Mining of simple sequence repeats in the Genome of Gentianaceae

R. Sathishkumar ${ }^{1}$, P. T. V. Lakshmi ${ }^{1,2}$, A. Annamalai ${ }^{3}$, V. Arunachalam ${ }^{4}$
${ }^{1}$ Phytomatics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, ${ }^{2}$ Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, ${ }^{3}$ Plant Cell and Molecular Biology Laboratory, Department of Biotechnology, Karunya University, Coimbatore, Tamil Nadu, ${ }^{4}$ Molecular Biology and Bioinformatics Laboratory, Central Plantation Crops Research Institute, Kasaragod, Kerala, India.

Submitted: 29-07-2010
Revised: 25-09-2010
Published: 07-04-2011

ABSTRACT

Simple sequence repeats (SSRs) or short tandem repeats are short repeat motifs that show high level of length polymorphism due to insertion or deletion mutations of one or more repeat types. Here, we present the detection and abundance of microsatellites or SSRs in nucleotide sequences of Gentianaceae family. A total of 545 SSRs were mined in 4698 nucleotide sequences downloaded from the National Center for Biotechnology Information (NCBI). Among the SSR sequences, the frequency of repeat type was about 429 -mono repeats, 99 -di repeats, 15 -tri repeats, and 2 --hexa repeats. Mononucleotide repeats were found to be abundant repeat types, about 78\%, followed by dinucleotide repeats (18.16%) among the SSR sequences. An attempt was made to design primer pairs for 545 identified SSRs but these were found only for 169 sequences.

Key words: Gentianaceae, nucleotide, simple sequence repeats

Access this article online Website:
www.phcogres.com DOI:
10.4103/0974-8490.79111

Quick Response Code:

INTRODUCTION

Gentianaceae, or the Gentian family, is a family of flowering plants of 87 genera and over 1650 species. ${ }^{[1]}$ Plants are usually rhizomatous. These are annuals or perennials, mostly upright though a few species lie on the ground and have upright branch tips. Leaves are opposite or whorled with entire edges and bases connately attached to the stem, mostly without a petiole. Flowers have four to five sepals, petals, and stamens, but only one pistil. Sepals and petals are fused at the base, with four to five free lobes above. Stamens alternate with the corolla lobes. Ovary is superior; fruit is a capsule. Stipules is absent. Plants usually accumulate bitter iridoid substances; bicollateral bundles are present. The fruits are dehiscent septicidal capsules splitting into two halves. The Gentianaceae contains many species with interesting phytochemical properties. They have been widely used in traditional medicine and also as constituents in bitters and similar concoctions. The family

[^0]consists of trees, shrubs, and herbs showing a wide range of colors and floral patterns.

Simple sequence repeats (SSRs), ${ }^{[2]}$ or microsatellites ${ }^{[3]}$ or short tandem repeats, ${ }^{[4]}$ are short ($1-6 \mathrm{bp}$) repeat motifs that show a high level of length polymorphism due to insertion or deletion mutations of one or more repeat types. ${ }^{[5]}$ Studies suggest that both protein coding and noncoding regions of DNA sequences contain SSRs. ${ }^{[6]}$ SSRs present in coding sequences are less polymorphic than those in the genomic sequences. Moreover, different taxon varies in abundance of different types of SSRs and these are present in greater abundance in noncoding regions than coding SSRs. ${ }^{[7]}$ The SSRs are either developed conventionally ${ }^{[8]}$ or from sequence databases. ${ }^{[9]}$ PCR-based techniques such as AFLP and microsatellites or SSRs have also played important roles in plant DNA profiling. Primers are essential components of PCR-based systems as well as modern microarray systems which utilize appropriate probes for PCR amplification. ${ }^{[10]}$

In genetics, a sequence motif is a nucleotide or amino acid sequence pattern that is widespread and is believed to have, a biological significance. When a sequence motif appears
in the exon of a gene, it may encode the "structural motif" of a protein, that is, a stereotypical element of the overall structure of the protein. "Noncoding" sequences are not translated into proteins. Outside of gene exons, there exist regulatory sequence motifs and motifs within the "junk," such as satellite DNA. ${ }^{[11]}$ Robinson et al. ${ }^{[12]}$ developed a computer program to identify and design PCR primers for amplification of SSR loci based on available DNA sequence information. SSR primers have been designed using publicly available expressed sequence tags (ESTs) in barley, ${ }^{[13]}$ almond (Prunus communis Fritsch.), and peach (P. persica (L.) Batsch.), ${ }^{[14]}$ T. aestivum, and O. Sativa. ${ }^{[15]}$ These SSRs are useful as molecular markers because their development is inexpensive, they represent transcribed genes, and their putative function can often be deduced by a homology search. ${ }^{[16]}$ SSRs have been the backbone to creating molecular maps for a number of years.

The increasing number of genomic and expressed sequences in public databases provides a valuable source for bioinformatical data mining. However, there are a number of exciting application of these sequence data; used in comparative genome analysis - to trace the evolution among the related species, to study the genome structure and their gene functions. Comparative genome analysis requires the same sets of genes (i.e., cross-reference genes) to be mapped to chromosomes in the species compared. Thus, comparative maps with sets of EST-derived markers (i.e., cross-species markers) are essential for comparative genome analysis. Several studies have utilized publicly available ESTs to mine SSRs or microsatellites markers for plants, ${ }^{[17-20]}$ catfish, ${ }^{[21]}$ insects, ${ }^{[22]}$ animals, ${ }^{[23]}$ and human. ${ }^{[24]}$ The EST-derived SSR markers (EST-SSRs) have proved very useful for the construction of genetic and comparative maps. ${ }^{[25]}$ The software used here is MISA, a microsatellite identifying tool which has the advantage of detecting the mono- to decamer repeats and also compound repeats. But it has the disadvantage of inability to detect above decanucleotide repeats. Riju and Arunachalam, ${ }^{[26]}$ mined the SSRs in oil palm ESTs with five different software and have reported that MISA program has given maximum coverage of SSRs in both oil palm ESTs and Contigs.

PCR primer design in general

Understanding of primer properties is very important for primer design. The major aspects of primer properties include specificity, melting temperature $\left(T_{\mathrm{m}}\right)$, and intraprimer or interprimer homology. Primer specificity is mostly determined by the 3 '-end sequences. It was reported that single internal mismatches had no significant effect on PCR product yield while the 3'-terminal mismatches, especially the $A: A, A: G, G: A$, and $C: C$ mismatches, markedly reduced overall PCR product yield. ${ }^{[27]}$ Khabar et al. ${ }^{[28]}$ assessed the annealing specificity of primers in PCR
reactions under different annealing temperatures $\left(35^{\circ} \mathrm{C}\right.$, $40^{\circ} \mathrm{C}$, and $45^{\circ} \mathrm{C}$) and found perfect matches between at least eight bases at the 3^{\prime}-end of the 5^{\prime}-primers and the target region, whereas mispriming occurred only toward the 5^{\prime}-end. Therefore it is critical to include 8-10 unique bases at the 3^{\prime}-end of the primer.

