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O R I G I N A L  A R T I C L E

INTRODUCTION

Gentianaceae, or the Gentian family, is a family of  flowering 
plants of  87 genera and over 1650 species.[1] Plants are 
usually rhizomatous. These are annuals or perennials, 
mostly upright though a few species lie on the ground and 
have upright branch tips. Leaves are opposite or whorled 
with entire edges and bases connately attached to the 
stem, mostly without a petiole. Flowers have four to five 
sepals, petals, and stamens, but only one pistil. Sepals and 
petals are fused at the base, with four to five free lobes 
above. Stamens alternate with the corolla lobes. Ovary is 
superior; fruit is a capsule. Stipules is absent. Plants usually 
accumulate bitter iridoid substances; bicollateral bundles 
are present. The fruits are dehiscent septicidal capsules 
splitting into two halves. The Gentianaceae contains many 
species with interesting phytochemical properties. They 
have been widely used in traditional medicine and also as 
constituents in bitters and similar concoctions. The family 

consists of  trees, shrubs, and herbs showing a wide range 
of  colors and floral patterns.

Simple sequence repeats (SSRs),[2] or microsatellites[3] or 
short tandem repeats,[4] are short (1–6 bp) repeat motifs 
that show a high level of  length polymorphism due to 
insertion or deletion mutations of  one or more repeat 
types.[5] Studies suggest that both protein coding and 
noncoding regions of  DNA sequences contain SSRs.[6] 
SSRs present in coding sequences are less polymorphic 
than those in the genomic sequences. Moreover, different 
taxon varies in abundance of  different types of  SSRs 
and these are present in greater abundance in noncoding 
regions than coding SSRs.[7] The SSRs are either developed 
conventionally[8] or from sequence databases.[9] PCR-based 
techniques such as AFLP and microsatellites or SSRs have 
also played important roles in plant DNA profiling. Primers 
are essential components of  PCR-based systems as well 
as modern microarray systems which utilize appropriate 
probes for PCR amplification.[10]

In genetics, a sequence motif  is a nucleotide or amino acid 
sequence pattern that is widespread and is believed to have, 
a biological significance. When a sequence motif  appears 
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in the exon of  a gene, it may encode the "structural motif" 
of  a protein, that is, a stereotypical element of  the overall 
structure of  the protein. "Noncoding" sequences are not 
translated into proteins. Outside of  gene exons, there exist 
regulatory sequence motifs and motifs within the "junk," 
such as satellite DNA.[11] Robinson et al.[12] developed a 
computer program to identify and design PCR primers 
for amplification of  SSR loci based on available DNA 
sequence information. SSR primers have been designed 
using publicly available expressed sequence tags (ESTs) 
in barley,[13] almond (Prunus communis Fritsch.), and peach 
(P. persica (L.) Batsch.),[14] T. aestivum, and O. Sativa.[15] 
These SSRs are useful as molecular markers because their 
development is inexpensive, they represent transcribed 
genes, and their putative function can often be deduced 
by a homology search.[16] SSRs have been the backbone to 
creating molecular maps for a number of  years.

The increasing number of  genomic and expressed 
sequences in public databases provides a valuable source 
for bioinformatical data mining. However, there are a 
number of  exciting application of  these sequence data; used 
in comparative genome analysis – to trace the evolution 
among the related species, to study the genome structure 
and their gene functions. Comparative genome analysis 
requires the same sets of  genes (i.e., cross-reference genes) 
to be mapped to chromosomes in the species compared. 
Thus, comparative maps with sets of  EST-derived markers 
(i.e., cross-species markers) are essential for comparative 
genome analysis. Several studies have utilized publicly 
available ESTs to mine SSRs or microsatellites markers for 
plants,[17-20] catfish,[21] insects,[22] animals,[23] and human.[24] 
The EST-derived SSR markers (EST-SSRs) have proved 
very useful for the construction of  genetic and comparative 
maps.[25] The software used here is MISA, a microsatellite 
identifying tool which has the advantage of  detecting the 
mono- to decamer repeats and also compound repeats. 
But it has the disadvantage of  inability to detect above 
decanucleotide repeats. Riju and Arunachalam,[26] mined the 
SSRs in oil palm ESTs with five different software and have 
reported that MISA program has given maximum coverage 
of  SSRs in both oil palm ESTs and Contigs.

