 25 (63%) 49 (50%)

Diabetes ¶ 9 (20%) 8 (20%) 14 (14%)
Hypertriglyceridemia ¶ 2 (4%) 1 (3%) 0 (0%)
Hypercholesterolemia ¶ 6 (13%) 6 (15%) 4 (4%)

Heart disease ¶ 6 (13%) 5 (13%) 7 (7%)
Cancer in other organ ¶ 6 (13%) 3 (8%) 13 (13%)

Other ¶ 11 (24%) 10 (25%) 24 (24%)
Pharmacological treatments (n(%)) 39 (78%) 37 (74%) 82 (82%)

* Indicates statistical difference (p < 0.05) compared to HS; § indicates statistical differences (p < 0.05) compared to
BCRT; ¶ indicates the percentage based on the cases with other pathologies.

For the purpose of attempting to distinguish serum metabolomes of cancer vs. non-
cancer subjects, the HS and BCRT groups were combined to form the control (CTRL)
group. Based on this sample aggregation, training and test sets were prepared by randomly
dividing the overall dataset (N = 200) into two parts (66:34). One (n = 133; composed of
69 CTRL and 64 CRC) was used to train and cross-validate multiple classification models,
while the other (n = 67; with 31 CTRL and 36 CRC) was used to test them. Overall
classification performance was evaluated using the test set.

In total, 86,625 models, based on 25,141 feature subsets, were developed and tested
with the aim of determining the most effective combination of hyperparameters and
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metabolites to maximize the accuracy of classification of the examined models. Ten ma-
chine learning algorithms were trained to classify samples as CTRL or CRC based on the
metabolomic profile. These include naïve Bayes (NB), generalized linear model (GLM),
logistic regression (LR), fast large margin (FLM), deep learning (DL), decision tree (DT),
random forest (RF), gradient boosted tree (GBT), support vector machine (SVM), and par-
tial least square discriminant analysis (PLS-DA). Ultimately, individual results from the
ten classification models were statistically “ensembled” to generate an ensemble machine
learning algorithm (EML). The best metabolite subsets used for training the final models,
as selected by a genetic algorithm (GA), are reported in Supplementary Table S1. The table
also reports the metabolites with the highest weight used to build the UpSet representation.

As highlighted in Table 2, individual model classification accuracy ranged from 71%
to 100% while the EML model reported no classification errors, resulting in 100% accuracy.
For EML score evaluation, an EML score = 0 was selected as the optimized cut-off value and
represents situations in which the individual votes for and against CRC-positive diagnosis
were equal. Figure 1 reports the EML score distribution among the samples in the test
set and the corresponding ROC curve. Supplementary Table S2 reports the classification
results as well as the classification confidence for the enrolled samples among the test set.

The PLS-DA scatter plots of the first two latent components, reported in Figure 2A,
show the graphical representation of the class separation achieved between CTRL and
CRC samples. The model showed the best performance using four latent components
(Figure 2B) and was statistically robust with no overfitting as confirmed by the permutation
test represented by a histogram plot presented in Figure 2C. Fitting value R2 and its cross-
validation homolog Q2 were 0.907 and 0.787, respectively. Twelve metabolites were found
to be most relevant to the class separation (as determined by a variable importance in
projection (VIP) score >2.0). These metabolites, reported in Figure 2D, were: glucose,
tertraethylene glycol, fructose, quinolinic acid, tartaric acid, myristic acid, pyruvic acid,
estradiol, hydroxylamine, nicotinic acid, oleamide, and palmitic acid.
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Figure 1. Ensemble machine learning (EML) scores calculated for the healthy controls (CTRL) and
patients with colorectal cancer (CRC) among the test set; red dashed line represents the optimized
cut-off value (Panel A). Receiver operating characteristic (ROC) curve obtained by varying the cut-off
value when applying the EML model to the test set (Panel B); the area under the ROC curve is 1.0.
Dotted blue line represents the 95% Confidence Bounds.
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Table 2. Performance metrics (value ± standard error) of the individual and the ensembled machine
learning classification algorithms when applied to the test set. Abbreviations; NB: Naïve Bayes, GLM:
Generalized linear model, LR: Logistic regression, FLM: Fast large margin, DL: Deep learning, DT:
Decision tree, RF: Random forest, GBT: Gradient boosted tree, SVM: Support vector machine, PLS-
DA: Partial least square discriminant analysis, EML: Ensemble machine learning, S: Sensitivity, Sp:
Specificity; PLR: Positive likelihood ratio, NLR: Negative likelihood ratio, NPV: Negative predictive
value, PPV: Positive predictive value, A: Accuracy, ND: Not determinable.