Ideally the primer has a T_{m} in the range of $50-65^{\circ} \mathrm{C}$, random nucleotide composition with a 40-60\% GC-content, and 18-30 bases long. The intraprimer or interprimer homology is kept as low as possible to avoid formation of hairpin structures or primer dimmers ($>3 \mathrm{bp}$ complementarities between primers) which otherwise will interfere with annealing of primer to the DNA template. ${ }^{[29]}$

ESTs, which represent the expressed part of genome, also serve as a source of SSRs. ${ }^{[9]}$ Detection of SSRs facilitates the development of SSR markers that are useful in the study of genetic variation, gene tagging, and linkage mapping, ${ }^{[30]}$ and are also useful across a number of related species. ${ }^{[13]}$ Microsatellites can be amplified for identification by the polymerase chain reaction (PCR) process, using the unique sequences of flanking regions as primers. Once the potentially useful microsatellites are determined (removing nonuseful ones such as those with random inserts within the repeat region), the flanking sequences can be used to design oligonucleotide primers which will amplify the specific microsatellite repeat in a PCR. Microsatellite loci are widely distributed throughout the genome and can be isolated from semidegraded DNA of older specimens, as all that is needed is a suitable substrate for amplification through PCR. Hence, the present study was to find out the distribution and abundance of SSRs for the development of markers and to annotate SSR-containing sequence in Gentianaceae family. Nucleotide database, which contains sequences of well-characterized genes as well as hundreds of thousands novel EST sequences, was retrieved to perform the analysis.

MATERIALS AND METHODS

Retrieval of nucleotide sequences and detection of SSRs
A total of 647 nucleotide sequences of Gentianaceae were downloaded from the NCBI (http://www.ncbi.nlm.nih. gov/Nucleotide/?term=Gentianaceae) and harvested for SSRs using a perl script. The minimum length of SSR was fixed at 14 bp according to the criteria used by Gupta et al.. ${ }^{[31]}$ The SSRs were defined as 14 -bp mononucleotide or dinucleotide repeats; 15-bp trinucleotide repeats; 16 tetranucleotide repeats; 20 pentanucleotide repeats; 18 hexanucleotide repeats. The poly A and poly T repeats were removed by using an inhouse developed perl script,
as these are not considered as SSRs due to their presence at 3'-end of mRNA/cDNA sequences.

Primer designing for SSRs

A pair of primer flanking each SSR was designed using FastPCR software available at www-genome.wi.mit.edu/ cgi-bin/primer/primer3_www.cgi, which takes input according to user-defined conditions and pick primers according to these specified parameters. Default parameters of the FastPCR, viz, the optimum primer size of 20.0 (the range was $18-28$), the optimum annealing temperature of 60.0 (the range was 57.0-63.0), and the range of $\%$ GC content of 44-60, were selected for primer designing.

Detection of SSR positions with respect to open reading frames
Open reading frames (ORFs) are predicted for all the SSRcontaining sequences using ORF finder available at NCBI (http://www.ncbi.nl m.nih.gov/gorf/gorf.html) using standard genetic code. Sequence fragments with maximum length uninterrupted by stop codon were taken as the primary encoding segment (ORF) of the query sequences. In all the predicted ORFs, the relative positions of SSRs were detected, that is, whether the SSR was present within the ORF, in the 5^{\prime} UTR untranslated region (UTR) or in the 3^{\prime} UTR

RESULTS

Screening of Gentianaceae sequences for SSRs

In the present study, 4698 nucleotide sequences of Gentianaceae available at NCBI (http://www.ncbi.nlm.nih. gov) were searched for SSRs with a minimum length of 18 bp . A total of 545 SSRs were detected from 2889 kb of data mined, excluding poly A and poly T. Depending upon the length of the repeat unit itself ($1-6 \mathrm{bp}$), the lengths of the identified SSRs varied from 14 to 48 bp , respectively.

Frequencies of classified repeat types of Gentianaceae

 From a number of 4698 sequences screened, only a subset of 461 sequences contained 545 SSRs, suggesting that merely 9.83% of sequences contained SSRs. The frequencies of SSRs with mono-, di-, tri-, tetra-, and hexanucleotide repeat units showed the frequent repeat type within the nucleotide sequences of Gentiana family that were found to be in mononucleotide (84.58%) followed by dinucleotide repeats (18.16\%), trinucleotide (2.75\%), and hexanucleotide (0.65%), respectively [Figure 1]. Whereas, no tetranucleotide and pentanucleotide repeat was detected during the analysis.The observed frequency of different repeat types comprising the SSRs is presented in Figure 2a-d and summarized in Table 1. SSRs were comprised of four

Figure 1: Frequency distribution of different repeat types identified in nucleotide sequences of Gentianaceae
different types of mononucleotide (A,T, C, and G), nine different types of dinucleotide (CA)n, (TG)n, (AC)n, (GA)n, (CT)n, (TA)n, (AT)n, (GC)n, (TC)n, (AG)n, (GT) n repeats, seven different types of trinucleotide (GAG) n, (ATG)n, (CTT)n, (TTA)n, (CAA)n, (AAC)n, (ACA)n repeats, and two types of hexanucleotide (CCACAC)n, (GGTCAA)n repeats.

Designing of primers for SSRs

Out of 545 SSRs detected, the primers could be designed only for 169 (31%) SSRs and the rest 376 (69%) sequences did not produce any acceptable primers. These 169 SSRs for which primers were designed include 133 mono-, 29 di-, 7 tri-, and no hexanucleotide repeats. The details of the accession numbers of nucleotide sequences of Gentiana, repeat motif of SSRs for which primer were designed, primer sequences, GC $\%$, product size, and annealing temperature are given in Table 2.

Prediction of ORF in SSR-containing sequences

An attempt was made to predict the ORFs in SSRcontaining sequences using ORF finder. Out of the 545 SSRs identified, the positions of 359 SSRs with respect to ORF were determined, while for the remaining 186 SSRcontaining sequences, no ORF were predicted. Of these 359 SSRs, a large number of 161 (44.84\%) were present in the 5' untranslated region, 129 (35.93%) SSRs occurred within ORF, and the remaining $69(19.22 \%)$ occurred in the 3 ' untranslated region.

DISCUSSION

In the present study, a large number of nucleotide sequences (4698) of Gentiana retrieved from NCBI were mined for SSRs. In the sequences that were mined the SSRs were characterized, and a subset of these SSRs was

Figure 2: Frequency distribution of (a) mono-, (b) di-, (c) tri-, and (d) hexanucleotide repeat motifs in the genome of Gentianaceae

Table 1: Summary of in silico mining of	
Nucleotide sequences of Gentianaceae	
Parameters	Values
Total number of sequences searched	4698
Total number of SSRs after removing poly A and poly T	545
Total size of examined sequences (bp)	2289303
Total number of sequences containing single SSRs	429
Number of sequences containing two SSRs	99
Number of sequences containing three SSRs	15
Number of sequences containing six SSRs	2
Number of sequences containing more than one SSR	57
Number of SSRs present in compound formation	47
Repeat type	
Mononucleotide	$429(84.58)$
Dinucleotide	$99(18.16)$
Trinucleotide	$15(2.75)$
Hexanucleotide	$2(0.65)$

Data in parentheses is the percentage value of the repeat
used for designing the markers. A total of 545 SSRs was detected and this was in accordance to the findings of ${ }^{[13]}$ who reported that the abundance of different repeats varied broadly depending upon the species.