PCR primer design in general
Understanding of  primer properties is very important for 
primer design. The major aspects of  primer properties 
include specificity, melting temperature (Tm), and 
intraprimer or interprimer homology. Primer specificity is 
mostly determined by the 3'-end sequences. It was reported 
that single internal mismatches had no significant effect 
on PCR product yield while the 3'-terminal mismatches, 
especially the A:A, A:G, G:A, and C:C mismatches, 
markedly reduced overall PCR product yield.[27] Khabar et 
al.[28] assessed the annealing specificity of  primers in PCR 

reactions under different annealing temperatures (35°C, 
40°C, and 45°C) and found perfect matches between at 
least eight bases at the 3'-end of  the 5'-primers and the 
target region, whereas mispriming occurred only toward 
the 5'-end. Therefore it is critical to include 8–10 unique 
bases at the 3'-end of  the primer.

Ideally the primer has a Tm in the range of  50–65°C, random 
nucleotide composition with a 40–60% GC-content, and 
18–30 bases long. The intraprimer or interprimer homology 
is kept as low as possible to avoid formation of  hairpin 
structures or primer dimmers (>3 bp complementarities 
between primers) which otherwise will interfere with 
annealing of  primer to the DNA template.[29]

ESTs, which represent the expressed part of  genome, also 
serve as a source of  SSRs.[9] Detection of  SSRs facilitates 
the development of  SSR markers that are useful in the study 
of  genetic variation, gene tagging, and linkage mapping,[30] 
and are also useful across a number of  related species.
[13] Microsatellites can be amplified for identification by 
the polymerase chain reaction (PCR) process, using the 
unique sequences of  flanking regions as primers. Once the 
potentially useful microsatellites are determined (removing 
nonuseful ones such as those with random inserts within 
the repeat region), the flanking sequences can be used 
to design oligonucleotide primers which will amplify the 
specific microsatellite repeat in a PCR. Microsatellite loci 
are widely distributed throughout the genome and can be 
isolated from semidegraded DNA of  older specimens, as 
all that is needed is a suitable substrate for amplification 
through PCR. Hence, the present study was to find out the 
distribution and abundance of  SSRs for the development 
of  markers and to annotate SSR-containing sequence in 
Gentianaceae family. Nucleotide database, which contains 
sequences of  well-characterized genes as well as hundreds 
of  thousands novel EST sequences, was retrieved to 
perform the analysis.

MATERIALS AND METHODS

Retrieval of nucleotide sequences and detection of 
SSRs
A total of  647 nucleotide sequences of  Gentianaceae were 
downloaded from the NCBI (http://www.ncbi.nlm.nih.
gov/Nucleotide/?term=Gentianaceae) and harvested for 
SSRs using a perl script. The minimum length of  SSR was 
fixed at 14 bp according to the criteria used by Gupta et 
al..[31] The SSRs were defined as 14-bp mononucleotide 
or dinucleotide repeats; 15-bp trinucleotide repeats; 16 
tetranucleotide repeats; 20 pentanucleotide repeats; 18 
hexanucleotide repeats. The poly A and poly T repeats 
were removed by using an inhouse developed perl script, 
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as these are not considered as SSRs due to their presence 
at 3'-end of  mRNA/cDNA sequences.

Primer designing for SSRs
A pair of  primer flanking each SSR was designed using 
FastPCR software available at www-genome.wi.mit.edu/
cgi-bin/primer/primer3_www.cgi, which takes input 
according to user-defined conditions and pick primers 
according to these specified parameters. Default parameters 
of  the FastPCR, viz, the optimum primer size of  20.0 (the 
range was 18–28), the optimum annealing temperature of  
60.0 (the range was 57.0–63.0), and the range of% GC 
content of  44–60, were selected for primer designing.

