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Abstract: Calcium (Ca) and Phosphorus (P) hold a leading part in many skeletal and extra-skeletal
biological processes. Their tight normal range in serum mirrors their critical role in human well-being.
The signalling “voyage” starts at Calcium Sensing Receptor (CaSR) localized on the surface of the
parathyroid glands, which captures the “oscillations” of extracellular ionized Ca and transfers the
signal downstream. Parathyroid hormone (PTH), Vitamin D, Fibroblast Growth Factor (FGF23) and
other receptors or ion-transporters, work synergistically and establish a highly regulated signalling
circuit between the bone, kidneys, and intestine to ensure the maintenance of Ca and P homeosta-
sis. Any deviation from this well-orchestrated scheme may result in mild or severe pathologies
expressed by biochemical and/or clinical features. Inherited disorders of Ca and P metabolism are
rare. However, delayed diagnosis or misdiagnosis may cost patient’s quality of life or even life
expectancy. Unravelling the thread of the molecular pathways involving Ca and P signaling, we can
better understand the link between genetic alterations and biochemical and/or clinical phenotypes
and help in diagnosis and early therapeutic intervention.

Keywords: Calcium Sensing Receptor (CaSR); Parathyroid hormone (PTH); Vitamin D; Vitamin D
Receptor (VDR); Fibroblast growth factor 23 (FGF23); calcium metabolism; phosphorus metabolism;
rare diseases

1. Introduction

The investigation of the genetic basis of Calcium (Ca) and Phosphorus (P) metabolic
inherited disorders brings to light, piece by piece, precious information regarding the
complexity and function of a huge molecular circuit, in which these minerals play a leading
or supporting role, depending on the cellular demands. Although being recognized for their
involvement in skeletal formation and maintenance, Ca and P participate in many biological
processes. Their critical role for human health is mirrored by their serum near-constant
concentrations, achieved by a well-orchestrated homeostatic system, which comprises
the parathyroid glands, the intestine, the kidneys and the skeleton. To date, inherited
metabolic disorders of Ca/P metabolism are mainly rare, presenting with a wide range of
clinical manifestations, some of latter being common among diseases of different etiologies.
Therefore, they require different therapeutic approaches. In this review, we provide an
overview of the Ca/P signalling pathway and discuss the genetic basis of known inherited
diseases associated with extracellular Ca sensing mechanisms, Parathyroid hormone (PTH)
production and action, Vitamin D metabolism and Fibroblast Growth Factor 23 (FGF23)
synthesis and function.

2. Calcium and Its Partners

Calcium (Ca) is the most abundant mineral in human bone tissue and critically im-
portant to human health [1]. It participates in bone formation and maintenance, muscle
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contraction, neuron depolarization, blood coagulation and intracellular processes, includ-
ing signal transduction, production and secretion of hormones. Almost 1000 mg/24 h
of Ca enter the body of an average adult, depending on the quantity of milk and other
dairy products consumed. The recommended Ca intake for infants is 200 mg/24 h which
gradually increases in childhood, while the highest requirements are noted during ado-
lescence and individuals over 50 years old [2]. About 40% of dietary Ca is absorbed from
the gastrointestinal tract via a paracellular pathway and an active transcellular pathway
both potentially regulated by 1,25(OH)2D3 [3–5]. Half of the absorbed Ca leaves the body
in urine and feces. There are 3 major pools of Ca in the body: (a) Within cells, (b) blood and
extracellular fluid and (c) bones, where the vast majority of body Ca is stored.

Within bones, 99% of Ca is found in the mineral phase as hydroxyapatite [Ca10(PO4)6
(OH)2], but the remaining 1% is in a pool that can rapidly exchange with extracellular
Ca to ensure the Ca homeostasis. The skeleton turns over about 250 mg/day of Ca,
while approximately 10,000 mg/day is filtered at the glomerulus and most is reabsorbed
by the renal tubules [6]. Approximately half of Ca in blood and extracellular fluid is bound
to proteins (~45% albumin) or complexed with ions (~10%), including phosphates and
~45% circulates as a free, ionized fraction (Ca2+). The biologic effect of Ca is determined
by Ca2+ rather than the total Ca. The serum level of Ca is closely regulated with a normal
total Ca of 2.2–2.7 mmol/L (8.8–10.8 mg/dL) and a normal Ca2+ of 1.12–1.23 mmol/L
(4.8–4.92 mg/dL). The concentration of Ca2+ in blood and extracellular fluid is normally
almost invariant at approximately 1 mM, or 1000 to 10,000 times the basal concentration of
Ca2+ within cells. Deviations above or below the normal range, frequently, lead to serious
diseases. Contrary to the tight serum normal range, intracellular Ca2+ concentrations
fluctuate greatly, from roughly 100 nM to greater than 1 µM, due to release from cellular
stores or influx from extracellular fluid. These fluctuations assign Ca direct or indirect
responses to both cellular needs and serum Ca homeostasis [1].

Maintaining constant Ca2+ concentrations in blood requires the collaboration of pri-
mary regulating hormones, PTH and 1,25(OH)2D3, receptors and enzymes involved in
Ca metabolic pathway. Being the first player of this cascade, the Calcium Sensing Re-
ceptor (CaSR) captures the oscillations of serum Ca2+ and, along with the activity of the
parathyroid glands, regulate PTH synthesis and secretion. Next, PTH acts on the target
organs, mainly on the kidneys and bones through its receptor and indirectly on the intestine
via regulation of 1,25(OH)2D3. Defects of the molecular components of this circuit are
frequently the cause of genetic inherited disorders.

2.1. Calcium Sensing Receptor

CaSR comprises a fundamental contributor to extracellular Ca2+ homeostasis, modulat-
ing the synthesis/secretion of PTH in an inverse manner, reducing Ca2+ renal reabsorption
and interfering in bone development and lactation [7]. It binds to various physiological lig-
ands and is expressed in many calcitropic and non-calcitropic tissues, yet more abundantly
in cells of the parathyroid glands and the renal tubular cells. The receptor is a member
of family C G-protein coupled receptors (GPCRs) characterized by a large extracellular
N-terminal domain responsible for ligand binding and receptor dimerization, seven trans-
membrane segments and an intracellular C-terminal domain that couples to G proteins and
other signal transduction molecules [8]. Understanding how Ca and other extracellular
cations interact with the extracellular portion of the CaSR is not well-understood. It has
been proposed that the binding of Ca2+ or other compatible ligands at the cleft between the
Venus Flytrap (VFT) lobes in the extracellular domain induces rotation along the dimer in-
terface (Figure 1) [9,10]. VFT consists of a large, nutrient-binding bilobed domain, located in
the N-terminus part of the protein, adjacent to the C-side of signal peptide [11]. Such a con-
formational change could, thus, alter the spatial configuration of the membrane-spanning
portion of the receptor and modulate signal transduction [8,11,12].
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Figure 1. Schematic illustration of selective molecular alterations associated with inherited disorders of Ca/P metabolism.
(A) In the parathyroid gland, CaSR activation by Ca2+ or other compatible ligands, induces Gαq/11-mediated activation of
phospholipase C (PLC), increases inositol 1,4,5-trisphospate (IP3) and leads to intracellular Ca2+ mobilization, which acts
as a secondary messenger of different cell-dependent actions, such as PTH synthesis regulation. (B) PTH acts through its
receptor PTHR1 at target organs (kidney), and activates via G proteins, the axis GαS–adenylyl cyclase–cAMP–protein kinase
A (PKA). The produced cAMP acts as cellular second messenger promoting the transcription of target genes. (C) PTH
promotes 1,25(OH)2D3 synthesis via CYP27B1 activation and inhibits Pi reabsorption by inhibiting NaPi-2c (and NaPi-2a)
cotransporter. (D) FGF23 mediates its actions through its receptor FGFR1 and inhibits 1,25(OH)2D3 renal synthesis and
Pi reabsorption while it promotes 1,25(OH)2D3 catabolism via activation of CYP24A1. Genetic defects associated with
alterations of the proteins illustrated in this scheme are marked in the respective boxes.