Microsatellites or SSRs are stretches of DNA containing tandem repeats of di-, tri-, tetra-, and above nucleotide
units ubiquitously distributed throughout the eukaryotic genome. They are found to be abundant in plant genomes and are thought to be the major sources of genetic variation in quantitative traits. The abundance of the different repeat motifs ($1-6 \mathrm{bp}$) in the SSRs as detected in Gentiana family during the present study was variable so that the SSRs with different repeat motifs were not evenly distributed. The SSRs with dinucleotide repeats (18.16\%) were abundant. This is in agreement with the results of earlier studies on Arabidopsis in which the dinucleotide repeats were also found to be abundant, ${ }^{[33]}$ perhaps because the genomic sequences of this species may include SSRs in noncoding regions too. The smaller repeat motifs were found to be predominant among SSRs identified and as the length of repeat unit increases, their occurrence decreases. We excluded poly A and poly T repeats due to which their number is under-represented. The abundance of trinucleotide SSRs may be attributed to the absence of frame shift mutations due to variation in trinucleotide repeats. ${ }^{[34]}$

Molecular genetic markers can be used to examine a group of individuals or populations to estimate various diversity measures and genetic distances, intergenetic structure and
Table 2: Synthesis of primer

Accession number	Motif	Forward Primer		Reverse primer		Annealing temperature (C)	Product size (bp)			
		Primer	GC \%	Primer	GC \%					
gi\|261865195	gb	GQ864096.1		(TA)7(AT)7	GGGCAGAACTCAACGGAAGC	59.1	GAGGCTAAAGGGTCGGA	58.8	57.9	709
gi\|169798749	gb	EU370947.1		(A)13	CGAGGCTGTAAAGTGCGTGC	60	GACGGTGAGAGGCTGTGTATG	57.1	56.85	415
gi\|24494572	gb	EF371451.1	(TG)17	GAGGCTGTAAAGTGCGTC	50	GACGGTTAGAGGCTGTGTAGG	54.5	54.25	414	
gi\| $124494568\|\mathrm{gb}\| \mathrm{ef371447.1\mid}$	(AG)7(TG)8 (GA)12	GTCTGAGTGAGGGAGCCATC	60	GTGATGCTGTGTGTCCCAAGAG	54.5	56.8	80			
gi\| $112293600\|\mathrm{lbb}\| \mathrm{dq} 822583.1 \mid$	(CA)29(GA)21(AG)6	GGGATGGCACTCACCTACAGC	61.9	GGCATAGTCTGAGTTCCCAC	55	54.45	123			
gi\|112293594	gb	dq822577.1		(CT)21	GCGTTCATCCGACTGCCGAG	65	GCAGAGCATAGTGGACGC	61.1	62	
gi\| $156787489\|\mathrm{gb}\|$ ef569230.2	(A)21	CTGTGTGATGCTGAGGTTGC	55	GGCTGAACCACGGGACAACC	65	59	656			
gi\|89199712	gb	dq398766.1		(A)16	GTAGATGTTCAGAGGACG	50	GGTTGACACTTTACAGCACG	50	57	461
gi\|89199711	gb	dq398765.1		(A)10	GCGATGTGTTCAAGGACCG	55	GTGAACGCCTATCCAGTG	55.6	59	760
gi\| $89199709\|\mathrm{gb}\| \mathrm{dq} 398763.1 \mid$	(A)16	CGCTGTTCCGCTCACGCTTC	65	GTTGACACTTTACAGCCCCT	50	63	676			
gi\|89199708	gb	dq398762.1		(A)16	GACGCTGTAAAGTGATAG	44.4	GCGTTAGGCTGACTTCGTG	57.9	56	409
gi\| $89199707\|\mathrm{gb}\| \mathrm{dq398761.1\mid}$	(A)12	GTCGCTGAGTAGTGCCAAG	57.9	GGCGGTTAGGGGCTGACACG	70	64	349			
gi\|89199706	gb	dq398760.1		(A)12	GCTGCTGTAAAGTGCCAACG	55	GAGGCACGATTAGGGGCTGAC	61.9	65	345
gi\|89199705	gb	dq398759.1	(A)12	GAGCCTGTAAAGTGCCAAC	52.6	GTGTCGTGTAGAGCCTGAACCG	59.1	64	414	
gi\|89199704	gb	dq398758.1		(A)11	GACGCTGTAAAGTGCCAAC	52.6	GTAGGCGTAACTCTGACAC	52.6	58	806
gi\|89199703	gb	dq398757.1		(A)11	GAGGTGCTGTAGAGTGCCATC	57.1	CGGCGGATAGAGATAGAG	56.6	61	228
gi\|89199702	gb	dq398756.1		(A)11	GAGTCTGTAGGTGCCGAACG	60	GCGAGATTAGAGCGTGAACAG	52.4	64	539
gi\|89199701	gb	dq398755.1		(A)11	GTCGCTGTAAAGTGCTAAC	47.4	GTCATCAAGTCGCACAGGC	57.9	58	313
gi\|89199700	gb	dq398754.1		(A)12	CTGTTCAAAGGACCCGTGC	57.9	GAGCCTTTTGTCGTCGGTGG	60	56.35	346
gi\| $89199699\|\mathrm{gb}\| \mathrm{dq} 398753.1 \mid$	(A)12	GGCGGCTGTAAGTCCATCC	63.2	GCTTGCTAACGGATTCTGCG	55	58	415			
gi\| $89199698\|\mathrm{gb}\| \mathrm{dq} 398752.1 \mid$	(A)11	GGAGAGTAAGTGCCAACC	55.6	GAGCATTGTCCGAACGAGCG	60	56.55	409			
gi\|89199697	gb	dq398751.1		(A)11	GGAGGCTGGCTAAAGTGCTAC	57.1	GAGCCATTGCGAACAGTG	55.6	56.55	409
gi\| $89199696\|\mathrm{gb}\| \mathrm{dq} 398750.1 \mid$	(A)15	CAATGTTCAAGCGATGCCGTC	52.4	CTATGGTCAGGAACGGTGG	57.9	57.05	349			
gi\| $89199695\|\mathrm{gb}\| \mathrm{dq} 398749.1 \mid$	(A)13	CATCAGAGTTCAAGGACCG	52.6	GATACCTTGTCTACGAACGG	50	57.35	345			
gi\|89199694	gb	dq398748.1		(A)21	GGAGGTCTGCTAAGTGCCAAC	57.1	GCACCTTGTCGGAACGGCGG	70	58	419
gi\| $89199693\|\mathrm{gb}\| \mathrm{dq} 398747.1 \mid$	(A)15	CATCGTGTTCAAGGACCG	55.6	GAACCTCTGTCGGAACGG	61.1	57.05	349			
gi\|89199692	gb	dq398746.1		(A)12	GTGCTGTATCAAGGACCGC	57.9	GAGCCTTGTGAACGGTGG	61.1	57.05	349
gi\| $89199690 \mid \mathrm{gb\|dq398744.1\|}$	(A)12	GGAGGTCTAAGTGCCAAC	55.6	GGTCGTGCGGTTAGGTGG	66.7	59.75	141			
gi\| $89199689\|\mathrm{gb}\| \mathrm{dq} 398743.1 \mid$	(A)14	GGACGGTGTAAGTGCCAAC	57.9	GAAGGTCCACGGTTAGGT	55.6	59.75	143			
gi\| $89199688\|\mathrm{gb}\| \mathrm{dq} 398742.1 \mid$	(A)15	GGAGGAGTGTAAAGTGCCAAC	52.4	GGCTAATGTCGTGCGGAGG	63.2	58	417			
gi\|89199687	gb	dq398741.1		(A)15	GGAGGAGTGTAAGTGCCAAC	55	GCCATTGTCGGAACGGAGG	63.2	58	417
gi\| $89199686\|\mathrm{gb}\| \mathrm{dq} 398740.1 \mid$	(A)12	GGAGGAGTGTAAGTGCCAAC	55	GCCTTGTCGGAACGGTGGA	63.2	58	415			
gi\| $89199685 \mid \mathrm{gb\|dq398739.1\|}$	(A)12	GGAGGTGCTAAGTGCCAAC	57.9	GCCTTGTCGGAACGGTGG	66.7	58	415			
gi\| $89199684 \mid \mathrm{gb\|dq398738.1\|}$	(A)14	GGAGGTGCTAAGTGCCAAC	57.9	GCCATTGTCGGAACGGAGG	63.2	58	417			
gi\| $89199683\|\mathrm{gb}\| \mathrm{dq} 398737.1 \mid$	(A)14	GGAGGAGTGCTAAGTGCCAAC	57.1	GAGCCTATGTCGGAACGG	61.1	58	417			
gi\| $89199682\|\mathrm{gb}\| \mathrm{dq398736.1\mid}$	(A)10	GGGTCTCTAAGTGCCAAC	55.6	GCCAGTGCTCGGAACAGTG	63.2	56.55	411			
gi\| $89199681\|\mathrm{gb}\| \mathrm{dq398735.1\mid}$	(A) 12	GGAGGTCTGTAAGTGCCAAC	55	GCGGATTGTGGAACGGCG	66.7	56.55	413			
gi\|89199680	gb	dq398734.1		(A)12	GGAGGTGTAAGTGCCAACG	57.9	GGCTATGCTCAGTCAGGG	61.1	56.55	413
gi\| $89199679\|\mathrm{gb}\| \mathrm{dq} 398733.1 \mid$	(A)12	GGAGGTGCTAAGTGCCAAC	57.9	GACATTGCTCGGAACAGGG	57.9	56.55	413			
gi\| $89199678\|\mathrm{gb}\| \mathrm{dq} 398732.1 \mid$	(A)15	GGAGGTGCTAAGTGCCAAC	57.9	GAGCCTTGCGAACGGTGG	66.7	58	418			
gi\| $89199624 \mid \mathrm{gb\|dq398678.1\|}$	(T)10	GTGTAGTCGGTTCCATCG	55.6	GTTGGTCGGAGGAGTCGC	66.7	58.02	462			
gi\| $89199623 \mid \mathrm{gb\|dq398677.1\|}$	(T)10	GTGGTAGTGGTATCATCG	50	GGATAAGTCGGAAGAGGC	55.6	58.02	462			