Detection of SSR positions with respect to open 
reading frames
Open reading frames (ORFs) are predicted for all the SSR-
containing sequences using ORF finder available at NCBI 
(http://www.ncbi.nl m.nih.gov/gorf/gorf.html) using 
standard genetic code. Sequence fragments with maximum 
length uninterrupted by stop codon were taken as the 
primary encoding segment (ORF) of  the query sequences. 
In all the predicted ORFs, the relative positions of  SSRs 
were detected, that is, whether the SSR was present within 
the ORF, in the 5' UTR untranslated region (UTR) or in 
the 3' UTR

RESULTS

Screening of Gentianaceae sequences for SSRs
In the present study, 4698 nucleotide sequences of  
Gentianaceae available at NCBI (http://www.ncbi.nlm.nih.
gov) were searched for SSRs with a minimum length of  
18 bp. A total of  545 SSRs were detected from 2889 kb of  
data mined, excluding poly A and poly T. Depending upon 
the length of  the repeat unit itself  (1–6 bp), the lengths of  
the identified SSRs varied from 14 to 48 bp, respectively.

Frequencies of classified repeat types of Gentianaceae 
From a number of  4698 sequences screened, only a 
subset of  461 sequences contained 545 SSRs, suggesting 
that merely 9.83% of  sequences contained SSRs. The 
frequencies of  SSRs with mono-, di-, tri-, tetra-, and 
hexanucleotide repeat units showed the frequent repeat 
type within the nucleotide sequences of  Gentiana family 
that were found to be in mononucleotide (84.58%) followed 
by dinucleotide repeats (18.16%), trinucleotide (2.75%), and 
hexanucleotide (0.65%), respectively [Figure 1]. Whereas, 
no tetranucleotide and pentanucleotide repeat was detected 
during the analysis.

The observed frequency of  different repeat types 
comprising the SSRs is presented in Figure 2a–d and 
summarized in Table 1. SSRs were comprised of  four 

different types of  mononucleotide (A,T, C, and G), nine 
different types of  dinucleotide (CA)n, (TG)n, (AC)n, 
(GA)n, (CT)n, (TA)n, (AT)n, (GC)n, (TC)n, (AG)n, (GT)
n repeats, seven different types of  trinucleotide (GAG)
n, (ATG)n, (CTT)n, (TTA)n, (CAA)n, (AAC)n, (ACA)n 
repeats, and two types of  hexanucleotide (CCACAC)n, 
(GGTCAA)n repeats.

Designing of primers for SSRs
Out of  545 SSRs detected, the primers could be designed 
only for 169 (31%) SSRs and the rest 376 (69%) sequences 
did not produce any acceptable primers. These 169 SSRs 
for which primers were designed include 133 mono-, 29 
di-, 7 tri-, and no hexanucleotide repeats. The details of  the 
accession numbers of  nucleotide sequences of  Gentiana, 
repeat motif  of  SSRs for which primer were designed, 
primer sequences, GC%, product size, and annealing 
temperature are given in Table 2.

Prediction of ORF in SSR-containing sequences
An attempt was made to predict the ORFs in SSR-
containing sequences using ORF finder. Out of  the 545 
SSRs identified, the positions of  359 SSRs with respect to 
ORF were determined, while for the remaining 186 SSR-
containing sequences, no ORF were predicted. Of  these 
359 SSRs, a large number of  161 (44.84%) were present 
in the 5’ untranslated region, 129 (35.93%) SSRs occurred 
within ORF, and the remaining 69 (19.22%) occurred in 
the 3’ untranslated region. 

DISCUSSION

In the present study, a large number of  nucleotide 
sequences (4698) of  Gentiana retrieved from NCBI were 
mined for SSRs. In the sequences that were mined the 
SSRs were characterized, and a subset of  these SSRs was 

Figure 1: Frequency distribution of different repeat types identified in 
nucleotide sequences of Gentianaceae
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used for designing the markers. A total of  545 SSRs was 
detected and this was in accordance to the findings of[32] who 
reported that the abundance of  different repeats varied 
broadly depending upon the species. 