In the parathyroid gland, CaSR activation induces Gαq/11-mediated activation of phos-
pholipase C (PLC), increases inositol 1,4,5-trisphospate (IP3) and leads to intracellular Ca2+

mobilization, which acts as a secondary messenger of different cell-dependent actions [11].
Cytoplasmic Ca2+ inhibits cyclic AMP (cAMP) production both directly by downregulating
adenylyl cyclase (AC) and indirectly via prostaglandins, leading to suppression of PTH
synthesis from the parathyroid chief cells. In conditions of blood Ca2+ depletion, the CaSR
remains inactivated and no suppression of PTH occurs, thus promoting PTH synthesis and
secretion [13]. In the kidneys, CaSR activation leads to a decrease in Ca2+ reabsorption.

Very small changes from baseline in blood Ca2+ concentration in persons with normal
renal and parathyroid gland function elicit large changes in plasma PTH levels. The re-
sponse occurs within seconds to minutes and provides a robust mechanism for rapidly
maintaining constant blood Ca2+ levels. It should be noted that modulation of signal trans-
duction through CaSR may also be influenced by interactions of CaSR with scaffolding
proteins or by the heterogeneity among parathyroid cells with respect to the suppressive
effects of Ca2+ on PTH release [9]. For instance, changes in caveolin-1 and filamin expres-
sion, two scaffolding proteins that interact with CaSR, may blunt the effect of Ca2+ on PTH
synthesis or even affect cell cycle proliferation in parathyroid tissue [14,15]. Furthermore,
heterogeneity among parathyroid cells could account for the variations in the response
of patients with primary or secondary hyperparathyroidism to standardized intravenous
infusion of calcium [16].
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2.2. Parathyroid Hormone

Parathyroid Hormone (PTH) is initially synthesized as a prepropeptide which, after 2
proteolytic cleavages gives rise to the active 84-amino-acid peptide (intact PTH, iPTH) [17].
Several factors regulate its biosynthesis such as Ca2+, 1,25(OH)2D3 and Pi. The circulating
half-life of the molecule is less than 5 min. Along with iPTH, a heterogeneous collection
of peptides corresponding to the amino (N-), middle and carboxyl (C-) regions of the
molecule are produced. The C-terminal PTH fragments, are present in the circulation
in large amounts and being recognizable by specific receptors (CPTHRs) [18]. Normally,
these fragments circulate in blood at concentrations higher than that of iPTH, and at much
higher levels in renal failure. The normal levels of serum iPTH range between 10.0 to
60.0 pg/mL [19].

The principal role of PTH is to increase serum Ca2+ concentrations by acting upon
its receptor which is highly expressed in bone and kidney. The classic PTH receptor is a
member of the GPCR family. It is designated type 1 PTH/PTHrP receptor (PTHR1) as it
recognizes the amino-terminus of PTH and the homologous terminus of the parathyroid
hormone-related protein (PTHrP) with similar or indistinguishable affinity [18]. This recep-
tor, via G proteins, can activate at least two signal transduction pathways: GαS–adenylyl
cyclase–cAMP–protein kinase A (PKA), where cAMP is the cellular second messenger,
and Gαq–phospholipase C (PLC) β–IP3–cytoplasmic Ca2+–protein kinase C pathway pro-
tein kinase C (PKC). The direction of the regulation appears to depend on cell type and
PTH concentration [20].

In the kidney, PTH enhances reabsorption of Ca2+, predominantly in the distal tubule
and the thick ascending limb resulting in minimal losses of Ca2+ in urine. Furthermore,
in the renal proximal tubule PTH inhibits the reabsorption of P [19]. In bone, PTH, via its
receptor expressed on osteoblasts and stromal cells, has been considered to have either a
catabolic or anabolic effect [21]. The anabolic effect is exerted by low and intermittent con-
centrations of PTH, and has been applicable to osteoporosis treatment by daily injections
of PTH. On the other hand, high levels of PTH, as in primary and secondary hyperparathy-
roidism, lead to bone resorption. Finally, PTH promotes intestinal Ca absorption indirectly
by up regulating renal 25-vitamin D 1α-hydroxylase, the enzyme responsible for converting
25(OH)D in its active form.

2.3. Vitamin D

Vitamin D is one of the most important orchestrates of Ca homeostasis. It is a fat-
soluble secosteroid formed mostly in human skin by exposure to sunlight, while a small
percentage comes directly from diet [22,23]. Vitamin D3 is produced photochemically
in the skin from the precursor molecule 7-dihydroxycholesterol (7-DHC). Vitamin D2
(ergocalciferol), the exogenous form of vitamin D, is produced by ultraviolet irradiation
of the plant sterol ergosterol and is acquired through the diet. The amount of Vitamin
D recommended by the US Institute of Medicine, is 400–800 IU/day, depending on the
ethnicity, the age and the socioeconomic status of the population [24,25]. Furthermore,
under physiological particular conditions, such as pregnancy and lactation, vitamin D
doses are adjusted [24,26,27].

Both vitamin D3 and vitamin D2, must be further metabolised to be active. Their first
hydroxylation at the carbon in position 25 produces 25(OH)D or calcidiol [28] (Figure 2).
This conversion takes place in the liver by cytochrome P450 proteins, the mitochondrial
25-hydroxylase, CYP27A1, and the microsomal 25-hydroxylase, CYP2R1. Mutations in
the genes encoding for the conversion enzymes are associated with rare inherited diseases
such as cerebrotendinous xanthomatosis (MIM 213700) [29] (gene CYP27A1) without a
defected vitamin D metabolism-and Vitamin D Hydroxylation Deficient Rickets type 1B
(VDDR1B; MIM 60081) (gene CYP2R1) [30].