Table 2 (contd...)

Accession number	Motif	Forward Primer		Reverse primer		Annealing temperature (C)	Product size (bp)			
		Primer	GC \%	Primer	GC \%					
gi\|89199624	gb	dq398678.1		(A)21	CGTGTAGAGTGCCATCCG	61.1	GATGACTACGAGGATGGCG	57.9	58.05	462
gi\|89199623	gb	dq398677.1		(T)10	CGTGTAGTCGGTCCATCG	61.1	GTGATAGACAGAGGAGAGCG	55	58.05	462
gi\|89199612	gb	dq398666.1		(T)10	GGATGAGCAGAGGAGAGCC	63.2	GATAGAGTCAGAGGAGGGC	57.9	58.05	461
gi\|45738090	gb	ay563392.1		(TA)8	GGTGCGATAGACTCAACGG	57.9	GTATCGCTATCGCACAGTC	52.6	58.15	676
gi\|45738088	gb	ay563390.1		(TA)7(AT)7	GAGTCACAGTCGTCAGCG	61.1	GCGTGAGTATCGTAGCAGTC	55	58.15	639
gi\|9994240	gb	af102469.2		(A)14	GCTGCGTATGCGAGACAC	61.1	GCACGGGTATTTTCAGTCCTCGC	56.5	58.1	648
gi\|9994232	gb	af102419.2		(A)10	GATAGTGCTGACGAGTGCG	57.9	GCACGCAGTCAGTCTCGC	66.7	57.5	786
gi\|9994224	gb	af102376.2		(A)10	CACGCCAATCCTGACGCAC	63.2	GCACGGGTTTCAGTCCTCGC	65	58.85	779
gi\|224985956	gb	fj014139.1		(A)10(A)14	CTGGATGGAACCCTGAGTG	57.9	GCTTGACGCAGAACGGTG	61.1	55.45	356
gi\|46403206	gb	ay596976.1		(GAG)5	GGAGACGATTGGAGTTGGTG	55	CTCGCTTAGATACTCGCC	55.6	56	669
gi\|7578882	gb	af240764.1		(A)20	GGTGGAGGGCATAGAGGC	66.7	GGTGGAGGGCATAGAGGC	57.9	55.85	691
gi\|6685069	gb	af205859.1		(A)19	GAAGCCACCAGGAAGCAG	61.1	GTCAAATCACTTCCGCCAG	52.6	55.85	555
gi\|6110321	gb	ah008318.1		(A)12	GTATCGGCGTATGTGGGC	61.1	GCCAACCCATTCGTAAGTCC	55	57.8	550
gi\|260079916	gb	gq245007.1		(A)10	GGACACACAGCGAGCACG	66.7	GCGACGGTATTCACTCTCAC	55	57.95	320
gi\|1644387	gb	u72654.1		(A)23	GGCTGTTGGTAGATGGCTG	57.9	GGCGAACTCCTATGAACGG	57.9	57.8	690
gi\|209483591	gb	fj232569.1		(GC) 7	CACTGCGATAGCGGACGAC	63.2	GCAGCATCTCTTCGGTGGGAC	61.9	61.35	602
gi\|94317216	gb	dq449916.1		(C)10	CGAATCCAGGCGAAGCAGACG	61.9	CGCTTACAGGTCGGCAGTCTC	61.9	62.75	608
gi\|57634567	gb	ay858677.1		(A)10	GGGAAACCACGGAGCGATG	63.2	GTGGCTTCGGACGCAACTG	63.2	60.1	307
gi\|259435649	emb	hb880950.1		(A)18	GAGAAGCCATAGGAGGTC	55.6	CGCAATACTCTCGTGACTCG	55	63.1	822
gi\|205289952	gb	fj010824.1		(TA)7	GCGGCAGAACTCAACGAC	61.1	GCGAGGCTATCCCACCAGTC	65	58.15	671
gi\|205289938	gb	fj010810.1		(TA)6	GTGGCAGGACTCAACGGC	66.7	GCACGAGCATCACGCCAGTC	65	58.15	669
gi\|257693471	emb	hb769727.1		(GAG)5	CTCGTCGTTGGCGGTGAATC	60	CAGCCATAACCTCACGGATAG	52.4	55.6	549
gi\|241661579	dbj	ab453155.1		(T) 13 (T) 10	GGGAGTATTCTTATCGGAGCG	52.4	GCTGCTATTGATTGCCCGTC	55	54.95	312
gi\|241661523	dbj	ab453127.1		(T)10(T)10	GGGTTACTTATCGGGAATCG	50	CGATAGGCATTTTGGAGCGGC	57.1	58.55	331
gi\|241661499	dbj	ab453115.1		(T)11	GGGAGTTTATCGGGAATCG	52.6	CGTTAGGCGTTTTGGGCTG	57.9	58.3	331
gi\|89511875	dbj	ab222605.1		(T)10	CACGAGACTTGGGTTACGC	57.9	GAATCCCCCCAAACCGAGG	63.2	56.25	337
gi\|89511875	dbj	ab222605.1		(T)11	GAATAAGAGGACGCCACG	55.6	CGCAGAGCAAGCCCAATG	66.1	56.4	714
gi\|62183686	gb	ay879942.1		(A)13	GAATAAGAGGACGCCACG	55.6	GCTTGACGGCAGAACGGC	66.7	56.25	299
gi\|166407456	gb	eu326062.1		(T)12(GT)7	GAGCAGCAGACGAGTAGC	61.1	GACGACGCACATCTCCAC	61.1	57.25	320
gi\|219929423	emb	fb $899668.1 \mid$	(GAG)5	GGAGACGATGGAGTTGGTG	57.9	CATAGGTGACATACGCCG	55.6	56	669	
gi\|218478034	dbj	ab459662.1		(T)12(GT)7	GCGACTATGGCTGCTGCTGC	65	CATAGGTGACATACGCCG	55.6	57.5	
gi\|218478034	dbj	ab459662.1		(T)17	GCACCGAGAAGCCAGCACCT	65	GAACATACTCTGCCCACCG	57.9	58.6	
gi\|164454772	dbj	ab289445.1		(ATG)5	CTTCTTCTACTCCGCAGC	55.6	GCAGAAGATGACTCCTCCAG	55	54.9	559
gi\|164454770	dbj	ab289444.1		(CTT)7	CCAGAAGTGAGGAAAGCG	55.6	GCAGTGACCAGAGACCCC	66.7	56.95	549
gi\|193795409	gb	ef203258.1		(TA)7 (T)15 (A)29	CGTGAGGATTGGCTGTCGGC	65	CTATGCGACCAGCGATTCAC	55	58.45	703
gi\|193795407	gb	ef203257.1		(G)14 (A)86	CAGAGCAAAGGAACCACCG	57.9	GGATGACGGCACCACCAAC	63.2	55.3	513
gi\|113735151	dbj	ab271691.1		(AT)6	GTAGCAGCAGTGTGGTCGGC	65	GATTTCAGACAACGACGGTG	50	55	677
gi\|170673145	gb	eu541812.1		(G)10	CGACCTTTGTAGCAGCCG	61.1	CGCTTTGTTGTGTGCCTTCG	55	55.15	499
gi\|170673141	gb	eu541808.1		(A)10	CACGACTCTCCCAGCACGC	68.4	GTCTCTGTCGTGTGCCTATCG	57.1	55.4	614
gi\|170673139	gb	eu541806.1		(T)10	CACGAATCATCCTCAGTCCTC	52.4	GTCTTTCGTGTGCCTTCG	55.6	55.4	611
gi\|170672874	gb	eu528047.1		(TAA)6 (T)10	GGGTAATCTGAGCCAAATCC	50	GCGAGGCTATCCCGACCAC	68.4	57.9	735
gi\|4092183	gb	af102463.1		(T)10 (A)10	CGGGTCGCAATCCTGAGCC	68.4	GCTTGACAGGCAGAACGGG	63.2	56.7	290