Model S Sp PLR NLR NPV PPV A

NB 0.58 ± 0.10 1.00 ± 0.00 ND 0.42 0.67 ± 0.08 1.00 ± 0.00 0.77
GLM 0.96 ± 0.04 1.00 ± 0.00 ND 0.04 0.96 ± 0.04 1.00 ± 0.00 0.98

LR 0.88 ± 0.06 0.95 ± 0.05 18.58 0.12 0.87 ± 0.07 0.96 ± 0.04 0.91
FLM 1.00 ± 0.00 0.77 ± 0.09 4.40 0.00 1.00 ± 0.00 0.83 ± 0.07 0.89
DL 1.00 ± 0.00 1.00 ± 0.00 ND 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00
DT 1.00 ± 0.00 0.82 ± 0.08 5.50 0.00 1.00 ± 0.00 0.86 ± 0.06 0.91
RF 0.69 ± 0.09 1.00 ± 0.00 ND 0.31 0.72 ± 0.08 1.00 ± 0.00 0.83

GBT 0.46 ± 0.10 1.00 ± 0.00 ND 0.54 0.61 ± 0.08 1.00 ± 0.00 0.71
SVM 0.81 ± 0.08 1.00 ± 0.00 ND 0.19 0.81 ± 0.08 1.00 ± 0.00 0.89

PLS-DA 0.92 ± 0.05 0.87 ± 0.06 7.10 0.10 0.90 ± 0.05 0.89 ± 0.05 0.90

EML 1.00 ± 0.00 1.00 ± 0.00 ND 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00

The exploratory analysis illustrated in the volcano plot of Figure 2E showed that
24 metabolites displayed both large magnitude fold-changes (2 < FC < 0.5) and high statisti-
cal significance (p < 0.05) when comparing CTRL vs. CRC among the 200 enrolled subjects.
Of these, glucose, quinolinic acid, estradiol, threonine, glutamine, glyceryl-glycoside,
oxyproline, lactose, oxoglutaric acid, 2-ketobutyric acid, mandelic acid, creatinine, glutamic
acid, nicotinic acid, norepinephrine, and acetic acid were higher in CTRL compared to CRC.
Conversely, galactose, 4-hydroxybenzyl alcohol, myristic acid, hydroxylamine, arabinose,
guanine, fructose, and tetraethylene glycol were higher in CRC.

The statistical significance of each metabolite in model training was evaluated for all
of the classification algorithms. Those that were found to be most relevant within a given
model combined with their multiple selections (in several classification models) were sum-
marized using an UpSet diagram reported in Figure 3. All selected metabolites were coded
according to the Human Metabolites Database (HMDB) and reported in Supplementary
Table S2. Supplementary Figure S2 reports the box and whisker plot representation of
the relative abundances of the relevant metabolites according to the raw signals and the
transformed data.