Genes 2021, 12, 734 5 of 22

Figure 2. Schematic illustration of Vitamin D metabolism. Vitamin D resulting either from cutaneous synthesis or, directly
from the diet, is metabolized to 25(OH)D by the liver mitochondrial 25-hydroxylase (CYP27A1), and the microsomal 25-
hydroxylase (CYP2R1). 25(OH)D is further metabolized to 1,25(OH)2D, by the renal 1α-hydroxylase (CYP27B1). 1,25(OH)2D
may exerts its biologic effects through its receptor (VDR) or be catabolized by the 24-hydroxylse (CYP24A1). The net effect
of 1,25(OH)2D on Ca/P metabolism is the increase in Ca/P serum concentration. PTH on the other hand, ensures increased
levels of sCa and decreased levels of sPi. In this figure, the genetic defects associated with alterations in the Vitamin D
metabolic pathway are marked in boxes, next to the respective enzymes.

While, 25(OH)D is the main circulating metabolite of vitamin D with a half-life of sev-
eral weeks and its concentration in serum reflects the vitamin D stores in man. Appropriate
vitamin D levels are essential for proper bone health in early life and reducing the risk of
developing osteoporosis later. The demarcation line between sufficient and insufficient
vitamin D status is not very clearly defined. The Endocrine Society, defines as deficient, vi-
tamin D status 25(OH)D serum levels in adults less than 20 ng/mL (<50 nmol/L); while the
UK Scientific Advisory Committee on Nutrition (SACN) less than 11 ng/mL (25 nmol/L)
and other agencies less than 13 ng/mL (30 nmol/L) [31].

In the proximal tubule of the kidney 25(OH)D is further metabolized in 1,25 (OH)2D3
by 1α-hydroxylase (gene: CYP27B), yielding the biologically active form of vitamin D.
Its half-life is a few hours. Several types of cells, including cells from the decidua and
placenta, keratinocytes, activated macrophages, prostatic and colon epithelial cells, and vas-
cular endothelial and smooth muscle cells are known to express 1α-hydroxylase and
produce 1,25(OH)2D3 [32]. The synthesis of 1,25(OH)2D3 is tightly regulated; stimulated
by PTH and inhibited by high concentrations of Ca, P, FGF23 and 1,25(OH)2D3 itself.
The normal serum concentration of 1,25(OH)2D3 is ranged between 20–60 pg/mL. Muta-
tions in CYP27B are associated with Vitamin D Hydroxylation Deficient Rickets, type 1A
(VDDR1A) (MIM 264700) [33]. The phenotypic and laboratory features of this disorder
are presented in detail below. Moreover, in the kidney, the enzyme 25-hydroxyvitamin
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D- 24-hydroxylase, CYP24A1 converts 1,25(OH)2D3 to 1,24,25-trihydroxyvitamin D in a
series of catabolic steps that lead to the inactivation of 1,25(OH)2D3 [34,35]. The gene
transcription is mostly regulated by 1,25(OH)2D and PTH while mutations in CYP24A1 are
associated with Idiopathic Infantile Hypercalcemia type 1 (MIM 143880) [36].

While, 1,25-dihydroxy vitamin D, is transported in blood, bound to specific vitamin
D-binding protein and, to a lesser amount, to albumin. Vitamin D mediates its biological
effects through its own member of the nuclear hormone receptor superfamily, the vitamin
D receptor (VDR) [37,38]. VDR is expressed in most organs including the intestine, bone,
kidney, and parathyroid gland cells, as well as in brain, heart, skin, gonads, prostate and the
breast. It is a transcription factor, and a member of the ligand-activated receptor superfamily
that plays a major role in Ca metabolism. The receptor binds many vitamin D metabolites,
and 1,25(OH)2D3 has the highest affinity. Upon activation by 1,25(OH)2D3, the VDR
complexes with other nuclear hormone receptors and binds to specific DNA sequences
called vitamin D response elements (VDRE) in the promoter of hormone-responsive genes,
such as osteocalcin, p21, 24-hydroxylase, PTH [39]. It is estimated that VDR activation may
regulate directly and/or indirectly the expression of a very large number of genes (0.5–5%
of the total human genome, i.e., 100–1250 genes) [40].

The principal effect of 1,25(OH)2D3 is the stimulation of intestinal absorption of Ca2+

from the luminal contents of the intestine, primarily in the jejunum and ileum, and its
transfer into the circulation [41]. Ca enters the intestine epithelial cells through the TRPV6
channel, binds to calbindin (CaBP-9k), and passes to the extracellular space and blood
circulation, via an ATP-dependent Ca2+-ATPase (PMCA1b). The expression of these genes
is regulated by 1,25(OH)2D3. In the kidney, Ca2+ absorption and excretion by the epithelial
renal cells is mediated by the TRPV5 channel, calbindin (CaBP-28k) and PMCA1b, in a way
similar to that in the intestine. These proteins are also under the control of 1,25(OH)2D3 [42].
Within the bone tissue, it seems that the response of bone cells, stimulated by 1,25(OH)2D3,
is probably correlated to their maturation and differentiation stage [43]. It promotes the
differentiation of the mesenchymal osteoblast precursors to mature osteoblasts via the
activation of LRP5 gene and the suppression of RUNX2 gene. Moreover, it stimulates the
production of activating agents, like RANKL (receptor activator of nuclear factor kappa-B
ligand) and M-CSF (macrophage-colony stimulating factor) by mature osteoblasts, which
subsequently stimulate the differentiation of osteoclast precursors and hematopoietic
progenitor cells to mature osteoclasts, and their activation. Osteoclastogenesis, results in
bone resorption and subsequent release of Ca and P into the extracellular fluid. This process
is counter forced by the production of agents like osteoprotegerin (OPG) that binds RANKL
in order to preclude its osteoclastogenetic effect. The expression of OPG gene is also under
the control of 1,25(OH)2D3-VDR-RXR heterodimer, which downregulates its expression.

2.4. Inherited Diseases Associated with Defective Extracellular Ca Sensing Mechanism

CaSR gene is located in chromosome 3q13.3–21, includes 7 exons and encodes for a
1078 amino acids sequence [44]. Loss of function mutations “reset” the serum Ca2+ concen-
tration upward, which leads to calcium-sensing mechanisms stimulation at higher levels of
serum Ca2+ than in normal situations, a condition known as Familial Hypocalciuric Hyper-
calcemia (FHH). A similar biochemical profile is presented in patients with alterations in
the downstream signalling proteins Ga11 and the adaptor-related protein complex 2 (AP2σ)
which is involved in CaSR endocytosis [45,46]. Heterozygous activating mutations result
in increased sensitivity of the receptor to extracellular Ca2+ concentration and induce the
reverse effects (Autosomal Dominant Hypocalcaemia, ADH) [47].