Table 2 (contd...)

Accession number	Motif	Forward Primer		Reverse primer		Annealing temperature (C)	Product size (bp)			
		Primer	GC \%	Primer	GC \%					
gi\|4092141	gb	af102421.1		(A)11	GGGTCCGCATCCTGAGCC	72.2	GCTTGACGGCAGAACGGG	66.7	56.7	290
gi\| $4092124\|\mathrm{gb}\| \mathrm{af102404.1\mid}$	(A) 11	GCGGGTCGGATGTGAGCC	72.2	GCTTGACAGTGCGAACGGG	63.2	56.25	290			
gi\|133874211	dbj	ab190181.1		(A) 24	CGGGTCCTTGCGATGCCTGGG	71.4	CGTCCTCCTTCTCCACTGCC	65	58.3	592
gi\|124388815	gb	ef069436.1		(A)21	GGCTCAATGCGTCGGTAAC	57.9	GCCAGTCCAGTGAGTTCCG	63.2	57.7	137
gi83758482dbjAB19627.1	(TA) 6	GGTTACGGTGAAGAGTGACAGG	54.5	GGATGGGAAGAGTGACAGG	57.9	58.25	374			
gi\|83758480	dbj	AB2 19625.1		(TA) 7	GGTTACGGAAGAGTGACAGG	55	CCATACCAAGGCTCAATCC	52.6	56.2	228
gil156787487\|gb	ef569229.2		(AT)6 (A)20	CTTCTCCACGGTCGCCTTAC	60	GTGACTGAAGCATCCTACC	52.6	60.15	539	
gi\|156787485	gb	ef569228.2		(A)18	GGATAGAGGCTGTGGGATGC	60	CACCAGTCTCAACACCTC	55.6	56.75	313
gi\|146272406	dbj	ab281494.1		(CAA) 7	CGAGGATTCAAGTTCACGGC	55	GAGTTCAGGGACCGCATAGC	60	58.15	371
gi\| $147743640 \mid \mathrm{gb\|ef571643.1\|}$	(CT) 10	CCGTAGTGTTGGTCAGAAGCAGG	56.5	GCGACCTGTAGAACGGATGATG	54.5	57.85	350			
gi\|147743624	gb	ef571635.1		(TC)6	GCAAGGCGAGCACCCAAG	66.7	GTTAGCCAGGATGCGAAGC	57.9	57.75	712
gi\|147743612	gb	ef571629.1		(TC) 7	GCATTCGGTCAGCCAAGC	61.1	GGTGGTATTCATCTTCCGCCG	57.1	58.55	825
gi\| $147743609 \mid \mathrm{gb\|ef571627.1\|}$	(CT)8	GCAACACAGCGGGACTAAC	57.9	GCACGACAGAACGAGCGG	66.7	60.25	617			
gi\|147743597	gb	ef571621.1		(CT)11	CCTCGGACCACCAATCAGC	63.2	GTGTGAACGACTCCGCTTG	57.9	56.35	486
gi\|147743595	gb	ef571620.1		(CT) 6	CAGTTTCGGTCAGCAAGC	55.6	GTGAGAACAACCCCCGCTG	63.2	57.35	440
gi\|147743553	gb	ef571599.1		(TC) 7	GCAAAGAGGAGCACCAAG	55.6	GCAGGTATTCATCTCCGCCG	60	59.05	705
gi\|44829182	gb	ay466118.1		(A) 28	GCCTACCCAAAACGCTGACC	60	CACCTGTCTTCTGTTAGCGG	55	59.2	645
gi\|124295133	gb	ef203260.1		(A)18	GTTGTGGAGGTGGCTTCG	61.1	CTGCGTAACACTCATCAAGCC	52.4	56.02	603
gi\|118145133	dbj	dd357421.1		(A)18	CCAAATGACGGACGCTACCC	60	CTATGCCACCAATGTCCC	55.6	57.35	791
gil117935906\|gb	ef062505.1		(A)18	GGAGCCTATGCGAACGGG	66.7	GCGGTTCATTCTTACACGAGC	52.4	58.85	700	
gi\|95118583	gb	dq497593.1		(A)11	CGTGTATCAAGGACCGCC	61.1	GGAGCCTATGCGAACGGG	66.7	56.35	345
gi\|95118580	gb	dq497590.1		(A) 11	CTGTGTTCAAAGGACCCGTGC	57.1	GAGCCTATGTCGGAACGG	61.1	56.35	345
gi\| 13018492	dbj	e31220.1		(A)18	CTCTGTGCTTTGTGATGCTG	50	GTGTATTTGTAGCGGCAGC	52.6	54.8	650
gi\|92242664	dbj	bd340504.1		(G)14(A)86	GGCTGGTGACTACTGCTG	61.1	CCGCACTCCAGCACGAAGC	68.4	58.95	561
gi\|92128002	dbj	bd289870.1		(A)15	CCTTGGTTGTGCTGTCCTGGTG	59.1	GAAGGCAACAGAGGTGACGC	60	58.6	447
gi\|90959871	dbjlab027191.1		(T)14	GAGGATACGACCACGGACG	63.2	CAGAGCGTAGAAGCCATCAG	55	55.7	704	
gi\|90959867	dbj	ab027189.1		(A) 23	GATACCCCACAGGAGAACC	57.9	GACAACTCCCCAGCAAGAC	57.9	55.45	680
gi\|90959865	dbj	ab027188.1		(A)27	GCGAACTGCTACTCAAACCACC	54.5	CATTGAGCGACATCCCTGC	57.9	55.35	693
gi\|90959863	dbj	ab027187.1		(A)18	CGACATCAACCCCTACGCTG	60	GCCATAAGGGACGCCATTG	57.9	57.1	730
gi\|6681691	dbj	ab017370.1		(TA)7(T) 15	CCTGTAACTCCCACCTCAACC	57.1	GCTGTCAATGTAGTCCTGCTTCG	52.2	57.9	679
gi\|6681687	dbj	ab017368.1		(TA)8	GGTAGTAAGTCCAGGTGCTCG	57.1	CGCTTCTTCACTCCCTTTGC	55	56.95	590
gi\|89276224	gb	dq402068.1		(T)14	CGCACCGAATAAAGCCACAG	55	GGTGAGAAGGAGACGGTGG	63.2	58.15	320
gi\|86451166	gb	dq358898.1		(T)10	GCCGTCAAATCTCTTCTCCTCG	54.5	CGGGTTCTTGTTGGCTGGCTATG	56.5	60.1	658
gi\|76443559	dbj	ab011014.1		(A)18	GTTGTGGAGGTGGCTTCGG	63.2	GGCTGAATGGTTGAGAGACG	55	56.6	446
gi\|75812155	dbj	d38043.1		(T) 12	GCGAGGCATAAGACTGGCTG	60	CAACCGCAACAGGACACGC	63.2	57.2	681
gi\|74267409	dbj	ab208689.1		(A) 10	GAATGGCAAGTGGTCGCTGG	60	GTATGGCTCGGCAAAGGTTC	55	54.8	460
gi\|18146806	dbj	ab028666.1		(G) 13	GCAAGCAAGGGAATCAGG	55.6	CCGCACTCCAGCACGAAGC	68.4	58.6	629
gi\|6687482	emb	aj236195.1		(A)10	GTGACTTCGTGAGGACAGC	57.9	GTCGCAATGTCGTCGCAGG	63.2	56	453
gi\|62433122	dbj	d38168.1		(CT) 8	CAGTCTCCTCCGTCACCGAAG	61.9	GAATGGAATCACGGGAG	52.9	56.75	450
gi\|62086548	dbj	ab193314.1		(A) 28	GAATCATCGCCATCTCCACC	55	GTCCATAACCCTTTCAGCC	52.6	55.5	362
gi\|62086546	dbj	ab193313.1		(A) $12(\mathrm{~A}) 12$	GGTGTTAGCGGGCATTCG	61.1	CAGACGCTCCACCTTCCC	66.7	57.25	524
gi\|62086540	dbjab193310.1		(A) 19	GAATGGCAAGTGGTCGCTGG	60	GTATGGCTCGGCAAAGGTTC	55	54.8	620	
gi\|38568130	emb	aj489906.1		(C) 10	GATGATTGCCGCCTGCTGG	63.2	GGACTCGCATTTAGCCAGC	57.9	59.8	349