Microsatellites or SSRs are stretches of  DNA containing 
tandem repeats of  di-, tri-, tetra-, and above nucleotide 

units ubiquitously distributed throughout the eukaryotic 
genome. They are found to be abundant in plant genomes 
and are thought to be the major sources of  genetic 
variation in quantitative traits. The abundance of  the 
different repeat motifs (1–6 bp) in the SSRs as detected in 
Gentiana family during the present study was variable so 
that the SSRs with different repeat motifs were not evenly 
distributed. The SSRs with dinucleotide repeats (18.16%) 
were abundant. This is in agreement with the results of  
earlier studies on Arabidopsis in which the dinucleotide 
repeats were also found to be abundant,[33] perhaps because 
the genomic sequences of  this species may include SSRs 
in noncoding regions too. The smaller repeat motifs were 
found to be predominant among SSRs identified and 
as the length of  repeat unit increases, their occurrence 
decreases. We excluded poly A and poly T repeats due to 
which their number is under-represented. The abundance 
of  trinucleotide SSRs may be attributed to the absence 
of  frame shift mutations due to variation in trinucleotide 
repeats.[34] 

Molecular genetic markers can be used to examine a group 
of  individuals or populations to estimate various diversity 
measures and genetic distances, intergenetic structure and 

Figure 2: Frequency distribution of (a) mono-, (b) di-, (c) tri-, and (d) hexanucleotide repeat motifs in the genome of Gentianaceae

Table 1: Summary of in silico mining of 
Nucleotide sequences of Gentianaceae
Parameters Values
Total number of sequences searched 4698
Total number of SSRs after removing poly A and poly T 545
Total size of examined sequences (bp)   2289303
Total number of sequences containing single SSRs 429
Number of sequences containing two SSRs 99
Number of sequences containing three SSRs 15
Number of sequences containing six SSRs 2
Number of sequences containing more than one SSR 57
Number of SSRs present in compound formation 47
Repeat type  
Mononucleotide 429 (84.58)
Dinucleotide 99 (18.16) 
Trinucleotide 15(2.75) 
Hexanucleotide 2 (0.65)

Data in parentheses is the percentage value of the repeat
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clustering patterns, test for Hardy-Weinberg equilibrium 
and multilocus equilibrium, and to test polymorphic loci 
for the evidence of  selective neutrality. This can be useful 
to plant breeders, germplasm managers, or others who are 
interested in population genetic properties of  materials that 
they are working with. The three most common types of  
markers used today are RFLP, RAPD, and microsatellites. 
A wide variety of  methods for the construction of  libraries 
enriched for microsatelite sequences have been reported, 
the most popular among those being the ones based on 
vectorette PCR using anchored primers. But this method is 
highly time-consuming and expensive, and the alternative 
is to use bioinformatics, that is, computational tools to 
screen the public database and find SSR. EST-derived 
molecular markers, especially SSR and SNP, are highly 
useful in developing linkage maps and markers assisted 
breeding programs. These markers are also transferable 
to related genera.

Molecular marker techniques are advantageous as they 
directly reflect variations in the DNA sequences and 
therefore of  independence of  environment. Among 
many molecular marker techniques currently available, 
microsatellites and SSRs [35] provide an improved technology 
in assessing genetic diversity and genetic relationships in 
plants as they are highly polymorphic, codominants, very 
informative, and PCR based. EST-SSRs offer the following 
advantages over other genome DNA-based markers: (1) 
they should detect variation in the expressed portion of  
the genome so that gene tagging should give “perfect” 
marker–trait associations; (2) they can be developed at 
no cost from the EST databases; and (3) once developed, 
these markers, unlike genomic SSRs, may be used across a 
number of  related species. With the growth of  sequence 
databases, several authors have reported an abundance of  
SSRs in different genomes. The Distribution of  SSRs in 
the rice genome has also been studied on the basis of  the 
two whole genome draft sequences released, respectively, 
by Syngenta and by the Beijing Genome Institute (BGI). 
In the draft sequence released by Syngenta, for instance, 
48,351 SSRs (including di-, tri-, and tetranucleotide repeats) 
were available, giving a density of  8 kb per SSR in the whole 
genome; SSRs represented by di-, tri-, and tetranucleotide 
repeats accounted respectively for 24%, 59%, and 17% of  
the total SSRs.