2.4.1. Familial Hypocalciuric Hypercalcaemia

Familial Hypocalciuric Hypercalcaemia (FHH) is a rare autosomal -mainly- dominant
group of hypercalcemic disorders including 3 subtypes: FHH1, FHH2 and FHH3. Patients
exhibit lifelong hypercalcemia, usually asymptomatic (~70%), with very low urinary Ca2+

excretion (urine Ca:Creatinine clearance ratio < 0.01), slightly elevated Mg2+ and often
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normal concentrations of vitamin D metabolites [45]. PTH circulating levels are mildly
elevated which may lead to misdiagnosis of primary hyperparathyroidism (PHPT), since
reliable distinctions are not always possible on clinical grounds. The condition is consid-
ered to be benign, however, if untreated may lead to severe symptomatic hypercalcemia,
chondrocalcinosis, or nephrocalcinosis (7%), osteomalacia (~9%), gallstones and acute
pancreatitis (3.5%). However, in almost 30% of FHH patients, clinical presentation can
be atypical [47,48]. It is important to identify these patients to ensure that they are not
subjected to parathyroidectomy, which will not correct hypercalcemia [49]. Urine ratio of
Ca to creatinine (Ca:Cr) is proposed as a simple biochemical differentiate test. However,
~20% of FHH patient are not hypocalciuric and similarly ~10% of PHPT patients may
display a low Ca:Cr ratio [50,51]. Additionally, vitamin D deficiency or impairment of
renal function can interfere with Ca2+ renal excretion [52]. Therefore, mutational analysis
of FHH causative genes and functional studies of derived variants is the gold standard for
a proper diagnosis [53,54].

FHH-1 (MIM 145980) is the most common type accounting for approximately 65% of
FHH cases and it is caused by mutations in the CaSR gene. Over 300 mutations have been
identified in FHH-1 patients, the majority being missense and the rest harboring frameshift,
insertions/deletions and nonsense mutations [47]. Notably, the considerably abnormal
transcripts derived by such mutations are not always associated with the severity of
clinical phenotype. Therefore, possible mechanisms of inactivating CaSR mutations include:
impaired biosynthesis, folding and cellular protein trafficking leading to decreased cell-
surface expression [55]; conformational changes and altered G-protein coupling [11] biased
signalling responses switched from intracellular Ca2+ pathway to equally or mainly to
MAPK reduction [56].

Germline heterozygous inactivating mutations of GNA11 gene, located on 19p13.3 chro-
mosome, are considered the genetic cause of FHH-2 (MIM 14598) [57,58]. The gene encodes
for the α-subunit of G11 protein, a component of CaSR transduction signalling. To date,
4 probands have been reported carrying 3 different missense substitutions (Thr54Met,
Phe220Ser and Leu135Gln) and one an in-frame deletion (Ile200del). FHH-2 patients ex-
hibit a mild clinical phenotype [57,59]. In contrast, FHH-3 (MIM 600740) represents a
more severe type with higher degree of hypercalcemia and hypermagnesemia. In some
patients, symptomatic hypercalcemia has been reported, complicated with decreased bone
mineral density, cognitive impairment and recurrent pancreatitis. The molecular defect
has been identified in AP2S1 (19q13.3), which encodes the AP2σ-subunit [60]. To date,
over 60 patients have been reported and all, except from one, carried mutations affecting
the Arg15 residue of the protein [47].

The identification of CaSR gene as a causative gene of hypercalcemic disorders, as well
as experimental and functional studies provide evidence of a CaSR-mutation dosage effect
on clinical phenotype [47,61]. Despite the fact that FHH-1 is an autosomal predominately
dominant disorder there is a small number of patients, the offspring of consanguineous
marriages, harboring homozygous CaSR mutations. These individuals display higher
values of serum Ca2+ compared to heterozygous patients while their parents were normo-
calcemic [47]. Functional studies revealed that these mutations had a less severe effect on
the receptor compared to mutations with a dominant negative effect [62].

Neonatal severe primary hyperparathyroidism (NSPHT) (MIM 239200) is a rare di-
sorder that presents at birth or within the first six months of life and is characterized by
severe life-threatening hypercalcemia, hypermagnesemia, increased circulating PTH levels,
massive hyperplasia of the parathyroid glands and relative hypocalciuria. Mainly homozy-
gous or compound heterozygous inactivating mutations in CaSR gene have been reported
while ~15% of the fifty described NSHPT probands were heterozygotes [47]. Half of the 29
NSHPT mutations are missense, located mainly in the N-terminal domain of the protein.
Homozygous mutations seem to affect or interrupt CaSR signalling, impair receptor struc-
tural integrity and decreased cell-surface expression. Heterozygous mutations are located
in key regions for receptor activation [8,12,63]. Serum Ca2+ concentrations are higher in
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homozygous patients compared to heterozygous, while truncated mutants seem to cause
increased serum Ca levels compared to missense mutations [47]. Skeletal abnormalities
including demineralization, widening of the metaphyses, osteitis fibrosa and fractures may
occur. Respiratory distress, failure to thrive, lethargy and dehydration are also commonly
observed. In contrast to FHH, hyperplastic parathyroid, obligatory development of perma-
nent hypoparathyroidism and high mortality rate are typically found in NSHPT, thus, total
parathyroidectomy is a routine therapy option for NSHPT, following bisphosphonates to
limit serum Ca before surgery [63,64].

CaSR has also been demonstrated to be a therapeutic target. Thus, cinacalcet, a positive
allosteric modulator of CaSR, has entered clinical practice to treat hyperparathyroid states.
Cinacalcet enhances the receptor’s sensitivity to Ca and has been proved to be an effective
treatment to some NSHPT patients [65]. Of note, cinacalcet may be used as initial NSHPT
treatment due to its impact both on PTH and Ca2+ levels [66]. FHH patients usually require
no treatment, yet cinacalcet can be efficient in some symptomatic individuals [59].

2.4.2. Autosomal Dominant Hypocalcaemia

Autosomal Dominant Hypocalcaemia (ADH) is a rare familial or sporadic syndrome
designated as ADH type 1 (MIM 601198) and type 2 (MIM 615361), caused by activat-
ing mutations of CaSR, or GNA11, respectively. The biochemical phenotype, except from
additionally short stature in few ADH2 patients, is rather replicated for both types and
opposite to FHH [58,67–69]. Hence, ADH is characterised by hypocalcaemia, varying from
mild asymptomatic to severe in about half of ADH patients and improper low or normal
PTH levels. Low concentrations of PTH, which normally induce reabsorption of Ca2+ from
the primary filtrate, result in relative hypercalciuria, which is characterized by urinary
Ca:Cr ratios that are within or above the reference range. Associated complications include
renal stones, nephrocalcinosis, renal impairment and basal calcifications [68]. Symptomatic
patients may present with seizures in the neonatal period or later with hypocalcemic
manifestations, mainly due to neuromuscular irritability, such as paresthesia, carpopedal
spasm or afebrile seizures. Associated complications include renal stones, nephrocalcinosis,
renal impairment and basal ganglia calcifcations. Affected patients also exhibit hyperphos-
phatemia, hypomagnesemia and absolute or relative hypercalciuria [68,70]. The impact of
such mutations on bone metabolism has not been clarified. ADH1 patients with different
gain-of-function CaSR mutations have been reported to exhibit low, normal or even high
bone mineral density (BMD) [71]. Occasionally, ADH1 patients may also develop Bart-
ter’s syndrome type V (MIM 601198), and thus, presenting additional features, such as
hypokalemia, metabolic alkalosis and hyperaldosteronemia [72].