These metabolites were also employed to conduct a metabolite-set enrichment analysis,
reported in Figure 4. An intricate interplay of a number of different metabolic pathways
and metabolites was found. For example: arginine biosynthesis; valine, leucine, and
isoleucine biosynthesis; aminoacyl-tRNA biosynthesis; D-glutamine and D-glutamate
metabolism; alanine, aspartate, and glutamate metabolism; nicotinate and nicotinamide
metabolism; glyoxylate and dicarboxylate metabolism; nitrogen metabolism; galactose
metabolism; galactose metabolism and butanoate metabolism were all found to play a role
in distinguishing the serum metabolomes of CTRL from CRC subjects. The complete list of
involved pathways can be found in Supplementary Table S3.
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parentheses. Panel (B) reports the PLS-DA classification performance using increasing number of
latent variables. The red star indicates the best classifier. (C) Permutation test results in which
models were built by randomly assigning the class label and then comparing the performance of
the permuted models with that of the original model built with the correct class assignment. These
were statistically different (based on 2000 permutations), highlighting the lack of overfitting in the
original model. (D) The metabolites showing a variable importance in projection (VIP) score higher
than 2.0. The blue bars represent metabolites increased in CTRL, while the red bars represent the
metabolites decreased in CTRL with respect to CRC. *** represent metabolites with a p-value < 0.001
(E) Volcano plot reporting metabolite concentration fold-changes and their statistical significance
when comparing CTRL vs. CRC subjects. 1. Galactose, 2. 4-Hydroxybenzyl alcohol, 3. Myristic acid,
4. Hydroxylamine, 5. Arabinose, 6. Guanine, 7. Fructose, 8. Tetraethylene glycol, 9. Glucose, 10.
Quinolinic acid, 11. Estradiol, 12. Threonine, 13. Glutamine, 14. Glyceryl-glycoside, 15. Oxoproline,
16. Lactose, 17. Oxoglutaric acid, 18. 2-Ketobutyric acid, 19. Mandelic acid, 20. Creatinine, 21.
Glutamic acid, 22. Nicotinic acid, 23. Norepinephrine, 24. Acetic acid. Horizontal dashed grey line
shows p = 0.05; vertical dashed lines represent log2FC = ±1.
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Figure 4. Metabolite set enrichment analysis establishes whether compounds implicated in a specific
pathway are increased compared to casual occurrence applying the hypergeometric test. Node
centrality, which represents an estimate of node importance, was achieved by 0 employing the
betweenness centrality. This reveals the number of shortest paths passing through the node. Because
the metabolic network is directed, the relative betweenness centrality for a metabolite has been applied
as the importance measure. The betweenness centrality measure is focused on the total network
topology. Pathway relevance (represented in terms of circle size) was evaluated as the distance of
each point (a metabolic pathway) from the axis origin. Colors represent the matching status of each
pathway (number of reported metabolites compared to the total metabolites in the pathway).
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3. Discussion

In the present study, we evaluated the diagnostic performance of a machine learning
ensemble model based on the statistical comparison of the serum metabolomic fingerprints
of individuals that are and are not affected by malignant colorectal cancer. Univariate
and multivariate comparison of hundreds of serum metabolites illustrates biochemical
discrepancies in serum samples according to the presence or absence of CRC.

According to the results, numerous serum metabolites and metabolic pathways seem
to be associated with CRC. The analysis of the complex network of metabolic pathways
connecting molecules, in combination with a powerful machine learning algorithm, en-
ables an effective group separation, offering an innovative approach for noninvasive CRC
screening, and providing useful biochemical insights regarding the involved metabolomic
pathways. In particular, lower levels of glucose and glutamine were observed in CRC
patients. In cancer cells, glucose and glutamine represent the most consumed nutrients [29].
Moreover, both glutaminase and glutamate dehydrogenase are overexpressed in many
cancers [30,31]. Notably, glutamine modulates glutaminolysis. This, in combination with
leucine, which is capable of activating glutamate dehydrogenase, induces α-ketoglutarate
production preventing glutaminase inhibition by glutamate accumulation [32].

Line et al. [33] reported that low glutamine amounts were associated with older age,
advanced-stage cancer, low albumin levels, high carcinoembryonic antigen levels, increased
C-reactive protein levels, higher modified Glasgow prognostic scores, and augmented
proinflammatory cytokine levels in colorectal cancer-affected patients. Moreover, according
to their results, subjects exhibiting decreased glutamine levels had lower overall survival
and progression-free survival compared to individuals with higher glutamine levels.