SSRs are very polymorphic due to the high mutation 
rate affecting the number of  repeat units. Such length-
polymorphisms can be easily detected on high-resolution 
gels (e.g., sequencing gels), by running PCR-amplified 
fragments obtained using a unique pair of  primers flanking 
the repeat.[36] Chung and Staub[37] developed a set of  
consensus chloroplast primer pairs for ccSSRs from N. 
tabacum chloroplast sequences. All primer pairs produced 

amplicons after PCR employing chloroplast DNA from 
members of  the Cucurbitaceae (six species) and Solanaceae 
(four species). Sixteen, 22, and 19 of  the initial 23 primer 
pairs were successively amplified by PCR using template 
DNA from species of  the Apiaceae (two species), Brassicaceae 
(one species), and Fabaceae (two species), respectively. 
Twenty of  the 23 primer pairs were also functional in 
three monocot species of  the Liliaceae (onion and garlic), 
and the Poaceae (oat). ccSSR primers were strategically 
"recombined" and referred to correctly as recombined 
consensus chloroplast primers (RCCP) for PCR analysis 
of  cucumber DNA such that the primers designed for 
the SSR-containing genus of  Gentiana family would be 
utilized for the production of  amplicons from different 
members of  family. 

Kijas et al.[38] tested two primer sets in 10 different Citrus 
species and two related genera and found conservation 
of  the sequences. Cross-species amplification has also 
been reported between cultivated rice and related wild 
species[39] and between Vitis species.[40] Provan et al.[41] could 
show successful amplification of  two tomato SSR primer 
pairs tested on potato cultivars. Weising et al,.[42] reported 
conservation of  SSR flanking sites in different species of  
kiwifruit (Actinidia chinensis). Usually, a low percentage of  
markers also amplified fragments from species belonging 
to other genera from the same family. Within the Poaceae 
family, primers worked even across different genera,[43] but 
only 50% of  microsatellite loci identified in wheat were also 
polymorphic in rye and barley cultivars. Whitton et al.[44] 
tested 13 SSR loci in 25 representatives of  the Asteraceae, 
where it was demonstrated that the regions flanking in the 
repeats are not highly conserved, neither in the nucleotide 
sequence nor in the relative position.

Indeed, in general, transferability of  polymorphic markers 
in plants is likely to be successful mainly within genera 
(success rate close to 60% in eudicots and close to 40% 
in the reviewed monocots) rather than between genera 
(transfer rates are approximately 10% for eudicots) within 
the same family.[45] This transferability of  polymorphic 
markers nature in plant generally enhances the utilization 
of  the primers in random way. Comparative genome 
analysis facilitates high-throughput comparative mapping 
with the assistance of  cross-species markers, and further 
facilitates gene cloning by identifying cross-reference genes. 
Seventeen SSR primer sets developed for Quercus petraea 
were tested on eight different members of  the Fagaceae 
family.[46] In total 66% resulted in interpretable amplification 
products and most of  them were really homologous to the 
originally cloned SSR fragment from Q. petraea. The primers 
could be designed successfully for a very large number (169, 
31%) of  SSRs [Table 2]. However, it was not possible to 
design the primers for remaining SSRs (376, 69%) because 
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the sequence flanking at both ends of  the SSRs was 
inadequate in size to design the primers. The large number 
of  primer pairs for the SSRs that have been designed during 
the present study may be utilized for a variety of  purposes, 
for example, gene tagging, genetic mapping, population 
studies, etc. Due to a high level of  potential for length 
polymorphisms, SSRs have become a valuable source of  
genetic markers and have been broadly applied to various 
areas of  genetic research including studies of  genome 
variation, establishment of  genetic maps, integration of  
physical and genetic maps, determination of  evolutionary 
relationships, and comparative genome analyses.

CONCLUSIONS

Nucleotide sequences of  Gentiana family were systematically 
searched for SSRs using the ‘‘ssr_finder.pl’’ perl program 
for the development of  SSR markers. This is a valuable 
approach for both costs and time, given a sufficient amount 
of  available Gentiana family sequences. The use of  SSRs in 
genetic diversity studies is a novel tool that reveals variation 
in genomes. 
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