Approximately 100 different activating CaSR mutations have been reported, the vast
majority of which are heterozygous missense substitutions. Genetic alterations seem to
locate within specific hotspot sites of the CaSR protein. In particular, ADH1-causing CaSR
mutations either affect the extracellular VFT domain, promoting dimer rotation that facili-
tates receptor activation, [73] or alter specific transmembrane domains and the intervening
third extracellular loop of the CaSR, unlocking the protein from its inactive conforma-
tion [74]. In contrast to FHH-1, CaSR mutations mentioned previously, ADH1-causing
CaSR mutations switch signalling responses from MAPK reduction to intracellular Ca2+

pathway [75]. However, twelve CaSR protein residues have been identified to accommo-
date both ADH1 and FHH mutations, often representing residues which modulate receptor
activation and are subject to extended conformational alterations as a response to ligand
binding [76]. Pertaining to ADH2, germline activating mutations in GNA11 seem to be
very rare and mainly affecting GDP/GTP exchange or G-protein binding [77,78].

Differential diagnosis of ADH from other forms of hypoparathyroidism is of high
importance as vitamin D administration may deteriorate hypercalciuria and nephrocal-
cinosis [68,70]. Generally, therapy of asymptomatic patients is avoided. Whereas, symp-
tomatic disease is encountered either via thiazide diuretics [79] or recombinant human
PTH. Calcilytics, negative allosteric CaSR modulators, are a promising option currently
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in clinical trials. [79]. Murine experimental studies have demonstrated normalization of
calcium responses, increased calcium and PTH concentrations and decreased renal calcium
loss [80]. This blockage of renal CaSR could also have a role in other hypoparathyroid
patients.

2.5. Inherited Diseases Associated with Defective PTH Synthesis and Action
2.5.1. Familial Isolated Hypoparathyroidism, Type 1

In some rare cases of autosomal dominant or recessive hypoparathyroidism, namely
Familial Isolated Hypoparathyroidism, type 1 (FIH) (MIM 146200) patients present by het-
erozygous, homozygous, or compound heterozygous mutation in the PTH gene (11p15.3-
p15.1) coding for the prepro-PTH peptide. This region is critical for the movement of
the newly formed prepro-PTH through the endoplastic reticulum and consequently for
the full activity of PTH [81]. Patients present hypoparathyroidism, decreased serum Ca2+

levels, increased serum levels of Pi and increased Ca2+ elimination in the urine. Serum
concentrations of PTH are low or undetectable and circulating levels of 1,25(OH)2D3 are
usually low or low-normal. The clinical symptoms of hypoparathyroidism are synonymous
with hypocalcaemia and may vary from quite mild to more severe muscle cramps and
convulsions. FIH is also a feature common to a variety of hereditable syndromes, such as
ADH type 1 and 2 (described above), or Familial Isolated Hypoparathyroidism-2 (MIM
618883) due to homozygous mutations in “glial cells missing transcription factor-2” gene
(GCM2) [82,83]. However, it should be noted that the most common cause of hypoparathy-
roidism is the loss of parathyroid tissue after surgical removal of the parathyroid glands.
Autoimmunity, isolated or associated with other endocrine diseases (autoimmune polyen-
docrinopathy candidiasis ectodermal dystrophy, APECED) and developmental disorders of
the parathyroid glands (i.e., DiGeorge syndrome, Charge syndrome, Hypoparathyroidism
deafness and renal dysplasia (HDR), Kenny-Caffey syndrome, Kearns-Sayre) may also be
causes of hypoparathyroidism [84].

2.5.2. Jansen Metaphyseal Chondrodysplasia

Activating mutations in residues His223 and Thr410 of the PTHR1 (3p21.31) have been
associated with Jansen metaphyseal chondrodysplasia (#MIM156400). It is a rare autosomal
form of short-limbed dwarfism, in which neonates appear normal but have radiographic
and laboratory abnormalities [85]. They present with metaphyseal chondrodysplasia, hy-
percalcaemia, hypophosphatemia, undetectable serum levels of PTH and PTHrP, decreased
renal tubular reabsorption of P and increased cAMP in urine. Other laboratory findings
reveal high level of 1,25(OH)2D3, ALP level and urine hydroxyproline. PTHR1 ligand
analogues, such as DTrp12-PTH(7–34), function as inverse agonists, which can inhibit con-
stitutively active receptors, and thus, could prevent homeostatic abnormalities occurring
in these patients [20].

2.5.3. Pseudohypoparathyroidism

PTH, as well as other peptide hormones i.e., thyroid stimulating hormone (TSH),
use the α subunit of stimulatory guanine-nucleotide binding protein encoded by GNAS
gene (20q13.2–13.3) to enhance cAMP production via adenylyl cyclase signalling [86].
Heterozygous mutations in GNAS gene lead to the production of inactive Gαs or to small
amounts of active Gαs, while homozygous deficiency of Gαs is incompatible with life.
In this group of disorders, PTH is correctly synthesized, secreted and bound to a well-
functioned receptor. However, its binding does not transduce any signal downstream,
a condition known as pseudohypoparathyroidism (PHP) [87].

PTH resistance-basically on the proximal renal tubules- is the hallmark of PHP. Pa-
tients with PHP present with hypocalcaemia, hyperphosphatemia, diminished serum
concentration of 1,25(OH)2D3, and increased serum PTH concentration [87,88]. Today,
several PHP variants have been identified: PHP type I (1a, 1b, 1c), pseudopseudohy-
poparathyroidism (PPHP) and PHP type II [88]. In PHP-I types, administration of exoge-
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nous biologically active PTH fails to generate, either a hyperphosphaturic or increased
cAMP excretion. Whereas, in the PHP-II type, patients have normal cAMP and impaired
phospaturic excretion.

All PHP-Ia (MIM 103580) patients possess heterozygous mutations for GNAS gene
resulting in diminished or no cAMP generation. In these patients, there is a markedly
attenuated urinary cAMP response (~50%) to exogenous administration of PTH. Further-
more, patients with PHP-Ia present with developmental and somatic defects as a whole are
referred to as Albright’s Hereditary Osteodystrophy (AHO) [88,89]. Short stature, round
face, brachydactyly, obesity, subcutaneous calcifications and cognitive abnormalities are
classic features of AHO. Albright and colleagues, noticed that some patients with the
above combination of symptoms had normal Ca, P and PTH serum levels. This variant
phenotype is termed PPHP and results from the same mutations in GNAS, which lead to
AHO phenotype without PTH resistance [89]. The variation of the aspects of the phenotype
depends on the parental origin of the mutation reflecting its imprinted expression [90].
Patients who inherit the defective gene from the father have PPHP (MIM 612463), whereas
those who inherit the same mutation from the mother have PHP Ia. For instance, in renal
proximal tubules, Gαs expression from the paternal allele is silenced, and transcription
takes place from the maternal allele. When an inactivating mutation is inherited from a
female carrier, the level of Gas in this tissue are affected and hormone resistance occurs
(PHPIa). If the defective allele is transmitted from the male carrier, the expression of Gαs
remains unaltered. However, other dysfunctions of those patients occur after maternal
and paternal transmission, indicating haploinsufficiency of Gαs in some tissues in which
Gαs expression is biallelic. AHO phenotype is also observed in PHP1c type (MIM 612462).
Patients classified as PHP1c cases present the same features as PHP1a except the retained
erythrocyte Gαs activity [91].