The low levels of glutamine are consistent with the well-known “glutamine addiction”
of cancer cells [34] reported in bladder cancer [35], lung cancer [36], and glioma [37]. This is
due to the need for cancer cells to sustain the production of acetyl-coenzyme A to synthetize
fatty acids when pyruvate is converted to lactate.

The low levels of aspartic acid reported here could explain the low levels of quinolinic
and nicotinic acid levels because these molecules are produced from aspartic acid. The
involvement of aspartic acid in CRC was reported several times although with different
concentration changes in both serum and feces, highlighting its different role in advanced
and early stages of the disease [38]. The pivotal role of aspartic acid was also highlighted
by Nishiumi et al. [39] who proposed a four metabolite-based (2-hydroxybutyrate, aspartic
acid, kynurenine, and cystamine) screening test to discriminate CRC patients from controls
with AUC-ROC of 0.91 and an accuracy of 85%. Nicotinate and nicotinamide metabolism
as well as leucine, isoleucine, and valine metabolism; short-chain fatty acid and alanine
and aspartate metabolism were shown to have a significant impact on CRC metabolomics
signature. Brown et al. [40] also found that nicotinate and nicotinamide metabolism was
associated with a CRC metabolomics signature.

The higher abundances of tetraethylene glycol and hydroxylamine observed in CRC
subjects may be caused by an increased exposure to these molecules or the metabolism of
correlated pollutants. The selection of non-smoking subjects, both among CRC patients
and healthy controls, allows us to exclude these substances as being related to smoking,
although passive smoking exposure was not deeply investigated.

In addition, the involvement of short-chain fatty acids (SCFA) including acetic, propi-
onic, and 2-keto butyric acids might be explained by differences in microbiome composition
between patients suffering from CRC and healthy controls. Indeed, evidence exists that
microbiomes play a crucial role in CRC. In particular, several studies [41–44] modulating
several host mechanisms, ranging from inflammation to DNA damage, and producing
metabolites able to modulate cellular transformation and cancer progression or suppression.
Gut microbiota imbalance (aka dysbiosis) has been reported in subjects affected by CRC,
who exhibit lower counts of commensal bacteria (especially butyrate-producing species)
and increased levels of pro-inflammatory opportunistic pathogens. The low concentrations
of SCFA reported herein could be interpreted in line with this evidence.
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The reduced concentration of 4-hydroxybenzyl alcohol reported herein has an estab-
lished correlation in CRC metabolomics-based studies [40,45]. This metabolite shows good
angiogenetic antagonist activity [46] and was decreased in polyvinyl chloride workers
with hepatic hemangiosarcoma [47]. 4-hydroxybenzyl alcohol, (aka gastrodigenin), is an
intermediate metabolite produced during the biosynthesis of thiamine by Escherichia coli.
Luo et al. [48] reported that the anti-angiogenic and anti-tumor effects of 4-hydroxybenzyl
alcohol could, in part, be due to upregulation of nuclear factor erythroid 2-related factor
2 (Nrf2), an emerging regulator of cellular resistance to oxidants, and in part to other
antioxidant pathways. Moreover, this result could also be related to the already discussed
CRC-derived dysbiosis.

Lipid involvement in cancer and in particular, colorectal cancer, is established [49].
Li et al. [50] reported a nine biomarker-based panel, containing palmitic amide, oleamide,
hexadecanedioic acid, octadecanoic acid, eicosatrienoic acid, LPC (18:2), LPC (20:4), LPC
(22:6), myristic acid, and LPC (16:0), for an effective differentiation of early-stage patients
from healthy controls (AUC-ROC = 0.991, sensitivity = 0.981 and specificity = 1.000). Herein,
we observed high levels of oleamide in serum samples of CRC patients. This endogenous
metabolite is known to accumulate in the cerebrospinal fluid during sleep deprivation and
induces sleep in animals [51]. The exact mechanism of action of oleamide’s sleep-inducing
effects is still to be completely elucidated; however, it is likely that oleamide interacts with
multiple neurotransmitter systems. Oleamide is structurally related to the endogenous
cannabinoid anandamide and has the ability to bind to the CB1 receptor as a full agonist.
The higher concentrations reported herein could reflect cannabinoid receptor expression
increase in CRC patients [52].