Table 2 (contd...)

Accession number	Motif	Forward Primer		Reverse primer		Annealing temperature (C)	Product size (bp)			
		Primer	GC \%	Primer	GC \%					
gi\|4455871	emb	aj010509.1		(T)12	TGGGTAAAAGATGCTCCGTC	50	CCATAGGTAAGTCCGAAAGTCC	50	55.15	317
gi\|37954874	gb	ay251732.1		(A) 19	GGTGCCAATCCTGAGCCG	66.7	GCTTGACGGCAGAACGGG	66.7	56.4	307
gi\|37954873	gb	ay251731.1		(A) 16	GGATTGAGCCTGGTATGG	55.6	GCCTTGACAGCAGAACGGG	63.2	56.5	375
gi\|37991673	dbj	ab124878.1		(A) 16	GCAGTAAGGGAGCGTGAC	61.1	GTCGTCAAGTCAGCCAAC	55.6	54.6	460
gi\|22773822	dbj	ab080739.1		(A) 13	CATAGGAAGGCAAGGAAGC	52.6	GATTCAGGTAGCAACGGAGTGG	54.5	58.9	528
gi\|33945370	emb	aj490190.1		(A) 10	GGTGGCAGGACTCAACGG	66.7	GCGATTGACAGCAGAACGGG	60	56.95	204
gi\|15149940	emb	aj315324.1		(A)11	GTCTGCCTGCCGATTTGGG	63.2	CTACACAGGTTCGGAGGG	61.1	62.4	75
gi\|27530874	dbj	ab076697.1		(A)18	GATTCAGCAGCCGAGGAG	61.1	GTTATGCCTCCGCTCAGTG	57.9	55.35	458
gi\|22796301	emb	aj430909.1		(AT)7	GATGGCAGTCCTCCGCTTC	63.2	CCGTTGATGTCTCTGCTACC	55	55.95	597
gil18146804\|dbj	ab028665.1		(G)14(A)86	CAGTTCCATCAAGCACCAGGCG	59.1	CTTCCGTGCGATGTCAGG	61.1	56.7	622	
gi\|1785485	dbj	d14589.1		(A) 15	GGCTGTTGGAAATGGCGG	61.1	GAGCGTTTATTCTGGGGC	55.6	56	672
gi\|3808127	emb	aj011983.1		(A) 12	CCGTAGGGTTGGGTCTTC	61.1	GCCAACCATTCGTAAGTCC	52.6	56.05	527
gi\|10189942	emb	ax028840.1		(A)17	GGTCATTACTCGGGGTGTG	57.9	GCACTCTCACATCACATTGGGC	54.5	56.6	797
gi\|7415596	dbj	ab026494.1		(TA)6(A)21	CTTGAGAAATGCCGTGTTGC	50	CTACAAATGCGGCTCCTCAC	55	54.8	410
gi\|221150824	gb	gh694656.1		(C) 12	GGAGGAGTGAATCGGAACCC	60	GTGAGGTGGAGGGACTGG	66.7	58.55	181
gi\|62086548	dbj	ab193314.1		(A)28	GAATCATCGCCATCTCCACC	55	GTCCATAACCCTTTCAGCC	52.6	55.5	362
gi\|62086546	dbj	ab193313.1		(A)12(A)12	GGTGTTAGCGGGCATTCG	61.1	CAGACGCTCCACCTTCCC	66.7	57.25	424
gi\|62086540	dbj	ab193310.1		(A) 19	GAATGGCAAGTGGTCGCTGG	60	GTATGGCTCGGCAAAGGTTC	55	54.8	620
gi\|38568130	emb	aj489906.1		(C) 10	GATGATTGCCGCCTGCTGG	63.2	GGACTCGCATTTAGCCAGC	57.9	59.8	349
gi\|33945346	emb	aj489882.1		(C) 10	CACAAACGGCGACGAGAAG	57.9	CAGCACACGAGTTGAGGC	61.1	61.25	445
gi\|4455871	emb	aj010509.1		(T)12	TGGGTAAAAGATGCTCCGTC	50	CCATAGGTAAGTCCGAAAGTCC	50	55.15	317
gi\|37954874	gb	ay251732.1		(A) 19	GGTGCCAATCCTGAGCCG	66.7	GCTTGACGGCAGAACGGG	66.7	56.4	307
gi\|37954873	gb	ay251731.1		(A) 16	GGATTGAGCCTGGTATGG	55.6	GCCTTGACAGCAGAACGGG	63.2	56.5	375
gi\|37991673	dbj	ab124878.1		(A) 16	GCAGTAAGGGAGCGTGAC	61.1	GTCGTCAAGTCAGCCAAC	55.6	54.6	460
gi\|22773822	dbj	ab080739.1		(A) 13	CATAGGAAGGCAAGGAAGC	52.6	GATTCAGGTAGCAACGGAGTGG	54.5	58.9	728
gi\|33945370	emb	aj490190.1		(A) 10	GGTGGCAGGACTCAACGG	66.7	GCGATTGACAGCAGAACGGG	60	56.95	204
gi\|15149940	emb	aj315324.1		(A)11	GTCTGCCTGCCGATTTGGG	63.2	CTACACAGGTTCGGAGGG	61.1	62.4	75
gi\|27530874	dbj	ab076697.1		(A) 18	GATTCAGCAGCCGAGGAG	61.1	GTTATGCCTCCGCTCAGTG	57.9	55.35	458
gi\|10189940	emb	ax028838.1		(A) 17	CGGGCTAAGAGACACGGC	66.7	GGTGTGGCTCGTTGAATGCG	60	59.3	285
gi\|22796301	emb	aj430909.1		(AT)7	GATGGCAGTCCTCCGCTTC	63.2	CCGTTGATGTCTCTGCTACC	55	55.95	597
gi\| $18146804 \mid$ dbj\|ab028665.1		(G)14(A)86	CAGTTCCATCAAGCACCAGGCG	59.1	CTTCCGTGCGATGTCAGG	61.1	56.7	522		
gi\|1785485	dbj	d14589.1		(A) 15	GGCTGTTGGAAATGGCGG	61.1	GAGCGTTTATTCTGGGGC	55.6	56	672
gi\|3808127	emb	aj011983.1		(A) 12	CCGTAGGGTTGGGTCTTC	61.1	GCCAACCATTCGTAAGTCC	52.6	56.05	427
gi\|10189942	emb	ax028840.1		(A) 17	GGTCATTACTCGGGGTGTG	57.9	GCACTCTCACATCACATTGGGC	54.5	56.6	797
gi\|7415596	dbj	ab026494.1		(TA)6 (A)21	CTTGAGAAATGCCGTGTTGC	50	CTACAAATGCGGCTCCTCAC	55	54.8	410
gi\|221150824	gb	gh694656.1		(C) 12	GGAGGAGTGAATCGGAACCC	60	GTGAGGTGGAGGGACTGG	66.7	58.55	181