Patients with PHP type 1b (MIM 603233) lack AHO features and manifest isolated renal
resistance to PTH and sometimes mild TSH resistance. Most cases are sporadic, but some
cases (10–15%) are familial and show an autosomal dominant mode of inheritance. In fa-
milial cases, PTH resistance develops after maternal transmission of the genetic defect,
as is the case of PHPIa. Most patients with PHPIb show abnormal patterns of methylation
in the differentially methylated regions (DMRs) associated with the GNAS complex locus
(20q13) [92–94]. GNAS shows differential methylation at four distinct DMRs: one pater-
nally methylated-DMR (GNAS-NESP: TSS-DMR) and three maternally methylated-DMRs
(GNAS-AS1:TSS-DMR, GNAS-XL:Ex1-DMR and (GNAS A/B:TSS-DMR) [87]. Familial cases,
present usually loss of methylation at GNAS A/B:TSS-DMR, secondary to a 3 kb microdele-
tion on the maternal allele of cis-acting control elements within STX16 [94]. In nearly all
sporadic cases of PHP1B, two or more DMRs, in addition to GNAS A/B:TSS-DMR, are also
affected [93].The severity of PHP type 1b can vary considerably from one patient to another
even within single kindred. Members of the affected family who share the same haplotype
have been reported to be clinically asymptomatic with normal Ca levels.

PHP type II is a clinically heterogenous syndrome. Only a few cases have been
reported and the molecular defect remains elusive. Patients with PHP type II present with
hypocalcaemia, decreased serum 1,25(OH)2D3, reduced or absent phosphaturic response
to exogenous PTH, and a normal increase in urinary cAMP excretion [95].

2.6. Inherited Disorders Associated with Defective Vitamin D Metabolism
2.6.1. Vitamin D Hydroxylation Deficient Rickets, Type 1A, or Pseudovitamin D Deficiency
Rickets, or 1α-Hydroxylase Deficiency

Vitamin D Hydroxylation Deficient Rickets, Type 1A (VDDR1A) (MIM 264700) is a
rare autosomal recessive disease caused by mutations in CYP27B1 which result in dimin-
ished or complete absence of 1α-hydroxylase activity [96]. The biochemical findings are
hypocalcaemia, hypophosphatemia, elevated PTH levels due to secondary hyperparathy-
roidism, increased ALP activity and low urinary Ca2+ excretion. Patients have normal
or elevated 25(OH)D levels, but low or undetectable levels of 1,25(OH)2D3. The disorder
usually manifests in early life with growth retardation, bone and joint deformities, teeth hy-
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poplasia, hypotonia and muscle weakness. Severe hypocalcaemia can result in seizures
and tetany. X-rays reveal classical features of rickets. The low serum levels of 1,25(OH)2D3
and the therapeutic response to physiological doses of exogenous 1,25(OH)2D3 distinguish
1α-hydroxylase deficiency from Vitamin D-dependent rickets type 2A discussed below [97].

2.6.2. Vitamin D-Dependent Rickets Type 2A

Vitamin D-Dependent Rickets Type 2A (VDDR2A) (MIM 277440) is a rare, clinical
entity caused by loss-of-function mutations in the VDR gene, resulting in generalized
resistance of target tissues to 1,25(OH)2D3 [37,96–98]. The human VDR is the product of
a single chromosomal gene located on chromosome 12 at 12q13–14. It contains 10 exons
that code for DNA binding (DBD), hormone binding (LBD) and heterodimerization do-
mains. Mutations in the DBD are associated with complete hormone unresponsiveness
whereas the mutations found in the LBD results in heterogeneous degree of resistance to
1,25(OH)2D3 [37]. The disorder follows an autosomal recessive pattern of inheritance and
presents with severe rickets, growth retardation, teeth hypoplasia, typical bone deformities
like bowed legs and rachitic rosary and occasionally, alopecia. Alopecia can be present at
birth or can develop later, during the first year of life. The exact pathophysiologic mecha-
nism causing alopecia is not well-understood. Numerous studies have shown that alopecia
is not correlated with Ca2+ or Vitamin D levels, but is associated with the dysfunctional
receptor, supporting the role of the receptor in several metabolic pathways. It has been
proposed that mutations, affecting DNA binding or RXR heterodimerization cause alopecia,
while mutations that prevent the binding of 1,25(OH)2D3 or coactivators to the receptor are
not associated with alopecia [98–100]. The biochemical findings include hypocalcaemia,
hypophosphatemia, secondary hyperparathyroidism and elevated elevated levels of serum
1,25(OH)2D3 and ALP.

Intravenous calcium administration, followed by high doses of oral calcium is a
successful method of treatment of VDDR2A [98]. In some cases, 1,25(OH)2D3 and vitamin
D analogues are used [97]. Recently, cinacalcet has been demonstrated to be effective in
normalizing hypophosphatemia and the hyperparathyroidism and ameliorate the bone
pathology in some patients [101,102]. Spontaneous healing during adolescence has also
been described [103]. The desirable laboratory findings after successful treatment are
restoration of Ca2+ and Pi to normal levels as well as the decrease in PTH and ALP levels.
P levels usually normalize after treatment with Ca, suggesting that hypophosphatemia is
mostly associated with the secondary hyperparathyroidism.

3. Phosphorus and Its Partners

Phosphorus (P) is an essential mineral for many biological processes including bone
development and metabolism, cell signaling, and muscle contraction. It is also indispens-
able for cellular structures, nucleic acids, lipids and proteins. Daily P uptake varies between
800–1500 mg, depending of diet. About 65% of this quantity is absorbed in duodenum
and jejunum via a paracellular and an active transcellular process through the sodium
phosphate cotransporter 2b (NaPi-2b), which is controlled by 1,25(OH)2D3 and dietary P
itself [104]. The skeleton is the main site of P storage in the human body (80–85% of total P),
while approximately 15% of the mineral is distributed in extraskeletal sites. In extracellular
fluid (1% of total P), it is in the form of inorganic phosphate (Pi). The normal serum Pi
concentration ranges from 3.4 to 4.5 mg/dL (1.12 to 1.45 mmol/L). In children, varies
from 4 to 7 mg/dL with higher values in neonatal period due to renal immaturity. Renal
function is fundamental to Pi serum handling as most of it, is filtered at the glomerulus
(about 7gr daily); 80–90% is reabsorbed by renal tubules (75% in proximal and 10% in
distal tubule) and the remainder (~700 mg) is lost in urine, a quantity equal to intestinal
absorption. The reabsorption takes place via two transporters on the apical membrane of
the proximal tubule, NaPi-2a and NaPi-2c [105,106] regulated by PTH and FGF23 [107].