Overall, the CRC signature seems in part related to the Warburg effect (i.e., altered ener-
getic metabolism of cancer cells to facilitate growth, survival, and proliferation), and specif-
ically, the glutamine addiction reported in several cancer types. These well-established
effects may help explain the high sensitivity of the ensemble machine learning model built
herein using the serum signature. The other part of the CRC signature seems to be related
to more specific effects such as the SCFA imbalance, the lipid profile, especially involving
oleamide, and gastrodigenin. These differences may contribute to the high degree of CRC
specificity of the serum signature and could lead to a differentiation with other oncological
forms. This aspect was not part of our experimental design and represents the weakness of
our study.

The diagnostic performances of the classification models described herein, taken
independently, are comparable to other studies reported in the literature. As an example,
the sensitivity and specificity of PLS-DA we reported (92% and 87%, respectively) are
comparable to those reported by Farshidfar et al. [53] (85% and 86%, respectively), as well
as the results of the minimal panel reported by Li et al. [50] (98% and 100%). The strength
of our approach lies in the EML algorithm. Indeed, all individual models (except DL) made
some classification errors on the test set. On the contrary, the ensemble did not make any
errors because more than half of the models would have to make the same mistake on the
same sample for EML to show a classification error. This makes the EML system more
robust compared to using a single classification approach and contributes to the observed
high performance of the ensemble approach.

Nevertheless, our study must only be considered a pilot study. Studies based on a
single population can be affected by population selection biases as well as analytical biases.
Despite efforts to exclude such biases, and the use of cross-validation and permutation
tests to avoid overfittings, this risk cannot be completely excluded. Independent validation
from a larger, multi-centric, blind cohort is imperative to probe the diagnostic performance
under real-world conditions. In this way, it could be investigated whether confounding
factors (other age range subjects, concurrent pathologies, etc.) contribute to limiting its
applicability or diminish its overall performance.
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4. Materials and Methods
4.1. Study Design and Patients Enrollment

The clinical specimens have been collected within the “Prima Prevenzione—SPEM”
study protocol—“Analysis of environmental, dietary, transcriptomic and genomic fac-
tors as biomarkers for risk assessment and early diagnosis of colorectal cancer within the
screening campaign “Prima Prevenzione”, approved by the Ethics Committee “Campania
Sud” (approval n◦ n.144, 6 December 2018). The “Prima Prevenzione—SPEM” study is
an epidemiological observational cohort study promoted by the Istituto Zooprofilattico
Sperimentale del Mezzogiorno (IZSM) of Portici (Naples), in collaboration with the Local
Health Authorities of Salerno (ASL SA) and the National Tumor Institute IRCCS (Istituto di
Ricovero e Cura a Carattere Scientifico) “G. Pascale” in Naples. The study design considers
an integrated and holistic search for a predictive profile of the occurrence risk of CRC.
It takes into account the individual hereditary/etiological causes and their combination,
especially focusing on the correlation between environment and health and an innovative
perspective of primary (prophylactic interventions) and secondary (early diagnosis) pre-
vention. There are three main study areas: (1) Genomic, epigenomic, and metabolomics
biomarkers; (2) exposure to sources of pollution; (3) eating habits and intestinal microbiota.

About 60,000 subjects were screened for FOBT; the positive ones were subjected to
colonoscopy and eventually to colon mucosa biopsy to confirm the presence of colorectal
cancer. Inclusion criteria were: (1) age between 50 and 74 years; (2) residence in the
municipality of enrollment for at least 5 years (in order to standardize environmental
exposure); (3) history of negative hepatitis B, C and HIV; (4) signature of the informed.
Exclusion criteria were: (1) Contraindication to blood sampling; (2) lack of cooperation or
poor compliance. Among the enrolled subjects, 200 non-smokers were randomly selected
resulting in 3 study groups:

(I) Control Healthy Group: Negative or positive fecal occult blood test (FOBT−/+)
with a negative endoscopy (n = 50);

(II) Benign Colorectal Disease Group: Positive fecal occult blood test (FOBT +) with a
positive endoscopy for benign adenomatous polyp without carcinoma (n = 50);

(III) CRC Group: Positive fecal occult blood test (FOBT +) with a positive endoscopy
and positive histology for CRC (pT1-2 N0 or pT3-4N0 or PT1-4 N +) (n = 100).