clustering patterns, test for Hardy-Weinberg equilibrium and multilocus equilibrium, and to test polymorphic loci for the evidence of selective neutrality. This can be useful to plant breeders, germplasm managers, or others who are interested in population genetic properties of materials that they are working with. The three most common types of markers used today are RFLP, RAPD, and microsatellites. A wide variety of methods for the construction of libraries enriched for microsatelite sequences have been reported, the most popular among those being the ones based on vectorette PCR using anchored primers. But this method is highly time-consuming and expensive, and the alternative is to use bioinformatics, that is, computational tools to screen the public database and find SSR. EST-derived molecular markers, especially SSR and SNP, are highly useful in developing linkage maps and markers assisted breeding programs. These markers are also transferable to related genera.

Molecular marker techniques are advantageous as they directly reflect variations in the DNA sequences and therefore of independence of environment. Among many molecular marker techniques currently available, microsatellites and SSRs ${ }^{[35]}$ provide an improved technology in assessing genetic diversity and genetic relationships in plants as they are highly polymorphic, codominants, very informative, and PCR based. EST-SSRs offer the following advantages over other genome DNA-based markers: (1) they should detect variation in the expressed portion of the genome so that gene tagging should give "perfect" marker-trait associations; (2) they can be developed at no cost from the EST databases; and (3) once developed, these markers, unlike genomic SSRs, may be used across a number of related species. With the growth of sequence databases, several authors have reported an abundance of SSRs in different genomes. The Distribution of SSRs in the rice genome has also been studied on the basis of the two whole genome draft sequences released, respectively, by Syngenta and by the Beijing Genome Institute (BGI). In the draft sequence released by Syngenta, for instance, 48,351 SSRs (including di-, tri-, and tetranucleotide repeats) were available, giving a density of 8 kb per SSR in the whole genome; SSRs represented by di-, tri-, and tetranucleotide repeats accounted respectively for $24 \%, 59 \%$, and 17% of the total SSRs.

SSRs are very polymorphic due to the high mutation rate affecting the number of repeat units. Such lengthpolymorphisms can be easily detected on high-resolution gels (e.g., sequencing gels), by running PCR-amplified fragments obtained using a unique pair of primers flanking the repeat. ${ }^{[36]}$ Chung and Staub ${ }^{[37]}$ developed a set of consensus chloroplast primer pairs for ccSSRs from N. tabacum chloroplast sequences. All primer pairs produced
amplicons after PCR employing chloroplast DNA from members of the Cucurbitaceae (six species) and Solanaceae (four species). Sixteen, 22, and 19 of the initial 23 primer pairs were successively amplified by PCR using template DNA from species of the Apiaceae (two species), Brassicaceae (one species), and Fabaceae (two species), respectively. Twenty of the 23 primer pairs were also functional in three monocot species of the Liliaceae (onion and garlic), and the Poaceae (oat). ccSSR primers were strategically "recombined" and referred to correctly as recombined consensus chloroplast primers (RCCP) for PCR analysis of cucumber DNA such that the primers designed for the SSR-containing genus of Gentiana family would be utilized for the production of amplicons from different members of family.

Kijas et al. ${ }^{[38]}$ tested two primer sets in 10 different Citrus species and two related genera and found conservation of the sequences. Cross-species amplification has also been reported between cultivated rice and related wild species ${ }^{[39]}$ and between Vitis species. ${ }^{[40]}$ Provan et al. ${ }^{[41]}$ could show successful amplification of two tomato SSR primer pairs tested on potato cultivars. Weising et al,. ${ }^{[42]}$ reported conservation of SSR flanking sites in different species of kiwifruit (Actinidia chinensis). Usually, a low percentage of markers also amplified fragments from species belonging to other genera from the same family. Within the Poaceae family, primers worked even across different genera, ${ }^{[43]}$ but only 50% of microsatellite loci identified in wheat were also polymorphic in rye and barley cultivars. Whitton et al. ${ }^{[44]}$ tested 13 SSR loci in 25 representatives of the Asteraceae, where it was demonstrated that the regions flanking in the repeats are not highly conserved, neither in the nucleotide sequence nor in the relative position.

Indeed, in general, transferability of polymorphic markers in plants is likely to be successful mainly within genera (success rate close to 60% in eudicots and close to 40% in the reviewed monocots) rather than between genera (transfer rates are approximately 10% for eudicots) within the same family. ${ }^{[45]}$ This transferability of polymorphic markers nature in plant generally enhances the utilization of the primers in random way. Comparative genome analysis facilitates high-throughput comparative mapping with the assistance of cross-species markers, and further facilitates gene cloning by identifying cross-reference genes. Seventeen SSR primer sets developed for Quercus petraea were tested on eight different members of the Fagaceae family. ${ }^{[46]}$ In total 66% resulted in interpretable amplification products and most of them were really homologous to the originally cloned SSR fragment from Q.petraea. The primers could be designed successfully for a very large number (169, 31%) of SSRs [Table 2]. However, it was not possible to design the primers for remaining SSRs (376, 69\%) because
the sequence flanking at both ends of the SSRs was inadequate in size to design the primers. The large number of primer pairs for the SSRs that have been designed during the present study may be utilized for a variety of purposes, for example, gene tagging, genetic mapping, population studies, etc. Due to a high level of potential for length polymorphisms, SSRs have become a valuable source of genetic markers and have been broadly applied to various areas of genetic research including studies of genome variation, establishment of genetic maps, integration of physical and genetic maps, determination of evolutionary relationships, and comparative genome analyses.

CONCLUSIONS

Nucleotide sequences of Gentiana family were systematically searched for SSRs using the "ssr_finder.pl" perl program for the development of SSR markers. This is a valuable approach for both costs and time, given a sufficient amount of available Gentiana family sequences. The use of SSRs in genetic diversity studies is a novel tool that reveals variation in genomes.