Although Ca homeostasis has been extensively elucidated, Pi homeostasis is less well
understood. PTH, 1,25(OH)2D3, and FGF23 are the main regulators of bone, renal and
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intestinal Pi handling. Recently, it has been shown that hyperphosphatemia inhibits the
CaSR in a noncompetitive manner and thus stimulates PTH secretion [108] which in turn
increases renal excretion of Pi. Circulating PTH acts through its receptor PTHR1 at the
target organs, as described previously for Ca2+ homeostasis. Moreover, PTH causes a
differential decrease in the abundance of the cotransporters NaPi-2a and NaPi-2c, via a
PTH-induced internalization with the synergy of a myosin motor [107]. All molecular
mechanisms associated with PTH end by decreasing serum Pi concentration. On the
other hand, hypophosphatemia and low serum PTH levels induce 1-α-hydroxylation in
the kidney, increasing 1,25(OH)2D3 synthesis, which subsequently increases Pi intestinal
absorption [109] and renal Pi reabsorption, as described previously.

FGF23 seems to hold a central role in the bone-kidney axis [110]. It is synthesized
mainly by osteocytes and to a lesser extent by osteoblasts and acts mainly in kidneys and
parathyroid glands as a phosphatiuric factor, inhibitor of 1,25(OH)2D3 and modulator of
PTH synthesis and secretion [111]. 1,25(OH)2D3 and extracellular Pi levels enhance FGF23
transcription [112–114]. In the context of a negative feedback loop, FGF23 downregulates
1,25(OH)2D3 by both inhibiting 1α-hydroxylase and stimulating 25-hydroxyvitamin D-24-
hydroxylase in the kidney. Moreover, FGF23 suppresses the expression of NaPi-2a and
NaPi-2c cotransporters on the apical membrane of proximal tubules. As a result, it decreases
renal Pi reabsorption [115,116]. FGF23 excess leads to several hypophosphatemic diseases
featured by renal Pi wasting and rickets/osteomalacia, while deficient actions of FGF23
result in hyperphosphatemic tumoral calcinosis with enhanced renal Pi reabsorption.

FGF23 actions in the tissues are mediated by FGF receptors (FGFRs), mainly types
1, 3 and 4. Notably, some studies have demonstrated that FGFRs are also significant for
FGF23 synthesis [117,118]. FGFR1 is the main receptor via which the FGF23 exerts its renal
phosphaturic effect [115]. Following the observation that FGFRs binds with low affinity
to FGF23 [119], in vivo and in vitro studies revealed a single pass transmembrane protein,
named αKlotho, as an obligate co-receptor. αKlotho has been demonstrated to form a
complex, mainly with FGFR1, enhancing receptor’s FGF23-mediated activation [120–122].
Experimental studies on genetic modified mice suggest a collaboration between FGF23 and
αKlotho to modulate mineral homeostasis, mostly via their renal effect [120,123]. Therefore,
in the kidneys, Klotho mediates the hypophosphatemic action of FGF23 and the downreg-
ulation of calcitriol, while in the parathyroid glands it modulates PTH expression [124].

3.1. Hypophosphatemic Rickets with Normal or Decreased FGF23 Levels

Hereditary Hypophosphatemic Rickets with Hypercalciuria
Hereditary Hypophosphatemic Rickets with Hypercalciuria (HHRH) (MIM 241530) is

an autosomal recessive disorder with a likely underestimated incidence of 1:250,000, firstly
described in a consanguineous kindred [125,126]. Later, inactivating, either homozygous
or compound heterozygous, mutations in the SLC34A3 gene have been identified as the
genetic cause of the disorder [127,128]. SLC34A3 is located in chromosome 9q34.3 which
encodes the renal sodium-phosphate cotransporter (NaPi-2c). Approximately 40 muta-
tions affecting more than 35 kindreds have been described [129,130]. Deletions (228delC,
905delC) predicting a prematurely terminated translation product and missense mutations
(R353L, A413E, G196R, R468W), are most commonly reported [127,128,131].

Generally, impaired function of Na-P cotransporter results in P wasting and hypophos-
phatemic rickets, short stature, bowing, normal or reduced FGF23 levels, hypercalciuria,
elevated 1,25(OH)2D3 and low PTH levels [129,132]. Elevated 1,25(OH)2D3 promotes in-
testinal Ca absorption leading to hypercalcaemia [129,133] and helps distinguish this
disorder from other types of phosphaturic rickets. Furthermore, decreased PTH-dependent
Ca-reabsorption in the distal renal tubules contributes to increased renal Ca2+, which along
with Pi excretion, results in the development of nephrolithiasis in almost half of HHRH
patients. Treatment consists of P administration in order to improve bone mineralization
and reduce 1,25(OH)2D3 levels. Therapy with vitamin D analogues is contradicted, as it
enhances hypercalcemia and hypercalciuria [129].
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3.2. Hypophosphatemic Rickets with Elevated FGF23 Levels
3.2.1. X-Linked Hypophosphatemic Rickets (XLH)

XLH rickets (MIM 307800) is inherited with X-linked dominant pattern and consists
the most common form of hereditary rickets with an incidence of 1:20,000 [134]. Loss-of-
function mutations in PHEX gene have been identified as its causative genetic defect. PHEX
(Phosphate regulating with Homologies to Endopeptidases on the X-chromosome), gene is
located in chromosome Xp22.1 and is highly expressed in skeleton [135,136]. More than
300 distinct pathogenic variations have been reported [116], leading to FGF23 excess,
hypophosphatemia and phosphaturia and inappropriately low levels of 1,25(OH)2D3.

Patients usually exhibit rickets, short stature, growth retardation, bowing of the lower
extremities and during adulthood osteomalacia, dental abscesses ectopic calcification, min-
eralizing enthesopathy and osteoarthropathy [116,135]. Conventional therapy includes
multiple doses of oral P supplementation and active vitamin D (calcitriol, alfacalcidol,
paricalcitol, eldecalcitol), in order to increase intestinal Pi reabsorption. This therapy can
be complicated by hypercalciuria, nephrocalcinosis and secondary hyperparathyroidism.
Thiazide diuretics have been used to reduce the risk of nephrocalcinosis, while the cal-
cimimetic drug cinacalcet has been suggested in patients who have developed secondary
or tertiary hyperparathyroidism [137,138]. In 2018, burosumab (Crysvita®; Kyowa Hakko
Kirin Co., Ltd. and Ultragenyx Pharmaceutical Inc., Novato, CA, USA), a human neutral-
izing antibody for FGF23 was approved for the treatment of XLH in adults and children
older than 1 year and in 2020 for the treatment of tumor induced osteomalacia [139,140].
Burosumab outweighs conventional therapy in children with XLH pertaining to rickets
severity, growth and biochemistries [141].