After subscribing to an informed consent, each subject enrolled in the study first
underwent medical examination, completed a questionnaire on lifestyle and eating habits
(EPIC questionnaire—European Prospective Investigation into Cancer and Nutrition—
validated by WHO—World Health Organization) [54,55], and filled in an anamnestic case
report form (CRF). Then, samples of blood (about 50 mL), urine, and feces were collected.
All data were treated in accordance with current legislation on privacy (EU 679/2016).
Indeed, data encryption was applied in order to ensure the protection of privacy on the web-
based platform for the study management (https://pps.openspes.campaniatrasparente.it/,
accessed on 2 December 2021).

4.2. Blood Sampling

Blood samples were collected in vacutainer tubes for serum (BD REF 366,468 SST II
Advance Tube) and separated by centrifugation at +4 ◦C, 10 min at 2000 RCF. Fresh samples
were allocated to biochemical analysis, within 3 h from venous sampling. The remaining
aliquots were stored at −80 ◦C in the biobank dedicated to the study (www.biobancaizsm.it,
accessed on 1 December 2021), until analysis of biomarkers.

The clinical and biochemical parameters defining a basal profile of the individuals
were evaluated. These included blood count, blood biochemistry, and endocrinological
panel. These were considered in order to investigate the function of bone marrow, liver,
kidney, and of the endocrine system and to underline the presence of clinically relevant
differences among the three study groups.

https://pps.openspes.campaniatrasparente.it/
www.biobancaizsm.it
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4.3. Metabolomics Analysis

Untargeted extraction, purification, and derivatization of serum samples were per-
formed using MetaboPrep GC kit (Theoreo srl, Montecorvino Pugliano, Italy) as described
in Troisi et al. [56,57]. Briefly, 50 µL of serum was placed in an Eppendorf tube and in-
cubated with the alcohol-based extraction solution containing 2-isopropyl malic acid as
internal standard. Tubes were vortexed at 1250 rpm for 30 min and subsequently cen-
trifuged for 5 min at 16,000 rpm at 4 ◦C; 200 µL of supernatants, collected in new tubes
were incubated under vortex conditions (1250 rpm for 30 s) with the purification solu-
tion and then centrifuged at 16,000 rpm at 4 ◦C for 5 min. Supernatants (175 µL) were
transferred into a glass vial and freeze-dried overnight. Derivatization was conducted
in two steps: First, a pyridine solution of methoxylamine was added and solutions were
incubated under vortexed conditions (1200 rpm for 90 min); subsequently, 25 µL of an
N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA)-based derivatizing solution was added.
Vials were subjected to an additional 90 min vortexing at 1200 rpm.

The derivatized metabolome was transferred to a GC vial with a low-volume insert
for the autosampler injection. Vials were centrifuged for 5 min at 16,000 rpm maintaining
the temperature below 4 ◦C, before the injection into GC-MS.

Derivatized samples (2 µL) were injected into the GCMS-2010SE (Shimadzu Corp.,
Kyoto, Japan). The chromatographic separation was performed using a 30 m × 0.25 mm
CP-Sil 8 CB fused silica capillary column with 1.00 µm film thickness from Agilent (Agilent,
J&W). Helium was used as carrier gas; the initial oven temperature was set at 100 ◦C and
was maintained for 1 min and subsequently raised to 320 ◦C at 6 ◦C/min with a further
hold time of 2.33 min. The gas flow was set to reach a constant linear speed of 39 cm/s,
and the split flow was set to 1:5. The mass spectrometer was operated with electron
impact ionization (70 eV) in full scan mode with a range of 35–600 m/z, a scanning speed
of 3333 amu/sec, and a solvent cut-time of 5 min. Relevant metabolites were annotated
setting to 50 the linear index difference max tolerance and setting to 85% the minimum
matching for NIST-14 library search. These were further confirmed using external standards
according to Level 1 Metabolomics Standard Initiatives (MSI) annotation [58].