REFERENCES

1. Struwe L, Kadereit JW, Klackenberg J, Nilsson S, Thiv M, von Hagen KB, et al. Systematics, character evolution, and biogeography of Gentianaceae, including a new tribal and subtribal classification. In: Struwe, L. and V. A. Albert, editors, editors. Cambridge: Gentianaceae-Systematics and Natural History Cambridge University Press; 2002. p. 21-309.
2. Jacob HJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, et al. Genetic mapping of a gene causing hypertensive rat. Cell 1991;67:213-24.
3. Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 1989;44:397-401.
4. Edwards A, Civitello A, Hammond HA, Caskey CT. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 1991;49:746-56.
5. Tautz D, Renz M. Simple sequence repeats are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 1984;12:4127-38.
6. Katti MV, Ranjekar PK, Gupta VS. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 2001;18:1161-7.
7. Hancock JM. The contribution of slippage-like processes to genome evolution. J Mol Evol 1995;41:1038-47.
8. Ahmad R, Struss D, Southwick SM. Development and characterization of microsatellite markers in citrus. J Am Soc Hortic Sci 2003;128:584-90.
9. Chen C, Zhou P, Choi YA, Huang S, Gmitter FG Jr. Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 2006;112:1248-57.
10. Yang X, Scheffler BE, Weston LA. Recent developments in primer design for DNA polymorphism and mRNA profiling in higher plants. Plant Met 2006;2:4.
11. Witzany G. Noncoding RNAs: Persistent viral agents as modular
tools for cellular needs. Ann NY Acad Sci 2009;1178:244-67.
12. Robinson AJ, Love CG, Batley J, Barker G, Edwards D. Simple sequence repeat marker loci discovery using SSR primer. Bioinformatics 2004;20:1475-6.
13. Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of genederived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 2003;106:411-22.
14. Xu Y, Ma RC, Xie H, Liu JT, Cao MQ. Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome 2004;47:1091104.
15. Yu JK, La Rota M, Kantety RV, Sorrells ME. EST derived SSR markers for comparative mapping in wheat and rice. Mol Genet Genomics 2004;271:742-51.
16. Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants: Features and applications. Trends Biotechnol 2005;23:48-55.
17. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Res 2001;11:1441-52.
18. Kantety RV, La Rota M, Matthews DE, Sorrells ME. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 2002;48:501-10.
19. Pinto LR, Oliveira KM, Ulian EC, Garcia AA, de Souza AP. Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 2004;47:795-804.
20. Peng JH, Lapitan NL. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 2005;5:80-96.
21. Serapion J, Kucuktas H, Feng J, Liu Z. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus). Mar Biotechnol (NY) 2004;6:36477.
22. Prasad MD, Muthulakshmi M, Madhu M, Archak S, Mita K, Nagaraju J. Survey and analysis of microsatellites in the silkworm, bombyx mori: Frequency, distribution, mutations, marker potential and their conservation in heterologous species. Genetics 2005;169:197-214.
23. Dranchak PK, Chaves LD, Rowe JA, Reed KM. Turkey microsatellite loci from an embryonic cDNA library. Poult Sci 2003;82:526-31.
24. Haddad LA, Parra FC, Pena SD. Characterization and mapping of four novel human expressed polymorphic trinucleotide microsatellites. Gene 1998;223:369-74.
25. Fraser LG, Harvey CF, Crowhurst RN, De Silva HN. EST-derived microsatellites from Actinidia species and their potential for mapping. Theor Appl Genet 2003;108:1010-6.
26. Riju A, Arunachalam V. Data mining for simple sequence repeats in oil palm expressed sequence tags. Nature Proceedings 2009.
27. Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C, et al. Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency virus type 1 model studies. Nucleic Acids Res 1990;18:999-1005.
28. Khabar KS, Dhalla M, Bakheet T, Sy C, al-Haj L. An integrated computational and laboratory approach for selective amplification of mRNAs containing the adenylate uridylate-rich element consensus sequence. Genome Res 2002;12:985-95.
29. Sharrocks AD. The design of primers for PCR. In: Griffin HG, Griffin AM, editors. PCR technology: Current innovations. London: CRC Press; 1994. p. 5-11.
30. Ramsay L, Macaulay M, degli Ivannissevich S, MacLean K, Cardle L, Fuller J, et al. Simple sequence repeat-based linkage map of barley. Genetics 2000;156:1997-2005.
31. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS. EST-SSRs for transferability, polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 2003;270:315-23.
32. Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genome, survey and analysis. Genome Res 2000;10:1967-81.
33. Cardle L, Ramsay L, Milborne D, Macaulay M, Marshall D, Waugh R. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 2000;156:847-54.
34. Metzgar D, Bytof J, Wills C. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 2000;10:72-80.
35. Powell W, Machray GC, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1996;1:215-22.
36. Weber, May. Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction. Am J Hum Genet 1989;44:388-96.
37. Chung SM, Staub JE. The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa. Theor Appl Genet 2003;107:757-67.
38. Kijas JM, Fowler JC, Thomas MR, Scott NS. An evaluation of sequence tagged microsatellite site markers for genetic analysis within citrus and related species. Genome 1995;38:349-55.
39. Wu K, Tanksley SD. Abundance, polymorphism and
genetic mapping of microsatellites in rice. Mole Gen Genet 1993;241:225-35.
40. Thomas MR, Scott NS. Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites. Theor Appl Genet 1993;86:985-90.
41. Provan J, Waugh R, Powell W. Microsatellite analysis of relationships within cultivated potato (Solanum tuberosum). Theoretical and Applied Genetics 1996;92:1076-84.
42. Weising K, Fung RW, Keeling DJ, Atkinson RG, Gardner RC. Characterisation of microsatellites from Actinidia chinensis. Mole Breed 1997;3:159-60.
43. Röder MS, Plaschke JS, König U, Börner A, Sorrells ME. Abundance, variability and chromosomal location of microsatellites in wheat. Mole Gen Genet 1995;246:327-33.
44. Whitton J, Rieseberg LH, Ungerer MC. Microsatellite loci are not conserved across Asteraceae. Mole Biol Evol 1997;14:204-9.
45. Barbará T, Palma-Silva C, Paggi GM, Bered F, Fay MF, Lexer C. Cross-species transfer of nuclear microsatellite markers: Potential and limitations. Mole Ecol 2007;16:3759-67.
46. Steinkellner H, Lexer C, Turetschek E, Glössl J. Conservation of (GA)n microsatellite loci between Quercus species. Mole Ecol 1997;6:1189-94.

Cite this article as: Sathishkumar R, Lakshmi PT, Annamalai A, Arunachalam V. Mining of simple sequence repeats in the Genome of Gentianaceae. Phcog Res 2011;3:19-29.
Source of Support: Nil, Conflict of Interest: None declared.

Author Help: Online Submission of the Manuscripts

Articles can be submitted online from http://www.journalonweb.com. For online submission articles should be prepared in two files (first page file and article file). Images should be submitted separately.

1) First Page File:

Prepare the title page, covering letter, acknowledgement, etc., using a word processor program. All information which can reveal your identity should be here. Use text/rtf/doc/pdf files. Do not zip the files.
2) Article file:

The main text of the article, beginning from Abstract till References (including tables) should be in this file. Do not include any information (such as acknowledgement, your names in page headers, etc.) in this file. Use text/rtf/doc/pdf files. Do not zip the files. Limit the file size to 1 MB. Do not incorporate images in the file. If file size is large, graphs can be submitted as images separately without incorporating them in the article file to reduce the size of the file.
3) Images:

Submit good quality color images. Each image should be less than $\mathbf{4 0 9 6} \mathbf{~ k b}(4 \mathrm{MB})$ in size. Size of the image can be reduced by decreasing the actual height and width of the images (keep up to about 6 inches and up to about 1200 pixels) or by reducing the quality of image. JPEG is the most suitable file format. The image quality should be good enough to judge the scientific value of the image. Always retain a good quality, high resolution image for print purpose. This high resolution image should be sent to the editorial office at the time of sending a revised article.
4) Legends:

Legends for the figures/images should be included at the end of the article file.

[^0]: Address for correspondence:
 Dr. PTV. Lakshmi, Centre for Bioinformatics School of Life Sciences, Pondicherry University, Puducherry - 605 014, India. E-mail: lakanna@bicpu.edu.in