3.2.2. Autosomal Dominant Hypophosphatemic Rickets

Autosomal Dominant Hypophosphatemic Rickets (ADHR) (MIM 193100) is a rare
disorder that follows autosomal dominant inheritance with incomplete penetrance. FGF23
gene is located in chromosome 12p13.3, encompassing 3 exons and the derived protein
consists of 251 amino acids including a signal peptide of 24 aa in the N-terminal. Under
physiological circumstances, FGF23 is present in serum in the active form of an intact
peptide (25th to 251th aa). FGF inactive fragments are derived after proteolytic processing
by endopeptidases that recognize a specific subtilisin-like proprotein convertase (SPC)
cleavage site R176XXR179 [142]. Activating mutations in this site are the causative genetic
defect of ADHR, while inactivating mutations result in hyperphosphatemia and elevated
1,25(OH)2D3 levels [143]. Increased FGF23 activity results in suppressed co-transporters
NaPi-2a and NaPi-2c, as well as in decreased 1a hydroxylase expression and hypophos-
phatemia [143].

Clinical manifestations and biochemical findings resemble XLH. However, affected pa-
tients may present with a variable phenotype. Patients with a childhood onset may develop
severe rickets accompanied by short stature and bone deformities. While others may ap-
pear with delayed onset of the disease in adolescence or adulthood and milder symptoms,
like muscle weakness and bone pain, without limb deformities [144,145]. FGF23 levels have
been reported to correlate with the disease’s severity. Spontaneous normalization of serum
P levels has also been reported [146]. Converging data suggest that the clinical phenotype
of ADHR is temporally associated to the existence of iron deficiency, as iron status seems
to influence FGF23 concentrations [144,147]. ADHR therapeutic options are similar to
XLH conventional therapy along with recognition and treatment of iron deficit [148]. Al-
though burosumab is a promising regimen for the remainder of FGF23-mediated disorders,
its efficiency has to be proved in clinical trials [149].

3.2.3. Diseases Associated with FGFR1 Gene Mutations

Osteoglophonic Dysplasia (MIM166250), a very rare type of dwarfism, is caused by
gain of function mutations of FGFR1. Hypophosphatemia and low 1,25(OH)2D3 levels
accompanied by chondrodysplasia, craniosynostosis and spondyloepimetaphyseal dys-
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plasia in imaging studies are disease’s characteristic manifestations [150]. Mutations in
this receptor have been also associated with a spectrum of phenotypically different rare
syndromes such as Pfeiffer, Kallmann, Trigonocephaly, Jackson–Weiss and Hartsfield [151].

3.2.4. Autosomal Recessive Hypophosphatemic Rickets

Autosomal Recessive Hypophosphatemic Rickets (ARHR) type 1 (MIM 241520) and 2
(MIM 613312) are associated with molecular defects in Dentin matrix protein 1 (DMP1) and
the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1), respectively [152,153].
DMP1 is located in chromosome 4q21.1 and 13 distinct mutations have been reported in
32 patients of 16 families. DMP1 belongs to the SIBLING (Small Integrin Binding Ligand
N-linked Glycoprotein) protein family, a group of non-collagenous extracellular matrix
proteins and is expressed in osteoblasts and osteocytes, promoting proper growth and
formation of hydroxyapatite crystals [154]. DMP1 is cleaved into two fragments of 35 and
57 kDa. The C-terminal fragment of 57 kDa appears to suppress FGF23 expression [155],
while patients harboring mutations that affect the DMP1 fragment present with shorter
stature and lower serum Pi level, compared to those harboring mutations only affecting
N-terminal fragment of the protein [156]. Overall, clinical findings of ARHR patients are
similar to those appearing in other types of hypophosphatemic rickets. Interestingly, there
are some hypophospatemic patients, carriers of a DMP1 mutation, who present with
increased bone density and overgrowth of tubular bones [156].

ENPP1, located in chromosome 6q22.23, encodes for a plasma protein which controls
the generation of inorganic pyrophosphate (PPi), which inhibit hydroxyapatite crystal
deposition by hydrolyzation of ATP to AMP [157]. ENPP1 has also been identified as
the causative gene of another entity, generalized arterial calcification in infancy (GACI1),
presenting precociously with arterial calcification [158]. However, patients with ARHR do
not develop GACI, probably due to low P levels [153]. Clinical features resemble other
types of hypophosphatemic rickets, while primary hyperparathyroidism has been also
described in a recent report [159].

Mutations in FAMC20 gene have been recently associated with a nonlethal variant
of Raine syndrome as a novel form of FGF23-related hypophosphatemia and hyperphos-
phaturia and proposed to represent a third form of ARHR [160,161]. FAMC20 is a Golgi
kinase supported to be involved in the post-translational modification of FGF23. FAMC20
phosphorylates FGF23 and promotes its cleavage, while a recent report suggests the
SIBLING-proteins to be substrates for FAM20C. Clinically additional finding include severe
dental anomalies, osteosclerosis, intracerebral calcifications and dysmorphic features [160].

Treatment of ARHR is similar to the conventional treatment of the other hypophos-
phatemic disorders already discussed above.

3.2.5. Diseases Associated with Klotho Gene Mutations

The genetic evaluation of a patient with hypophosphatemic rickets and increased
plasma soluble Klotho, revealed a translocation between chromosome 9 and 13, with a
breakpoint in vicinity to Klotho (KL) gene. Besides elevated Klotho levels, patients dis-
played increased enzymatic activity protein and FGF23 concentrations accompanied by clin-
ical and biochemical findings of hypophosphatemic rickets [162]. Interestingly, the patient
presented with parathyroid hyperplasia and markedly elevated PTH levels. The underlying
mechanism of this manifestation remains elusive.

On the other hand, Familiar Tumor Calcinosis (FTC), a rare autosomal recessive
disorder, is a mirror image of FGF23 related hypophosphatemic diseases, featured by
hyperphosphatemia, inappropriately elevated 1,25(OH)2D3and PTH levels and ectopic
calcified masses, [163]. The genetic defect of the disorder is loss-of-function mutations
either in KL gene or FGF23 or N-acetyl-galactosaminyltransferase (GALNT3)—an enzyme
involving in FGF23 O-glycosylation. In KL gene, only one a missense mutation has been
reported in a single FTC patient [131].
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4. Conclusions

Inherited disorders affecting Calcium and Phosphorus metabolism are mainly rare
diseases, often with overlapping clinical and biochemical features, thus, making their
diagnosis challenging. In this review, we aim to connect the known molecular alterations
affecting the actors of Ca/P signalling, their effects on the molecules downstream, and their
impact on the biochemical profile of the patients. The knowledge of the genetic basis
helps in understanding the biology and the aetiopathogenesis of the diseases and therefore
ensures more accurate diagnosis and therapeutic approach. The study of the CaSR and the
Ca sensing mechanisms resulted in new therapeutic options—calcimimetics or calcilytics
that modulate the activity of the receptor. The identification of the role of FGF23 and PHEX
improved the conventional therapy for XLH, since a human neutralizing antibody for
FGF23, burosumab, was approved for the treatment of XLH and tumor induced osteomala-
cia. It seems that there are still unknown interactions in this complex network between
bone-kidney-intestine and parathyroid glands that are waiting to be discovered.
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