The samples were partitioned into batches, each consisting of 25 samples. Four controls
were used to monitor each batch: an instrument blank injection, an injection of a standard
mixture, an injection of a pooled sample solution, and a duplicated injection of a randomly
chosen sample in the batch. In particular, 2 µL of hexane was employed for the instrument
blank, while the standard mixture contained a solution of 15 molecules (organic acids,
sugars, amino acids, steroids, and fatty acids) that underwent the same derivatization
process used for the samples. The pooled sample consisted of 2 µL each from 50 randomly
selected derivatized samples, and the duplicated injection was performed employing a
sample chosen at random from the batch.

Four conditions had to be met for each batch to be validated: No peaks were generated
by the solvent blank; the ratio between the areas underlying the peak of the analytical
standards (normalized by the internal standard area) remained within 10% of the expected
value; the peak areas (normalized to the internal standard) of the 100 highest peaks of
the repeated injection were within 15% of the first injection; and the pooled sample was
allocated in the same area of the other pooled samples; that is, <5% of the total area of a
model built using all the samples analyzed.

For each batch, an alkane mixture (C10-C40, Sigma-Aldrich, Milan, Italy) was injected
to evaluate the Kovats’ index [59]. Moreover, for each batch, an injector liner change was
performed. Injection liners contained a small amount of GC-MS-grade glass wool.

Gas chromatography–mass spectrometry signals not consistently found in at least
80% of the samples were excluded. Very low-intensity metabolite peaks, resulting from
low concentration and therefore poor mass spectral quality, were not investigated further.
Signals derived from the same metabolites (e.g., sugars that result in multiple derivatization
products) were considered as independent features.
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Chromatographic signals were first deconvoluted and peaks were picked using the
GC-MS Solution software v.2.72 (Shimadzu, Kyoto, Japan) and then aligned using the
MetaboPredict software (Theoreo srl, Montecorvino Pugliano, Italy), which uses the ptw
R package [60] within a proprietary script for gas chromatographic data alignment and
missing data management.

4.4. Statistical Analysis

Statistical analyses were performed by means of R Studio ver. 1.2.5042. The Shapiro–
Wilk test was used to analyze clinical data distribution. Because the continuous variables
were normally distributed, p-values were determined using the Student’s t-test, whereas
the comparison of percentages was achieved using the χ2-test. Statistical significance was
evaluated using α = 0.05. With regard to bioinformatic analysis, data obtained by the
chromatographic investigations were compiled in a table with one sample per row and one
variable (metabolite) per column (dataset). Data transformation of the raw chromatographic
signal intensities was performed by first taking the logarithm of the peak areas for each
metabolite (normalized to that of the internal standard) and then scaling these values via
the autoscaling process (mean centered and divided by the standard deviation for that
variable).

4.5. Machine Learning Models

After samples were separated into training (n = 133) and test (n = 67) sets (66:34 ratio),
the first set was employed to train 10 classification models: Naïve Bayes (NB), general-
ized linear model (GLM), logistic regression (LR), fast large margin (FLM), deep learning
(DL), decision tree (DT), random forest (RF), gradient boosted trees (GBT), support vector
machine (SVM), and partial least square discriminant analysis (PLS-DA). Fine hyperpa-
rameter tuning was implemented to reach the optimal combination in order to maximize
the classification accuracy of the models and avoid overfitting (evaluated by means of
a cross-validation procedure on the training dataset). Meanwhile, numerous metabolite
subsets were used to train the models.

As suggested by the software, we used for data analysis, Rapid Miner Studio ver.
9.7.0 (RapidMiner GmbH, Boston, MA, USA), features to be included in the model were
screened in accordance with three criteria: (a) correlation (features that too closely, or not at
all, mirror the Yes/No diagnosis criterion), (b) stability (features where nearly all values
are identical), (c) missing (features with missing values) and then mixed to identify the
combination providing the best performance. Moreover, a metabolites subset selection
was applied to each classification model as a nested genetic algorithm (GA) using the
evolutionary features selection tool included in the RapidMiner software.

For each model, the weights of all the metabolites selected to explain the class attribu-
tion were also evaluated by using a scree-plot-like graph, and the elbow of the graph was
used as a threshold to identify the most relevant metabolites. These metabolites were com-
bined in the Upset representation [61] to evaluate the selected metabolites from different
models.

As part of the model training procedures, each model was subjected to cross validation.
Furthermore, hyperparameter optimizations were also subjected to cross validation. To
avoid overfitting of the trained models, the two cross-validations were nested in a single
process to both train the models and tune the hyperparameters in an unbiased manner.

The 10 individual classification models were also “ensembled” according to a voting
scheme that used both the cross-validation accuracy and the confidence (i.e., distance from
classification margin) as a vote weight. Ensembling was executed in accordance with
Troisi et al. [56,57,62–65]. In brief, for samples identified as “CRC”, the scores (obtained by
multiplying the model cross-validation accuracy and classification confidence) were used
as is, whereas the scores of “CTRL” samples were multiplied by −1. Lastly, the sum of
the individual classification model scores was used to calculate a CRC-ensemble machine
learning (EML) score for each subject. These scores were then compared to the optimized
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cut-off value to arrive at a final prediction of whether a given metabolome derived from
a CTRL or CRC sample. The overall diagnostic performance of the proposed score was
investigated using a confusion matrix to summarize the results obtained using samples in
the test set.

The area under receiver operating characteristic (AUC-ROC) curve, as well as sensitiv-
ity, specificity, positive and negative predictive values, positive and negative likelihood
ratios, and accuracy were calculated to assess the ability of the CRC-EML score to correctly
predict CRC presence. A non-parametric approach (DeLong et al. [66]) was used to compare
the AUC-ROC curves.

4.6. Pathway Analysis

The pathway analysis was performed combining the results from pathway enrichment
analysis with pathway topology analysis according to Xia and Wishart [67]. The analysis
was based on the KEGG metabolic pathways as the backend knowledgebase included in
the web application based on the MetPa algorithm.

By means of the over-representation analysis, we first tested if compounds involved in
a particular pathway were enriched compared to random hits. This evaluation was based
on the hypergeometric test.

Moreover, to take into consideration the structural information of the pathways, a
pathway topology analysis was performed using the betweenness centrality as a measure
of node centrality to estimate node importance.

Because several pathways were tested at the same time, the statistical p values from
enrichment analysis were adjusted for multiple testing with the false discovery rate (FDR)
method. The Impact is the pathway impact value calculated from pathway topology analysis.

5. Conclusions

The present pilot study allowed the identification of a complex network of serum
metabolites significantly associated with the presence of colorectal cancer. The metabolomic
signature appears to be strongly correlated with the Warburg effect and glutamine addiction
that are widely reported in several cancers. However, several aspects of this signature
seem more specific to CRC; namely, oleamide and SCFA imbalances play a large role in
determining the high specificity of this signature. Other studies are necessary to validate
these preliminary results and to evaluate the specifics of the signature in the differentiation
of CRC from other cancer types.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo12020110/s1. Figure S1: Deconvoluted chromatograms of a control and a colorectal
cancer serum sample, Figure S2: Box and Whisker plot of the raw and transformed data related
to the relevant metabolites, Table S1: Metabolite subsets selected by genetic algorithm and used to
train the final models, Table S2: Classification confidence for each model, and resulting final EML
score, for each subject in the test set, Table S3: Metabolites selected as relevant according to VIP-score
criterion (>2.0), volcano plot (2 < FC < 0.5 and p-value < 0.05), and UpSet plot, Table S4: Metabolite-set
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plot in CTRL vs. CRC comparison.
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